
MITOCW | L3.1 Remarks on a 'good basis'

PROFESSOR: We have already begun with the degenerate perturbation theory. And we obtained the first

result-- perhaps the most important result-- already. It came rather quick. And let me review

what we had.

So we were talking about the Hamiltonian H0 that had degeneracies. And we were now

interested to see what the perturbation does to those degenerate states. What does it do to its

energies? What does it do to the states themselves?

So we called that degenerate subspace the space V capital N. And the rest of the state space

of the theory was V hat. For those states in the degenerate space, we use a label n for being

an n-th state or having energy En. They all have the same energy, unperturbed energy, En0.

These are the states. And with k running from 1 to n-- these are a basis of linearly

independent states that span the degenerate subspace. So that's our degenerate subspace.

And then, the rest of the space is the space V hat. And it's spanned by states that we call p0's,

we used to call them. And the notation is good that allows you to distinguish, with two labels,

states in the degenerate subspace and, with one label, a state in the rest of the space.

The rest of the space can also have degeneracies that wouldn't matter. You see, when you do

non-degenerate perturbations theories, because you are focusing on a single, non-

degenerate state, it's not that you're focusing on a theory in which every state is non-

degenerate. Non-degenerate perturbation theory means focusing on a non-degenerate state

of a general spectrum.

Same thing with degenerate perturbation theory. You focus on a particular non-degenerate

space. Whether there are other non-degenerate spaces doesn't matter. They will be treated

as the rest. And that makes your life simple.

So we had our perturbative equations assume that we were going to find states nk that

depend on lambda. And they would have energies Enk that depend on lambda. And looking at

the Schrodinger equation, we found an expansion in which this state is the state n0 plus

lambda n1 plus lambda squared n2. And this energy is En0 plus the first corrections plus the

second corrections and those things.

So these were our equations that probably by now, they're starting to look pretty familiar. And



So these were our equations that probably by now, they're starting to look pretty familiar. And

as usual, we say that a correction to a state doesn't receive corrections. We can work in a

convention where it doesn't receive corrections proportional to the original state. This could be

reabsorbed into normalization.

So that was the setup. And we said we would calculate things using three steps. And the first

step was to act with those unperturbed states on the order lambda equation, so lambda to the

1 there. The first equation is always trivial.

So we acted in this equation. And these states are killed by this operator because they are

states of energy En0. And therefore, you get the right-hand side equal to 0 when you have the

n0l.

And we discovered that the consistency of our expansion requires that the chosen basis--

because, after all, you chose that basis. Nobody gave it to you. If you have a degenerate

subspace, you can take any set of linearly independent vectors that are orthonormal, and

that's a good basis.

It's not a uniquely defined basis. But in the chosen basis that you're working with, it must

happen that the perturbation is diagonal-- delta lk. And therefore, the first order perturbations,

when you take l equal to k, is given by this matrix element between nk and nk.

So this is a key result, and our first result that in the degenerate subspace, either you choose

a basis that diagonalizes the perturbation to begin with, or you compute the matrix delta H in

that degenerate subspace and then work and diagonalize it. So either way, you do it.

So I want to make a couple of remarks on this thing. First remark is a terminology. We can say

that the degeneracy was lifted by the perturbation. And that's a great thing if it happens. We'll

comment more.

It's a very nice thing if it happens, the degeneracy lifted. And you have the intuition what

happens. You have these states are all here of the same energy. And then, if the degeneracy

is lifted-- these are four states-- then, suddenly, one, two, three, four, as lambda changes,

they split.

So their energies start to become different. And that depends on the first energy corrections

being different for every single one of the states. So this means that Enk1 is different from

Enl1 for the l-th state. And for the k-th state, the first energy corrections are different for all k



different for l.

So for any two states that you pick, from the list of your N-- capital N states there-- for any two

states that you pick, their energies must be different. And then, the degeneracy is lifted. And

that means that you've found what we will call a good basis, a basis of states that diagonalizes

delta H.

And already, the states have split. You can now follow each of them and see what happens.

You know what is a preferred basis. So this is nice. And so this is our first remark. Degeneracy

is lifted when this happens.

And this is the case, we're going to assume, for the rest of the discussion, for the first part of

the lecture, that the degeneracy is lifted. And then, we'll try to find the correction to the state.

Let me comment that our first order shifts that we have found-- these eigenvalues-- are valid

even if the degeneracy is not lifted.

The second remark has to do with a rule to help you do this stuff. This will be very useful in

about a week, when we apply some of these things to the hydrogen atom. So first matter of

notation-- some people use this, I kind of like it-- a basis in VN that diagonalizes delta H is

called a good basis.

So good, bad-- it's kind of easy to relate to those things. So it's good. It gives you the answer.

So we'll call it a good basis. So here comes a question that you want to answer. Typically, you

have some basis that you like. And you have a delta H.

Now, you can say, OK, do I know that delta H is diagonal in this basis? Maybe I don't. So what

can I do? I can diagonalize it and check. But sometimes, there is a better way, and it helps you

explain why the matrix delta H is diagonal.

So this is a shortcut. It's a conceptual idea that you can check that delta H is diagonal without

diagonalizing it. So here it is. So here's the rule-- "rule."

If the basis vectors are eigenstates of a Hermitian K with different eigenvalues-- so so far,

what am I saying? I'm bringing up a new operator. Somebody gives you another operator K--

Hermitian. And then, you check that, after all, for this Hermitian operator, the basis, or the

basis vectors, are eigenstates of that operator and with different eigenvalues. All of them have

different eigenvalues.



[MUMBLING]

And K commutes with delta H, then the basis is good. Basis is good. Now, first time I heard

this-- I still remember-- it seemed to me like a very complicated rule. Just diagonalize and

forget about it. No. But it actually is very helpful. So let's explain this rule.

So K with delta H is equal to 0. So let's assume we have two eigenstates. So "proof" here. Two

eigenstates-- n0p and n0q. And the K eigenvalues are lambda p and lambda q that are

different from each other.

So we said that the basis states are supposed to be eigenstates of this Hermitian operator K

and all of them with different eigenvalues. So here, I wrote two states that are part of our

basis. And I say that K eigenvalues are lambda p and lambda q, and they are different from

each other. So far, so good.

So then we can form the following-- n0p, the commutator of K with delta H with K or K with

delta H n0q. Consider that matrix element. Since we say that K commutes with delta H, this

must be 0. That operator that we've put in between the states is 0. So this is 0 because this is

0.

But on the other hand, let's expand this. This is a commutator. So you have K times delta H

minus delta H times K. Since it's a Hermitian operator, the first term K is near this state. And

being Hermitian, you get the eigenvalue of 8, which is lambda p n0p delta H n0q. That's from

the first term.

And the second term is a minus the delta H on the left. So you get the minus n0qp delta H.

And the K acting on the right this time gives you lambda q. So this is equal to lambda p minus

lambda q times n-- it's the same factor for both terms-- delta H n0q.

OK. So that matrix element has been evaluated. And it's now equal to the product of the

difference of eigenvalues times the matrix element of delta H. But here, we know that this

product must be 0. But since the two eigenvalues are different, this factor is not 0.

So the only possibility is that the second factor is 0. And you have shown, therefore, at this

moment, since this is 0, this implies that the n0p delta H n0q is equal to 0 whenever p is

different from q. And that's exactly the statement that all the off-diagonal elements of delta H

are 0.



So indeed, it has been diagonalized. Or you can, without diagonalizing the delta H, you can

say, oh, look at this basis. This basis is good. Because there is this operator-- many times it

will be angular momentum, lz, it may be other thing-- for which all the states have different

eigenvalues. And it commutes with a perturbation. So you look for an operator that commutes

with a perturbation for which your basis vectors may be eigenstates.


