THE PHYSICS OF WAVES

HOWARD GEORGI

Harvard University

Originally published by
PRENTICE HALL

Englewood Cliffs, New Jersey 07632



© 1993 by Prentice-Hall, Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America
10 9 8 7 6 5 4 3

Prentice-Hall International (UK) Limited,ondon
Prentice-Hall of Australia Pty. Limite&ydney
Prentice-Hall Canada Inclpronto

Prentice-Hall Hispanoamericana, S.®Mexico
Prentice-Hall of India Private Limite®ew Delhi
Prentice-Hall of Japan, IncTpkyo

Simon & Schuster Asia Pte. Ltc&ingapore

Editora Prentice-Hall do Brasil, Ltd&jo de Janeiro



Contents

1 Harmonic Oscillation 1
Preview . . . . . e e e 1
1.1 The Harmonic Oscillator. . . . . . . . .. . ... . ... ... ....... 2
1.2 SmallOscillationsand Linearity. . . . . . . . .. .. ... ... ...... 5
1.3 Time Translation Invariance. . . . . . . . . . . . . o e 9

1.3.1 Uniform Circular Motion. . . . . . . ... ... ... ........ 9
1.4 Complex Numbers. . . . . . . . . . . . . . e 12
1.4.1 SomeDefinitions. . . . . . . .. ... e 12
1.4.2 Arithmetic . . . . . . . . . e 14
1.4.3 ComplexExponentials. . . . ... ... ... ............ 15
1.4.4 Notation . . . . . . . . . . e e e 18
1.5 Exponential Solutions . . . . . . . . ... ... ... L 18
1.5.1 *BuildingUp The Exponential . . . . . ... ... ......... 22
152 WhatisH? . . . . . . . . . . e 23
16 LCCICUIS . . . . . . o e e e e e e e e e e e 25
1.7 Units — Displacementand Energy. . . . . . . . . . . . .. ... ... .. 28
1.7.1 ConstantEnergy. . . . . . .. . .. . . ... ... 29
1.7.2 TheTorsionPendulum . . . ... ... ... .. .......... 29
1.8 A Simple Nonlinear Oscillator. . . . . .. ... ... ... ......... 30
Chapter CheckliSt . . . . . . . . . . 33
Problems . . . . . . . . . e 34

2 _Forced Oscillation and Resonance 37
Preview . . . . . e e e 37
2.1 DampedOscillators . . . . . . . . . . . e 37

2.1.1 OverdampedOscillators . . . . . . . ... .. ... ... ..... 38
2.1.2 Underdamped Oscillatots. . . . . . . ... ... .. ... 39
2.1.3 Cntically Damped Osclllators. . . . . . .. .. .. .. ... .... 41
2.2 Forced Oscillations. . . . . . . . . . . . e 42



Vi

CONTENTS

2.3 Resonance . . . . . . . . . e e 44
2.3 1 WOrK . . . . . e e 45
2.3.2 Resonance Width and Lifetirne. . . . . . . . ... ... ...... 45
233 Phaselag .. ... ... ... . .. ... .. 47

24 AnExample. . . . . 48
24.1 FeelingltinYourBones. . . ... ... ... ... ......... 48
Chapter CheckIlist . . . . . . . . . . . e 51
Problems . . . . . . . ... 51
Normal Modes 53
Preview . . . . . . . 53
3.1 Morethan One Degree of Freedom . . . . . . ... ... ... ...... 54
3.1.1 Two CoupledOscillators . . . . . . . . ... ... . ... ..... 54
3.1.2 Linearityand NormalModes . . . . . . ... . ... ... ..... 57
3.1.3 mCoupledOscillators. . . . ... ... ... ... ......... 58

3.2 _MatriCes. . . . . . . e e e e e 59
3.2.1 *InverseandDeterminant . . . ... ... ... ... ....... 62
3.2.2 _More Useful Facts about Matrices. . . . ... ... ........ 65
3.2.3 Eigenvalue Equations. . . . . ... ... ... .. .. ... ... 66
3.2.4 The Matrix Equationof Motion. . . . . . .. .. .. ... ..... 67

3.3 NormalModes . . . . . . . . . . . .. e 68
3.3.1 Normal Modes and Frequencies. . . . . . ... ... ....... 70
3.3.2 BacktotheX2Example . . . ... ... ... ... ... ..... 72
333 n=2—theGeneralCase . ... ... ... ... . ........ 75
3.3.4 The Initial Value Problem . . . . . . . ... ... ... ....... 76

3.4 _* Normal Coordinates and Initial Values . . . . . . . . ... ... ..... 77
3.4.1 More on the Initial Value Problem . . . . ... ... ... ... .. 79
3.4.2 *MatricesfromVectors. . . ... ... ... ... ... ... 80
343 *w?isReal. . . . . ... 81

3.5 *Forced Osclllationsand Resonance . . . . . ... ... ... ...... 82
3.5 1 Example . . . . .. .. 83
Chapter Checklist . . . . . . . . . . . . e 86
Problems . . . . . . . e 87
Symmetries 93
Preview . . . . . . e e e 93
4.1 SYymmetries. . . . . . . . e e e e 93
4.1.1 Beats . . . . . . e 98
412 AlessTrivialExample . . . .. ... .. ... . ... ....... 99
Chapter Checklist . . . . . . . . . . e 104



CONTENTS vii
Problems . . . . . . . .. 104

S5 Waves 107
Preview . . . . . . . 107
5.1 Space Translation Invariarice. . . . . . . .. ... ... ..... 108
5.1.1 Thelnfinite System . . . . ... ... ... ........ 110

5.1.2 Boundary Conditions . . . . . .. .. .. .. ....... 113

5.2 kandDispersionRelations . . . ... ... ............ 114
5.2.1 The Dispersion Relation. . . . . .. ... ......... 116

53 Waves. . . . . . 117
5.3.1 TheBeaded String. . . . .. ... ... .......... 117

932 FixedEnds. .. .. ... .. ... ... 119

54 FreeEnds. . ... . . . .. 121
5.4.1 Normal Modes forFree Ends. . . . . ... ... ... .. 122

5.5 Forced Oscillations and Boundary Conditions . . . . . . . . .. 124
5.5.1 Forced Oscillations withaFreeEnd. . . . . . ... ... 126

5.5.2 Generalization. . . . . . . .. ... ..o 129

5.6 CoupledLC Circuits . . . . . . . . . . o 129
5.6.1 An Example of Coupled.C Circuits . . . . . ... ... .. 132

5.6.2 A Forced Oscillation Problem for Coupldd” Circuits . . . 133
Chapter Checklist . .. . . . . . . . . . . e 134
Problems . . . . . . . . . . e 135

6 Continuum Limit and Fourier Series 139
Preview . . . . . . . 139
6.1 The ContinuumLimit. . . . . .. .. .. ... ... ........ 139
6.1.1 Philosophy and Speculation . . . . .. ... ... .. .. 141

6.2 FOUMEerserie€s. . . . . . . . . o o i i ittt it et 141
6.2.1 The Stringwith FixedEnds. . . . .. ... ... ... .. 141

6.2.2 FreeEnds. . .. .. .. ... . ... 142

6.2.3 Examples of Fourier Series. . . . . . .. ... ... ... 144

6.2.4 PluckingaString. . . . ... ... ... ... . ...... 148
Chapter Checklist . . . . . . . . . .. . 149
Problems . . . . . . . . . 149

7 Longitudinal Oscillations and Sound 153
Preview . . . . . . . 153
7.1 Longitudinal Modes in a Massive Spring. . . . . . ... ... .. 153
711 FixedEnds. .. ... .. ... ... 155

712 FreeEnds. . . ... .. .. .. ... o 156



viii

CONTENTS

7.2 AMassonalightSpring . . ... .. ... ... . . ... ... ..., 157
7.3 TheSpeedofSound. . .. ... ... ... .. .. .. .. .. . ... 160
7.3.1 The Helmholtz Approximation . . . . ... ... ... ....... 163
7.3.2 CorrectionstoHelmholtz . . . . ... ... ............ 165
Chapter Checklist . . . . . . . . . . . 166
Problems . . . . . . . . . e 167
Traveling Waves 171
Preview . . . . . e e e 171
8.1 Standingand TravelingWaves . . . . . ... .. .. ... .. ...... 172
8.1.1 WhatisltThatisMoving?. . . . ... ... ............ 172
8.1.2 Boundary Conditions . . . . . ... ... ... . ... . ..., 173

8.2 Force, PowerandImpedance. . . . . . . .. ... ... ... ... ... 175
8.2.1 *ComplexImpedance. . . . ... .. ... ... .. ....... 178

8.3 Light. . . . . . . . e e e 180
831 PlaneWaves. . . . . ... .. .. . ... ... e 180
8.3.2 Interferometers. . . . . . . . . ... oo 182
8.3.3 Quantum Interference. . . . . . . . . ... ... L. 184

8.4 Transmission Lines. . . . . . . . . . . . e e e 185
8.4.1 Parallel Plate TransmissionLine. . . . . . . ... ... ..... 186
8.4.2 Waves inthe Transmissionline . . . . .. ... ... ....... 188

8.5 Damping . . . . . . .. 190
8.5.1 FreeOsclillations. . . . . . . . . . . . .. .. e 191
85.2 ForcedOscillation. . . .. ... ... .. ... . ... .. . ... 192

8.6 HighandLow Frequency Cut-Offs. . . .. ... ... .. ........ 193
8.6.1 Moreon Coupled Pendulums. . . . . ... ... .......... 193
Chapter Checklist . . . . . . . . . . 197
Problems . . . . . . . . . e 198
The Boundary at Infinity 201
Preview . . . . . e e e 201
9.1 Reflectionand Transmission . . . . . . . . . . . . v v i v i 202
9.1.1 ForcedOscillation. . . .. ... ... .. ... . ... .... 202
9.1.2 Infinite Systems . . . . . . . . .. ... e 202
9.1.3 Impedance Matching . . . . ... .. .. .. .. ... ...... 204
9.1.4 Looking atReflectedWaves . . . ... ... ... ........ 206
9.1.5 PowerandReflection. . ... ... ... ............. 207
9.1.6 MassonasString. . . . ... .. .. .. ... .. e 209

9.2 IndexofRefraction. . . . . . ... ... . ... ... ... . 211

9.2.1 Reflection from a Dielectric Boundary. . . . . .. ... ... .. 212



CONTENTS iX

10

11

9.3 *TransferMatrices. . . . . . . . . . . . e 213
9.3.1 TwoMassesonasString. . . . ... ... ... ... ....... 213
9.3.2 kChanges . . . . . . . . i i e 216
9.3.3 ReflectionfromaThinFilm. . . . ... ... ........... 218
9.3.4 Nonreflective Coating. . . . . .. .. .. .. ... ... ..., 219

ChapterChecklist . .. . . ... ... ... ... ... ... ... .. .. .. 220

Problems . . . . .. ... . . 221

Signals and Fourier Analysis 225

Preview . . . . . . 225

10.1 Signalsin Forced Oscillation. . . . . . . . ... ... ... ... .... 226
10.1.1 APulseonasString . . . . . . . .. . .. . e 226
10.1.2 Fourierintegrals . . . . . . . . . . .. ..o 227

10.2 Dispersive Media and Group Velocity . . . . . ... ... ... ..... 229
10.2.1 Group VelocCity . . . . . . . . . . . e 229

10.3 Bandwidth, Fidelity, and Uncertainty. . . . . . . . .. .. ... ... .. 232
10.3.1 ASolvable Example. . . . . ... ... .. .. ... .. .. 235
10.3.2 Broad Generalities. . . . . . . . . . . .. .. . . e 236

10.4 Scatteringof Wave Packets. . . . . . . . . . . .. .. ... 0 239
10.4.1 Scatteringfroma Boundary. . . . . . ... .. ... ... ..., 239
10.4.2 AMassonasString. . . . ... ... . ... . e 241

10.51Iscthe SpeedofLight? . . . . . . . . .. .. ... ... . ... .. ... 246

Chapter Checklist . . . . . . . . . . . . e 250

Problems . . . . . . . . e 251

Two and Three Dimensions 253

Preview . . . . . . e e e 253

111 Thek VeCIOr . . . v v v it e e e e e 254
11.1.1 The Difference between One and Two Dimensians . . . . . . . . 256
11.1.2 Three DIMENSIONS . . . . . . .« o v v i i et e e e e e e e 258
11.1.3 SoundWaves. . . . . . . . .. e 260

11.2 Plane Boundaries . . . . . . . . . . .. 261
11.2.1 Snell’'s Law — the Translation Invariant Boundary. . . . . . . . . 263
11.22 PrisSms. . . . . . . o e e e e e 267
11.2.3 Total Internal Reflection. . . . . . . ... ... ... ....... 270
11.2.4 Tunneling. . . . . . . . e e 272

113 ChladniPlates . . . . . . . . . . . . e 276

11.4 Waveguides. . . . . . . . . e e e e e 282

115 Water . . . . . 284

11.5.1 Mathematics of Water Waves. . . . . . . ... .. .. .. .... 285



12

13

CONTENTS

11.52 Depth . . . . . . . . o e 286
11.6 Lenses and Geometrical Oplics . . . . . . . . . ... ... ... ... 292
11.7 RaNDOWS. . . . . . . e e e e 307
11.8 SphericalWaves . . . . . . . . . . . . . ... 314
11.9 Chapter Checklist . . . . . . . ... .. ... .. ... . ......... 316
Chapter Checklist . .. . .. ... ... ... ... .. ... . 316
Problems . . . . . . ... 317
Polarization 333
Preview . . . . . . e 333
12.1 The Stringin ThreeDimensions . . . . . . . .. .. ... ... ..... 334

12.1.1 Polarization. . . . . . . . . . .. e e 334
12.2 ElectromagneticWaves . . . . . . . . . . .. e 338

12.2.1 General Electromagnetic Plane Waves . . . . . . ... ... .. 338

12.2.2 EnergyandIntensity. . . . . . .. ... .. .. ... .. ... 340

12.2.3 Circular Polarizationand Spin . . . . . .. ... ... ....... 341
12.3 Wave Plates and Polarizers. . . . . . . . .. .. ... ... ... ... 342

12.3.1 Unpolarized Light . . . . . . ... .. .. ... ... ....... 342

12.3.2 Polarizers. . . . . . . . . e 343

12.3.3 WavePlates . . . . . . .. .. . .. 343

12.3.4 Matrices. . . . . . . . . e 345

12.3.5 Optical Activity . . . . . . . . . . . 347

12.3.6 Crossed Polarizers and Quantum Mechanics . . . . . . . . .. 349
12.4 Boundary between Dielectrics . . . . . . ... .. .. ... ... ... . 350

12.4.1 Polarization Perpendicular to the Scattering Plane . . . . . . .. 352

12.4.2 Polarization in the ScatteringPlane . . . . . . ... .. ... .. 354
125 Radiation. . . . . . . . e 355

12.5.1 Fieldsofmovingchargés . . . . . . . .. ... ... .. ..... 355

12.5.2 The Antenna Pattern . . . . . . . .. . ... . ... ... ..., 360

12.5.3 * Checking Maxwell's equations . . . . . . . ... ... .. ... 361
Chapter Checklist . . . . . . . . . . . 363
Problems . . . . . . . e 364
Interference and Diffraction 369
Preview . . . . . e e e 369
13.1 Interference. . . . . . . . .. 370

13.1.1 TheDouble Slit. . . . . . . . . . 370

13.1.2 FourierOptiCs . . . . . . . . . 372
13.2Beams5. . .. . . . e e e 374

13.2.1 MakingaBeam . . . . .. ... ... 374



CONTENTS Xi

14

13.22 CaveatS. . . . . . . .. 374
13.2.3 TheBoundaryabo| . .. .. .. ... ... ... ... .... 375
13.2.4 TheBoundaryat=0 . .. ... ... ... .. .......... 376
1331 Smallz . . . . ... 377
13.3.2 Largez . . . . . . . 378
13.3.3 * StationaryPhase. . . . . . . ... ... .. .. .. o L. 380
13.3.4 SpotSize. . . . . . 382
13.35 Angles . . . . . ... e 383
13.4 Examples. . . . . . . . 383
13.41 TheSingleSlit . . . . . .. ... 383
13.4.2 Near-field Diffraction. . . . . . . . ... ... . ... ... .... 384
13.4.3 TheRectangle . . . . . . . . . . . . .. . . . 388
13.4.4 0 "Functions”. . . . . . . . ... 388
13.4.5 Some Properties @-Functions . . . . . ... ... ... ...... 390
13.4.6 One Dimensionfrom TWO. . . . . . . . . . . . . oo .. 390
13.4.7 Many Narrow SIits . . . . . . . .. .. .. ... 390
135 Convolution. . . . . . . . . L 393
13.5.1 Repeated Patterns. . . . . . .. .. .. ... .. .. .. ... 393
13.6 PeriodiCf (X, y) - - « v v v o e e 395
13.6.1 Twistingthe Grating . . . . . . . . .. ... ... ... .. .... 396
13.6.2 Resolving Power. . . . . . . . . . .. .. .. .. e 399
13.6.3 Blazed Gratings . . . . . . . . .. ... 401
13.7 * X-ray Diffraction| . . . . . . . . . . .. .. .. 401
13.8 Holography. . . . . . . . . . . e 409
13.9 Fringesand Zone Plates. . . . . . . . . . . . 413
13.9.1 The Holographic Image ofaPoint. . . . . . ... .. ... ... 413
13.9.2 ZonePlates. . . . . . . . . . . 415
Chapter Checklist . . . . . . . . . . . . e 416
Problems . . . . . . . . e 417
Shocks and Wakes 423
Preview . . . . . . 423
141 *BoatWakes. . . . . . . . . . e 423
14.1.1 Wakes. . . . . . . 423
14.1.2 Linear analysis of the Kelvinwake. . . . . . . . ... ... ... 425
14.1.3 ShocksversusWakes. . . . . .. .. ... ... ... ... 437
14.2 Chapter Checklist . . . . . . . . .. . .. . . e 438
Chapter Checklist . . . . . . . . . . e 438

Problems . . . . . . . . e e 438



Xii
Bibliography
A The Programs

B Solitons

C Goldstone Bosons

CONTENTS

440
443
447

451



Preface

Waves are everywhere. Everything waves. There are familiar, everyday sorts of waves in
water, ropes and springs. There are less visible but equally pervasive sound waves and elec-
tromagnetic waves. Even more important, though only touched on in this book, is the wave
phenomenon of quantum mechanics, built into the fabric of our space and time. How can it
make sense to use the same word — “wave” — for all these disparate phenomena? What is
it that they all have in common?

The superficial answer lies in the mathematics of wave phenomena. Periodic behavior
of any kind, one might argue, leads to similar mathematics. Perhaps this is the unifying
principle.

In this book, | introduce you to a deeper, physical answer to the questions. The mathemat-
ics of waves is important, to be sure. Indeed, | devote much of the book to the mathematical
formalism in which wave phenomena can be described most insightfully. But | use the math-
ematics only as a tool to formulate the underlying physical principles that tie together many
different kinds of wave phenomena. There are three: linearity, translation invariance and lo-
cal interactions. You will learn in detail what each of these means in the chapters to come.
When all three are present, wave phenomena always occur. Furthermore, as you will see,
these principles are a great practical help both in understanding particular wave phenomena
and in solving problems. | hope to convert you to a way of thinking about waves that will
permanently change the way you look at the world.

The organization of the book is designed to illustrate how wave phenomena arise in any
system of coupled linear oscillators with translation invariance and local interactions. We
begin with the single harmonic oscillator and work our way through standing wave normal
modes in more and more interesting systems. Traveling waves appear only after a thorough
exploration of one-dimensional standing waves. | hope to emphasize that the physics of
standing waves is the same. Only the boundary conditions are different. When we finally get
to traveling waves, well into the book, we will be able to get to interesting properties very
quickly.

For similar reasons, the discussion of two- and three-dimensional waves occurs late in
the book, after you have been exposed to all the tools required to deal with one-dimensional
waves. This allows us at least to set up the problems of interference and diffraction in a

Xiii



Xiv PREFACE

simple way, and to solve the problems in some simple cases.

Waves move. Their motion is an integral part of their being. lllustrations on a printed
page cannot do justice to this motion. For that reason, this book comes with moving illustra-
tions, in the form of computer animations of various wave phenomena. These supplementary
programs are an important part of the book. Looking at them and interacting with them, you
will get a much more concrete understanding of wave phenomena than can be obtained from
a book alone. 1 discuss the simple programs that produce the animations in more detail in
Appendix A. Also in this appendix are instructions on the use of the supplementary program
disk.

The subsections that are illustrated with computer animations are clearly labeled in the

text by .. and the number of the program. | hope you will read these parts of the book while
sitting at your computer screens.
The sections and problems marked witk &an be skipped by instructors who wish to

keep the mathematical level as low as possible.

Two other textbooks on the subjedtaves by Crawford an@®ptics by Hecht, influenced
me in writing this book. The strength of Crawford’s book is the home experiments. These
experiments are very useful additions to any course on wave phenomena. Hecht's book is an
encyclopedic treatment of optics. In my own book, | try to steer a middle course between
these two, with a better treatment of general wave phenomena than Hecht and a more appro-
priate mathematical level than Crawford. | believe that my text has many of the advantages
of both books, but students may wish to use them as supplementary texts.

While the examples of waves phenomena that we discuss in this book will be chosen
(mostly) from familiar waves, we also will be developing the mathematics of waves in such
a way that it can be directly applied to quantum mechanics. Thus, while learning about
waves in ropes and air and electromagnetic fields, you will be preparing to apply the same
techniques to the study of the quantum mechanical world.

| am grateful to many people for their help in converting this material into a textbook.
Adam Falk and David Griffiths made many detailed and invaluable suggestions for improve-
ments in the presentation. Melissa Franklin, Geoff Georgi, Kevin Jones and Mark Heald, also
had extremely useful suggestions. | am indebted to Nicholas Romanelli for copyediting and
to Ray Henderson for orchestrating all of it. Finally, thanks go to the hundreds of students
who took the waves course at Harvard in the last fifteen years. This book is as much the
product of their hard work and enthusiasm, as my own.

Howard Georgi
Cambridge, MA



Preface to the online edition

As | prepared to teach the sophomore waves course at Harvard again after a break of over 10
years, | realized that | had accumulated a list of many things that | wanted to change in my
waves text. And while | was very grateful to Prentice-Hall for all the help they gave me in
turning my notes into a textbook, | felt that it was time to liberate the book from its paper
straightjacket, and try to turn it into something more continuously evolving. Thus | asked
Prentice-Hall to release the rights back to me, and they graciously agreed. My intention is to
leave the textbook up on the web for students and teachers to use as they see fit, so long as
they give me credit and do not use it for commercial purposes. | hope that readers will send
suggestions for improvements. | will not have much time to think about these and implement
them. But if | do incorporate something in the online version as the result of a suggestion, |
will acknowledge the suggestion in a list of changes on my web page.

| have eliminated the table of contents from the online version and substituted hyperref
hypertext instead. | hope that this will encourage people to use the text online and save trees.

Howard Georgi
Cambridge, MA
December, 2006

XV



Chapter 1

Harmonic Oscillation

Oscillators are the basic building blocks of waves. We begin by discussing the harmonic
oscillator. We will identify the general principles that make the harmonic oscillator so spe-
cial and important. To make use of these principles, we must introduce the mathematical
device of complex numbers. But the advantage of introducing this mathematics is that we
can understand the solution to the harmonic oscillator problem in a new way. We show that
the properties of linearity and time translation invariance lead to solutions that are complex
exponential functions of time.

Preview

In this chapter, we discuss harmonic oscillation in systems with only one degree of freedom.

1.

We begin with a review of the simple harmonic oscillator, noting that the equation of
motion of a free oscillator is linear and invariant under time translation;

. We discuss linearity in more detail, arguing that it is the generic situation for small

oscillations about a point of stable equilibrium;

. We discuss time translation invariance of the harmonic oscillator, and the connection

between harmonic oscillation and uniform circular motion;

We introduce complex numbers, and discuss their arithmetic;

. Using complex numbers, we find solutions to the equation of motion for the harmonic

oscillator that behave as simply as possible under time translations. We call these
solutions “irreducible.” We show that they are actually complex exponentials.

. We discuss aiLC circuit and draw an analogy between it and a system of a mass and

springs.



2 CHAPTER 1. HARMONIC OSCILLATION

7. We discuss units.

8. We give one simple example of a nonlinear oscillator.

1.1 The Harmonic Oscillator

When you studied mechanics, you probably learned about the harmonic oscillator. We will
begin our study of wave phenomena by reviewing this simple but important physical system.
Consider a block with mass,, free to slide on a frictionless air-track, but attached to atlight
Hooke’s law spring with its other end attached to a fixed wall. A cartoon representation of
this physical system is shown in figurd.

Figure 1.1: A mass on a spring.

This system has only one relevant degree of freedom. In general, the nundeer of
grees of freedomof a system is the number of coordinates that must be specified in order
to determine the configuration completely. In this case, because the spring is light, we can
assume that it is uniformly stretched from the fixed wall to the block. Then the only important
coordinate is the position of the block.

In this situation, gravity plays no role in the motion of the block. The gravitational force
is canceled by a vertical force from the air track. The only relevant force that acts on the
block comes from the stretching or compression of the spring. When the spring is relaxed,
there is no force on the block and the system is in equilibrium. Hooke’s law tells us that
the force from the spring is given by a negative constaft, times the displacement of the
block from its equilibrium position. Thus if the position of the block at some tinneaisd
its equilibrium position i, then the force on the block at that moment is

F=—-K(z—x0). (1.1)

LLight” here means that the mass of the spring is small enough to be ignored in the analysis of the motion
of the block. We will explain more precisely what this means in chapter 7 when we discuss waves in a massive

spring.



1.1. THE HARMONIC OSCILLATOR 3

The constant, is called the “spring constant.” It has units of force per unit distance, or
MT~2 in terms ofM (the unit of mass)L (the unit of length) and’ (the unit of time). We

can always choose to measure the positipof the block with our origin at the equilibrium
position. If we do this, themny = 0 in (1.1) and the force on the block takes the simpler form

F=—-Kzx. (1.2)

Harmonic oscillation results from the interplay between the Hooke’s law force and New-
ton’s law, F' = ma. Letz(t) be the displacement of the block as a function of ttm&hen

Newton’s law implies
2

m @x(t) =—Kx(t). (1.3)
An equation of this form, involving not only the functieft), but also its derivatives is called
a “differential equation.” The differential equation, (1.3), is the “equation of motion” for the
system of figure 1.1. Because the system has only one degree of freedom, there is only one
equation of motion. In general, there must be one equation of motion for each independent
coordinate required to specify the configuration of the system.

The most general solution to the differential equation of motion, (1.3), is a sum of a
constant timesos wt plus a constant timesn wt,

x(t) = acoswt + bsinwt , (1.4)
where
w= K (1.5)
m

is a constant with units @~ called the “angular frequency.” The angular frequency will be
a very important quantity in our study of wave phenomena. We will almost always denote it
by the lower case Greek letter(omega).

Because the equation involves a second time derivative but no higher derivatives, the
most general solution involves two constants. This is just what we expect from the physics,
because we can get a different solution for each value of the position and velocity of the
block at the starting time. Generally, we will think about determining the solution in terms
of the position and velocity of the block when we first get the motion started, at a time that
we conventionally take to kie= 0. For this reason, the process of determining the solution
in terms of the position and velocity at a given time is called the “initial value problem.”
The values of position and velocitytat= 0 are called initial conditions. For example, we
can write themost general solution (1.4), in terms of:(0) andz’(0), the displacement and
velocity of the block at time = 0. Settingt = 0in (1.4) givesz = x(0). Differentiating and
then setting = 0 givesb = w 2/(0). Thus

z(t) = x(0) coswt + 52:’(0) sinwt . (1.6)
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For example, suppose that the block has a mass of 1 kilogram and that the spring is 0.5
meters long with a spring constank” of 100 newtons per meter. To get a sense of what
this spring constant means, consider hanging the spring vertically (see problem (1.1)). The
gravitational force on the block is

mg ~ 9.8 newtons . @.7)

In equilibrium, the gravitational force cancels the force from the spring, thus the spring is
stretched by

% ~ 0.098 meters = 9.8 centimeters. (1.8)

For this mass and spring constant, the angular frequenofthe system in figure 1.1 is

K [100N/m 1
=4|— =4/—— =10-. 1.
“ M 1kg Os (1.9)

If, for example, the block is displaced by 0.01 m (1 cm) from its equilibrium position and
released from rest at time= 0, the position at any later tintas given (in meters) by

x(t) = 0.01 x cos 10¢. (1.10)
The velocity (in meters per second) is
2'(t) = —0.1 x sin 10¢ . (1.11)

The motion is periodic, in the sense that the system oscillates — it repeats the same motion
over and over again indefinitely. After a time

_271'

T=—~0.628s (1.12)
w

the system returns exactly to where it was at 0, with the block instantaneously at rest
with displacement 0.01 meter. The time(Greek letter tau) is called the “period” of the
oscillation. However, the solution, (1.6), is more than just periodic. It is “simple harmonic”
motion, which means that only a single frequency appears in the motion.

The angular frequency;, is the inverse of the time required for the phase of the wave to
change by one radian. The “frequency”, usually denoted by the Greekud(ter), is the
inverse of the time required for the phase to change by one complete cyteragiians,
and thus get back to its original state. The frequency is measured in hertz, or cycles/second.
Thus the angular frequencyl&ger than the frequency by a factor f,

w (inradians/second) = 27 (radians/cycle) - v (cycles/second) . (1.13)

2The length of the spring plays no role in the equations below, but we include it to allow you to build a mental
picture of the physical system.
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The frequencyy, is the inverse of the period, of (1.12),

v=—. (1.14)
T

Simple harmonic motion like (1.6) occurs in a very wide variety of physical systems. The
qguestion with which we will start our study of wave phenomena is the followifity. do
solutions of the form of (1.6) appear so ubiquitously in physics? What do harmonically
oscillating systems have in common®f course, the mathematical answer to this question
is that all of these systems have equations of motion of essentially the same forr as (1.3).
We will find a deeper and more physical answer that we will then be able to generalize to
more complicated systems. The key features that all these systems have in common with the
mass on the spring are (at least approximate) linearity and time translation invariance of the
equations of motion. It is these two features that determine oscillatory behavior in systems
from springs to inductors and capacitors.

Each of these two properties is interesting on its own, but together, they are much more
powerful. They almost completely determine the form of the solutions. We will see that if
the system is linear and time translation invariant, we can always write its motion as a sum
of simple motions in which the time dependence is either harmonic oscillation or exponential
decay (or growth).

1.2 Small Oscillations and Linearity

A system with one degree of freedoniifear if its equation of motion is a linear function

of the coordinatey, that specifies the system’s configuration. In other words, the equation of
motion must be a sum of terms each of which contains at most one pawdrhaf equation

of motion involves a second derivative, but no higher derivatives, so a linear equation of
motion has the general form:

i d = 1.15
0 S alt) + B 2 alt) + v at) = £(0). (1.15)

If all of the terms involve exactly one powerxgfthe equation of motion is “homogeneous.”
Equation (1.15) is not homogeneous because of the term on the right-hand side. The “in-
homogeneous” termf(¢), represents an external force. The corresponding homogeneous
equation would look like this:

o)+ 8L 2(t) + ya(t) =0 (116)

od—F T — X x =Vu. .
dt? dt 7
In generalg, 5 and~ as well asf could be functions of. However, that would break

the time translation invariance that we will discuss in more detail below and make the system
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much more complicated. We will almost always assumecdthétand~ are constants. The
equation of motion for the mass on a spring./(1.3), is of this general form, byt eutth f
equal to zero. As we will see in chapter 2, we can include the effect of frictional forces by
allowing nonzerg3, and the effect of external forces by allowing nonzgro

The linearity of the equation of motion, (1.15), implies that;ift) is a solution for
external forcef; (t),

d? d
o Tz a(t) + 8 2 (1) +ya(t) = [i(1), (L17)
and x(t) is a solution for external forcg(t),
d? d
o 25 wa(t) + B wa(t) +ya(t) = folt). (1.18)
then the sum,
z12(t) = Az (t) + Ba(?), (1.19)
for constantsA and B is a solution for external forcé f; + B fo,
d? d
o @ xlg(t) + 0 % xlg(t) + 'y:clg(t) =Afi (t) + Bfg(t) . (1.20)

The sumz5(t) is called a “linear combination” of the two solutions(t) andzx(¢). In
the case of “free” motion, which means motion with no external foreg(f andx(t) are
solutions, then the sum, z;(t) + B x2(t) is also a solution.

The most general solution to any of these equations involves two constants that must be
fixed by the initial conditions, for example, the initial position and velocity of the particle, as
in (1.6). It follows from[(1.20) that we can always write the most general solution for any
external forcef(t), as a sum of the “general solution” to the homogeneous equation, (1.16),
and any “particular” solution to (1.15).

No system is exactly linear. “Linearity” is never exactly “true.” Nevertheless, the idea of
linearity is extremely important, because it is a useful approximation in a very large number
of systems, for a very good physical reason. In almost any system in which the properties are
smooth functions of the positions of the parts, the small displacements from equilibrium pro-
duce approximately linear restoring forces. The difference between something that is “true”
and something that is a useful approximation is the essential difference between physics and
mathematicsln the real world, the questions are much too interesting to have answers
that are exact. If you can understand the answer in a well-defined approximation, you
have learned something important.

To see the generic nature of linearity, consider a particle moving anakis with po-
tential energy}/ (z). The force on the particle at the point,is minus the derivative of the

potential energy,
d
F= —%V(az) . (1.21)
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A force that can be derived from a potential energy in this way is called a “conservative”

force.
At a point of equilibrium,zq, the force vanishes, and therefore the derivative of the

potential energy vanishes:

d
dx
We can describe the small oscillations of the system about equilibrium most simply if we

redefine the origin so thatz= 0. Then the displacement from equilibrium is the coordinate
x. We can expand the force in a Taylor series:

F = V()] yeyy = —V'(20) = 0. (1.22)

1
F@prw%m:—meﬂmﬂm—iﬁvwm+~. (1.23)
The first term in[(1.23) vanishes because this system is in equilibrivm: &t from (1.22).
The second term looks like Hooke’s law with

K =V"(0). (1.24)

The equilibrium is stable if the second derivative of the potential energy is positive, so that
x = 0is a local minimum of the potential energy.

The important point is that for sufficiently small x, the third term in (1.23), and all
subsequent terms will be much smaller than the second@he third term is negligible if

|z V"(0)| < V"(0). (1.25)

Typically, each extra derivative will bring with it a factorlgfL, whereL is the distance over
which the potential energy changes by a large fraction. Then (1.25) becomes

z< L. (1.26)

There are only two ways that a force derived from a potential energy can fail to be approxi-
mately linear for sufficiently small oscillations about stable equilibrium:

1. If the potential is not smooth so that the first or second derivative of the potential is not
well defined at the equilibrium point, then we cannot do a Taylor expansion and the
argument of[(1.23) does not work. We will give an example of this kind at the end of
this chapter.

2. Even if the derivatives exist at the equilibrium point,= 0, it may happen that
V”(0) = 0. In this case, to have a stable equilibrium, we must WdVg) = 0
as well, otherwise a small displacement in one direction or the other would grow with
time. Then the next term in the Taylor expansion dominates at spuaing a force
proportional taz®.
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2F ¢ =
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0 L 2L, 3L 4L 5L

Figure 1.2: The potential energy of (1.27).

Both of these exceptional cases are very rare in nature. Usually, the potential energy is a
smooth function of the displacement and there is no reasé’{o) to vanish. The generic
situation is that small oscillations about stable equilibrium are linear.

An example may be helpful. Almost any potential energy function with a point of stable
equilibrium will do, so long as it is smooth. For example, consider the following potential

energy
L =z

wm=E<x+L>. (1.27)

This is shown in figurd.2. The minimum (at least for positive occurs att = L, so we
first redefiner = X + L, so that

L X+L
V(X)_E<X+L+ 7 ) (1.28)
The corresponding force is
L 1
FX)=FE|—=——]. 1.29
we can look neaK = 0 and expand in a Taylor series:
E (X E [X\?
F(X)= _QZ (L) + Sf (L) + e (1.30)
Now, the ratio of the first nonlinear term to the linear term is
X
5 (1.31)

2L
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which is small ifX <« L.

In other words, the closer you are to the equilibrium point, the closer the actual potential
energy is to the parabola that we would expect from the potential energy for a linear, Hooke’s
law force. You can see this graphically by blowing up a small region around the equilibrium
point. In figurel.3,the dotted rectangle in figufieZ has been blown up into a square. Note
that it looks much more like a parabola than figlu® If we repeated the procedure and
again expanded a small region about the equilibrium point, you would not be able to detect
the cubic term by eye.

21F 1

09L L 1.1L

Figure 1.3: The small dashed rectangle in fidueexpanded.

Often, the linear approximation is even better, because the term ofrdreamishes by
symmetry. For example, when the system is symmetrical abeut0, so thatV (z) =
V(—x), the orderz® term (and alk™ for » odd) in the potential energy vanishes, and then
there is no order? term in the force.

For a typical spring, linearity (Hooke’s law) is an excellent approximation for small dis-
placements. However, there are always nonlinear terms that become important if the dis-
placements are large enough. Usually, in this book we will simply stick to small oscillations
and assume that our systems are linear. However, you should not conclude that the subject
of nonlinear systems is not interesting. In fact, it is a very active area of current research in
physics.

1.3 Time Translation Invariance

1.3.1 Uniform Circular Motion

D11
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Whena, 6 and~ in (1.15) do not depend on the timeand in the absence of an external
force, that is for free motion, time enters in (1.15) only through derivatives. Then the equation
of motion has the form.

2

d d
aﬁx(t)—f—ﬁ%ﬁ(t)—l—vx(t) =0. (1.32)

The equation of motion for the undamped harmonic oscillator, (1.3), has this fora with
m, § = 0and v= K. Solutions to/ (1.32) have the property that
If z () is a solution,z(t + a) will be a solution also. (1.33)

Mathematically, this is true because the operations of differentiation with respect to time and
replacingt — t + a can be done in either order because of the chain rule

%x(t +a) = [jt(t + a)} [Ci,x(t') %x(t')

(1.34)

t’:t+a |: t/ :t+(l

The physical reason far (1.33) is that we can change the initial setting on our clock and the
physics will look the same. The solutiot + a) can be obtained from the solutiof¥) by
changing the clock setting lay The time label has been “translated”doyWe will refer to

the property, (1.33), as time translation invariance.

Most physical systems that you can think of are time translation invariant in the absence
of an external force. To get an oscillator without time translation invariance, you would have
to do something rather bizarre, such as somehow making the spring constant depend on time.

For the free motion of the harmonic oscillator, although the equation of motion is cer
tainly time translation invariant, the manifestation of time translation invariance on the solu-
tion, (1.6) is not as simple as it could be. The two parts of the solution, one proportional to
coswt and the other tgin wt, get mixed up when the clock is reset. For example,

cos [w(t + a)] = coswa coswt — sinwa sinwt . (1.35)

It will be very useful to find another way of writing the solution that behaves more simply
under resetting of the clocks. To do this, we will have to work with complex numbers.

To motivate the introduction of complex numbers, we will begin by exhibiting the relation
between simple harmonic motion and uniform circular motion. Consider uniform circular
motion in thez-y plane around a circle centered at the origis; y = 0, with radiusk and
with clockwise velocityy = Rw. The zandy coordinates of the motion are

x(t) = Rcos(wt — ¢), y(t) = —Rsin(wt — ¢), (1.36)

where¢ is the counterclockwise angle in radians of the positian-a0 from the positiver
axis. Thez(¢) in (1.36) is identical to the(¢) in (1.€) with

2(0) = Rcos¢, 2'(0)=wRsing. (1.37)
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Simple harmonic motion is equivalentdae componentof uniform circular motion. This
relation is illustrated in figuré.4 and in program 1-1 on the programs disk. As the point
moves around the circle at constant velodity, thexz coordinate executes simple harmonic
motion with angular velocity. If we wish, we can choose the two constants required to fix
the solution of1.3)to beR and¢, instead of:(0) andz’(0). In this language, the action of
resetting of the clock is more transparent. Resetting the clock changes the vahithofit
changing anything else.

Figure 1.4: The relation between uniform circular motion and simple harmonic motion.

But we would like even more. The key idea is that linearity allows us considerable
freedom. We can add solutions of the equations of motion together and multiply them by
constants, and the result is still a solution. We would like to use this freedom to choose
solutions that behave as simply as possible under time translations.

The simplest possible behavior for a soluti¢t) under time translation is

z(t+a) = h(a)z(t). (1.38)

That is, we would like find a solution that reproduces itself up to an overall corig@nt,
when we reset our clocks iy Because we are always free to multiply a solution of a
homogeneous linear equation of motion by a constant, the change (ffpto ~(a) z(t)
doesn’t amount to much. We will call a solution satisfy(h@8)an “irreduciblé solution”
with respect to time translations, because its behavior under time translations (resettings of
the clock) is as simple as it can possibly be.

It turns out that for systems whose equations of motion are linear and time translation
invariant, as we will see in more detail below, we can always find irreducible solutions that

3The word “irreducible” is borrowed from the theory of group representations. In the language of group
theory, the irreducible solution is an “irreducible representation of the translation group.” It just means “as simple
as possible.”
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have the property, (1.38). However, for simple harmonic motion, this requires complex num-
bers. You can see this by noting that changing the clock setting.bjust changes the sign
of the solution with angular frequengy because both thes and sinterms change sign:

cos(wt + ) = —coswt, sin(wt+7) = —sinwt. (1.39)

But then from((1.38) and (1.39), we can write

—2(t) = 2(t+ 7/w) = 2(t + 7/2w + 7/2w)

(1.40)
= h(7/2w) z(t + 7/2w) = h(7/2w)? 2(t) .
Thus we cannot find such a solution unleg&s/2w) has the property
[h(r/2w)]* = 1. (1.41)

The square of(r/2w) is —1! Thus we are forced to consider complex numgevghen
we finish introducing complex numbers, we will come back to (1.38) and show that we can
alwaysfind solutions of this form for systems that are linear and time translation invariant.

1.4 Complex Numbers

The square root of 1, calledi, is important in physics and mathematics for many reasons.
Measurable physical quantities can always be described by real numbers. You never get a
reading ofi meters on your meter stick. However, we will see that wheimncluded along

with real numbers and the usual arithmetic operations (addition, subtraction, multiplication
and division), then algebra, trigonometry and calculus all become simpler. While complex
numbers are not necessary to describe wave phenomena, they will allow us to discuss them
in a simpler and more insightful way.

1.4.1 Some Definitions

An imaginary number is a number of the formtimes a real number.
A complex number, z, is a sum of a real number and an imaginary numbera + ib.
The real and “imaginary” parts, Re (z) andIm (z), of the complex number= a +ib:

Re(z) =a, Im(z) =b. (1.42)

“The connection between complex numbers and uniform circular motion has been exploited by Richard Feyn-
man in his beautiful little boolQED.
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Note that the imaginary part is actually a real number, the real coefficieimt of= a + ib.

The complex conjugatez*, of the complex number, is obtained by changing the sign
of 4

¥ =a—1b. (1.43)

Note thatRe (z) = (2 + 2*)/2 and Im(z) = (= — 2*)/2i.

The complex plane:Because a complex numbeis specified by two real numbers, it
can be thought of as a two-dimensional vector, with compotierts The real part of,
a = Re(z), is thex component and the imaginary partzob = Im (z), is they component.
The diagrams in figures 1.5 and!1.6 show two vectors in the complex plane along with the
corresponding complex numbers:

The absolute value|z|, of z, is the length of the vecté«, b):

|z| = Va2 + b2 =Vz*z. (1.44)

The absolute valug| is always a real, non-negative number.

4

2+i (2,1)

0 = arg(2 + i) = arctan(1/2)

Figure 1.5: A vector with positive real part in the complex plane.

The argument or phase, argf{), of a nonzero complex numberis the angle, in radians,
of the vector(a, b) counterclockwise from the axis:

) arctan(b/a) fora > 0, (1.45)
arg(z) = :
arctan(b/a) + 7 fora < 0.
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Like any anglearg(z) can be redefined by adding a multiple2af radians or 360 (see
figurel.5 andLl.€).

0 = arg(—1.5 — 27)

= arctan(4/3) + 7
~ 7~ . arctan(4/3)

4 N

/ N

1

\

—1.5—-2i — (—1.5,-2)
Figure 1.6: A vector with negative real part in the complex plane.

1.4.2 Arithmetic

12
The arithmetic operations addition, subtraction and multiplication on complex numbers are
defined by just treating thelike a variable in algebra, using the distributive law and the
relationi®> = —1. Thus if z= a + ib andz’ = a’ + i/, then

242 =(a+d)+i(b+V),

z—7Z =(a—d)+ib-1), (1.46)

zz' = (aa’ — bb') + i(ab + ba’) .

For example:
B+4i)+(—2+T)=B-2)+4+T7)i=1+ 111, (1.47)
(34+4i)-(54+Ti))=3-5—-4-T)+3-74+4-5)i=—-13+41i. (1.48)

It is worth playing with complex multiplication and getting to know the complex plane.
At this point, you should check out program 1-2.
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Division is more complicated. To divide a complex numbby a real number is easy,
just divide both the real and the imaginary parts by getz/r = a/r + ib/r. To divide
by a complex numbetr/, we can use the fact that'z’ = |2/|? is real. If we multiply the
numerator and the denominatorzgt’ by 2"*, we can write:

22 = 2"2)|Z > = (ad' +bV) /(0 + b?) + i(ba’ — ab')/(a"® + V). (1.49)
For example:
(34+4i)/(241i)=(3+4i)-(2—14)/5=(10+5i)/b=2+1. (1.50)

With these definitions for the arithmetic operations, the absolute value behaves in a very
simple way under multiplication and division. Under multiplication, the absolute value of a
product of two complex humbers is the product of the absolute values:

|22 = |2]|7]. (1.51)
Division works the same way so long as you don't divide by zero:
|z/Z| = |2|/|¢| if 2 #0. (1.52)

Mathematicians call a set of objects on which addition and multiplication are defined
and for which there is an absolute value satisfying (1.51)/and (1.52) a division algebra. It
is a peculiar (although irrelevant, for us) mathematical fact that the complex numbers are
one of only four division algebras, the others being the real numbers and more bizarre things
called quaternions and octonians obtained by relaxing the requirements of commutativity and
associativity (respectively) of the multiplication laws.

The wonderful thing about the complex numbers from the point of view of algebra is that
all polynomial equations have solutions. For example, the equatien2z 4+ 5 = 0 has
no solutions in the real numbers, but has two complex soluticas] + 2i. In general, an
equation of the formp(x) = 0, wherep(z) is a polynomial of degree with complex (or
real) coefficients has solutions if complex numbers are allowed, but it may not have any if
x is restricted to be real.

Note that the complex conjugate of any sum, product, etc, of complex numbers can be
obtained simply by changing the signiaftherever it appears. This implies that if the poly-
nomialp(z) has real coefficients, the solutiong¢f) = 0 come in complex conjugate pairs.

That is, ifp(z) = 0, thenp(z*) = 0 as well.

1.4.3 Complex Exponentials

Consider a complex number= a + ib with absolute value 1. Becaugg = 1 implies
a® +b? = 1, we can writez and bas the cosine and sine of an aryle

z=cosf+isinf for |z|]=1. (1.53)
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Because 0 B
tanf = 2 — 2 (1.54)
cosf a
the angle is the argument of:
arg(cosf +isinf) = 6. (1.55)

Let us think about as a function of and consider the calculus. The derivative with
respect td is:

%(0089 +isinf) = —sinf + i cosf = i(cosf + isinh) (1.56)

A function that goes into itself up to a constant under differentiation is an exponential. In
particular, if we had a function 6f f(6), that satisfie%%f(@) = kf(0) for realk, we would
conclude thaf () = €Y. Thus if we want the calculus to work in the same way for complex

numbers as for real numbers, we must conclude that
Y — cosf +isinf. (2.57)

eZ

We can check this relation by noting that the Taylor series expansions of the two sides
are equal. The Taylor expansion of the exponentia),and sinfunctions are:

2 3 4

A R
S S TRRAT
z? o (1.58)
cos(x)fl—gﬁ—ﬁ---
3
. x
SIH(I'):Z'—Q—I—---
Thus the Taylor expansion of the left sidelof (1.57) is
1440 + (i0)%/2 + (i0)3/3! + - - - (1.59)
while the Taylor expansion of the right side is
(1—0%/24--)+i(0 —03/6+---) (1.60)
The powers of in (1.59) work in just the right way to reproduce the pattern of minus signs

in (1.60).
Furthermore, the multiplication law works properly:
¢ e = (cos + isin)(cosd +isind’)
= (cos® cos' —sinf sin§’) + i(sin @ cos ' + cos B sin ') (1.61)
= cos(0 +0') +isin(f + 0') = "0+
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Thus (1.57) makes sense in all respects. This connection between complex exponentials
and trigonometric functions is called Euler’s Identity. It is extremely useful. For one thing,
the logic can be reversed and the trigopnometric functions can be “defined” algebraically in
terms of complex exponentials:

cosf =
2 (1.62)
) 0 8—20 ,619 _ 8—10
sinf = . = —
21 2
Using (1.62), trigonometric identities can be derived very simply. For example:

cos 30 = Re (¢3) = Re ((¢"?)%) = cos®# — 3 cos 6 sin? 6. (1.63)

Another example that will be useful to us later is:
cos(0 +0') + cos(0 — 0') = (e'0F0) =0+ o i(0=0") 4 o=i(6-07)y /9 (1.64)

= (e + e ) (e 4 e70") /2 = 2cos0 cos b .

Every nonzero complex number can be written as the product of a positive real number
(its absolute value) and a complex number with absolute value 1. Thus

z=x+iy=Re? where R=|z|, and 0 =arg(z). (1.65)

In the complex plane, (1.65) expresses the fact that a two-dimensional vector can be written
either in Cartesian coordinatés, y), or in polar coordinate$R, #). For exampley/3+i =
2e17/6; 1 + i = \/2e™/*; —8; = 8e3™/2 = 8¢~"/2, Figure 1.7 shows the complex number
14i=2e"/4,
The relation,[(1.65), gives another useful way of thinking about multiplication of complex
numbers. If
21 = Rlewl and zy = R2€i92 s (166)

then 4
Z1R9 = R1R2€Z(91+62) . (1.67)

In words, to multiply two complex numbers, you multiply the absolute values and add the
arguments. You should now go back and play with program 1-2 with this relation in mind.

Equation|(1.57) yields a number of relations that may seem surprising until you get used
to them. For examples’™ = —1; ¢/™/2 = ; ¢%™ = 1. These have an interpretation in the
complex plane wheré&? is the unit vectofcos 0, sin 6),
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L+i=y/2 /4

/4

Figure 1.7: A complex number in two different forms.

which is at an anglé measured counterclockwise from thexxis. Then—1 is 180 or =
radians counterclockwise from theaxis, while: is along they axis, 90 or /2 radians
from thezx axis. 27 radians is 36Q and thus rotates us all the way back to tlais. These
relations are shown in figure 1.8.

1.4.4 Notation

It is not really necessary to have a notation that distinguishes between real numbers and
complex numbers. The reason is that, as we have seen, the rules of arithmetic, algebra and
calculus apply to real and complex numbers in exactly the same way. Nevertheless, some
readers may find it helpful to be reminded when a quantity is complex. This is probably
particularly useful for the quantities likethat represent physical coordinates. Therefore, at
least for the first few chapters until the reader is thoroughly complexified, we will distinguish
between real and complex “coordinates.” If they are real, we will use letéardy. If they

are complex, we will use and w

1.5 Exponential Solutions

We are now ready to translate the conditions of linearity and time translation invariance into
mathematics. What we will see is that the two properties of linearity and time translation
invariance lead automatically to irreducible solutions satisfying(1.38), and furthermore that



1.5. EXPONENTIAL SOLUTIONS 19

Z':€i7r/2

T 1:€2i7r

A
Y
Y

Y —j=e—im/2=3im/2

Figure 1.8: Some special complex exponentials in the complex plane.

these irreducible solutions are just exponentials. We do not need to use any other details
about the equation of motion to get this result. Therefore our arguments will apply to much
more complicated situations, in which there is damping or more degrees of freedom or both.
So long as the system has time translation invariance and linearity, the solutions will be
sums of irreducible exponential solutions.

We have seen that the solutions of homogeneous linear differential equations with con-
stant coefficients, of the form,

2
M%x(t) +Kz(t) =0, (1.68)
have the properties of linearity and time translation invariance. The equation of simple har
monic motion is of this form. The coordinates are real, and the congtharsd /C are real
because they are physical things like masses and spring constants. However, we want to al-
low ourselves the luxury of considering complex solutions as well, so we consider the same
equation with complex variables:

d2
M@z(t) +Kz(t)=0. (1.69)
Note the relation between the solutions/to (1.68) and!(1.B8tause the coefficients
M and K are real, for every solutiont), of (1.69), the complex conjugate(t)*, is also
a solution. The differential equation remains true when the signs of als thee changed.
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From these two solutions, we can construct two real solutions:

21(t) = Re (2(1)) = (2() + 2()") /2
2a(t) = Im (2(1)) = (=(t) — =()°) /2i.

All this is possible because of linearity, which allows us to go back and forth from real to
complex solutions by forming linear combinations, as in (1.70). These are solutions/of (1.68).
Note thatr; (¢) andzo(t) are just the real and imaginary parts @f). The point is that you

can always reconstruct the physical real solutions to the equation of motion from the
complex solution. You can do all of the mathematics using complex variables, which
makes it much easier. Then at the end you can get the physical solution of interest just

by taking the real part of your complex solution.

Now back to the solution to (1.69). What we want to show is that we are led to irreducible,
exponential solutions for any system with time translation invariance and linearity! Thus we
will understand why we can always find irreducible solutions, not only in (1.69), but in much
more complicated situations with damping, or more degrees of freedom.

There are two crucial elements:

(1.70)

1. Time translation invariance, (1.33), which requires itfat+ o) is a

solution if 2(t) is a solution;
(1.71)
2. Linearity, which allows us to form linear combinations of solutions

to get new solutions.

We will solve (1.68) using only these two elemenithat will allow us to generalize our
solution immediately tany system in which the properties, (1.71), are present.

One way of using linearity is to choose a “basis” set of solutioy{$) for j = 1 ton
which is “complete” and “linearly independent.” For the harmonic oscillator, two solutions
are all we need, so = 2. But our analysis will be much more general and will apply, for
example, to linear systems with more degrees of freedom, so we willleflage. What
“complete” means is that any solutiorif), (which may be complex) can be expressed as a
linear combination of the;(t)’s,

z(t) = Z cjxj(t). (1.72)
j=1
What “linearly independent” means is that none ofihe)’s can be expressed as a linear

combination of the others, so that the only linear combination of ift¢s that vanishes is
the trivial combination, with only zero coefficients,

> cjai(t) =0=¢; =0. (1.73)
j=1
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Now let us see whether we can find an irreducible solution that behaves simply under a
change in the initial clock setting, aslin (1.38),

z(t+a) = h(a) z(t) (1.74)

for some (possibly complex) functidifa). In terms of the basis solutions, this is
2(t + a) Z crrp(t (1.75)

But each of the basis solutions also goes into a solution under a time translation, and each
new solution can, in turn, be written as a linear combination of the basis solutions, as follows:

i+ a) ZRak (1.76)

Thus .
2(t +a) ch:c] (t+a)= > ciRjula)xp(t). (1.77)
k=1

Comparing/(1.75) and (1.77), and using (1.73), we see that we can find an irreducible solution
if and only if

_zn:CjRjk(a) = h(a) ¢ for all k. (1.78)

This is called an “eigenvalue equation.” We will have much more to say about eigenvalue
equations in chapter 3, when we discuss matrix notation. For now, note that (1.78) is a set of
n homogeneous simultaneous equations imtheknown coefficients;;. We can rewrite it

as

Zc] ix(a) = Ofor all k, (1.79)

where
Rii(a)forj £k,
Sjk(a> _ k(@) J# (1.80)
Rji(a) — h(a)forj =Fk.
We can find a solution to (1.78) if and only if there is a solution of the determinantal eqjuation

det Sjr(a) = 0. (1.81)

SWe will discuss the determinant in detail in chapter 3, so if you have forgotten this result from algebra, don’t
worry about it for now.
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(1.81)is annth order equation in the variablga). It may have no real solution, but it
always has: complex solutions foh(a) (although some of thé(a) values may appear
more than once). For each solution figr), we can find a set @f;s satisfying/(1.78). The
different linear combinationsy(t), constructed in this way will be a linearly independent set
of irreducible solutions, each satisfying (1.74), for sértie. If there aren differenth(a)s,
the usual situation, they will be a complete set of irreducible solutions to the equations of
motions. Then we may as well take our solutions to be irreducible, satisfying (1.74). We will
see later what happens when some ohtlags appear more than once so that there are fewer
than n different ones.

Now for each such irreducible solution, we can see what the funétiansand z(a)
must be. If we differentiate both sidesof (1..74) with respegct ¥ee obtain

Z(t+a)="h(a)z(t). (1.82)
Settinga = 0 gives
2 (t) = H 2(t) (1.83)
where
H =h(0). (1.84)
This implies
2(t) o et (1.85)

Thus the irreducible solution is an exponent)lé have shown that/(1.71) leads to irre-
ducible, exponential solutions, without using any of details of the dynamics!

1.5.1 * Building Up The Exponential

There is another way to see what (11.74) implies for the form of the irreducible solution that
does not even involve solving the simple differential equation,(1.83). Begin by gefling
in (1.74). This gives

h(a) = z(a)/z(0). (1.86)

h(a) is proportional toz(a). This is particularly simple if we choose to multiply our irre-
ducible solution by a constant so théd) = 1. Then (1.85) gives

h(a) = z(a) (1.87)

and therefore
z(t+a) = z(t) z(a) . (1.88)

Consider what happens for very sma#- ¢ < 1. Performing a Taylor expansion, we
can write
2(€) =1+ He + O(é?) (1.89)
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whereH = 2/(0) from (1.84) and (1.87). Using (1.88), we can show that
2(Ne) = [z(e)]V . (1.90)
Then for anyt we can write (taking = Ne)

2(t) = lim [2(t/N)]Y = lim [1+ H(t/N)]N = eft. (1.91)
N—oo N—o0
Thus again, we see that the irreducible solution with respect to time translation invariance is
just an exponenti#!
2(t) = et (1.92)

1.5.2 Whatis H?

When we put the irreducible solutiorf’% into (1.69), the derivatives just pull down powers
of H so the equation becomes a purely algebraic equation (dropping an overall faétr of

MH?*+K=0. (1.93)

Now, finally, we can see the relevance of complex numbers to the above discussion of time
translation invariance. For positivel and/C, the equatiori (1.93) has no solutions at all if we
restrictH to be real. We cannot find any real irreducible solutions. But there are always two
solutions forH in the complex numbers. In this case, the solution is

| K
H=+: h =4/—. 1.94
iw where w o ( )

It is only in this last step, where we actually computé/, that the details of [(1.69) enter.
Until (1.93), everything followed simply from the general principles, (1.71).

Now, as above, from these two solutions, we can construct two real solutions by taking
the real and imaginary parts gft) = e***.

z1(t) = Re (2(t)) = coswt, x2(t) =Im (2(t)) = £sinwt. (1.95)

Time translations mix up these two real solutions. That is why the irreducible complex ex-
ponential solutions are easier to work with. The quantity the angular frequency that we
saw in (1.5) in the solution of the equation of motion for the harmonic oscillator. Any linear

SFor the mathematically sophisticated, what we have done here is to use the “group” structure of time trans-
lations to find the form of the solution. In words, we have built up an arbitrarily large time translation out of little
ones.
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combination of such solutions can be written in terms of an “amplitude” and a “phase” as
follows: For reak and d

¢ cos(wt) + d sin(wt) = ¢ (em + e_i”t)/Q —id (em — e_i“’t)/z
=Re ((c+id)e ™') = Re (A et e*i“’t) (1.96)
= Re (A e_i(“’t_e)) = Acos(wt —0).

whereA is a positive real number called tamplitude,

A=VET &, (1.97)
and fis an angle called thghase
0 = arg(c+id) . (1.98)

These relations are another example of the equivalence of Cartesian coordinates and polar
coordinates, discussed after (1.65). The pagmdd, are the Cartesian coordinates in the
complex plane of the complex numbers id. The amplitude A, and phasef, are the

polar coordinate representation of the same complex| (1.96) showsathai! are also the
coefficients ofoswt andsin wt in the real part of the product of this complex number with
e~ This relation is illustrated in figure 1.9 (note the relation to figure 1.4): Wsves
clockwise with constant angular velocity, around the circldz| = A, in the complex plane,

the real part of undergoes simple harmonic motiohgos(wt — 6).

Now that you know about complex numbers and complex exponentials, you should go
back to the relation between simple harmonic motion and uniform circular motion illustrated
in figure 1.4 and in supplementary program 1-1. The uniform circular motion can interpreted
as a motion in the complex plane of the

2(t) = et (1.99)

Ast changesz(t) moves with constant clockwise velocity around the unit circle in the com-
plex plane. This is the clockwise motion shown in program 1-1. The reatqart;, exe-
cutes simple harmonic motion.

Note that we could have just as easily taken our complex solution é6’tfe This
would correspond to counterclockwise motion in the complex plane, but the real part, which
is all that matters physically, would be unchanged. toisventionalin physics to go to
complex solutions proportional to**. This is purely a convention. There is no physics
in it. However, it is sufficiently universal in the physics literature that we will try to do it
consistently here.
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Acos(wt — 0) —

Figure 1.9: The relation (1.96) in the complex plane.

1.6 LC Circuits

One of the most important examples of an oscillating systemiigaircuit. You probably

studied these in your course on electricity and magnetism. Like a Hooke’s law spring, this
system is linear, because the relations between charge, current, voltage, and the like for ideal
inductors, capacitors and resistors are linear. Here we want to make explicit the analogy
between a particulakC' circuit and a system of a mass on a spring. Il@ecircuit with

a resistanceless inductor with an inductahcand a capacitor of capacitan€eis shown

in figure 1.10.We might not ordinarily think of this as a circuit at all, because there is no
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battery or other source of electrical power. However, we could imagine, for example, that

the capacitor was charged initially when the circuit was put together. Then current would

flow when the circuit was completed. In fact, in the absence of resistance, the current would
continue to oscillate forever. We shall see that this circuit is analogous to the combination of
springs and a mass shown in figlirél. The oscillation frequency of the mechanical system

is

w=1— (1.100)

Figure 1.10: AnLC circuit.

DITA

Figure 1.11: A system analogous to figlirg0.

We can describe the configuration of the mechanical system of fidiGén terms of
x, the displacement of the block to the right. We can describe the configuration/af the
circuit of figure1.10in terms of(Q, the charge that has been “displaced” through the inductor
from the equilibrium situation with the capacitor uncharged. In this case, the charge displaced
through the inductor goes entirely onto the capacitor because there is nowhere else for it to
go, as shown in figuré.12. The current through the inductor is the time derivative of the
charge that has gone through,
_ 19
=

I (1.101)

To see how thd.C' circuit works, we can examine the voltages at various points in the
system, as shown in figudel3. For an inductor, the voltage drop across it is the rate of
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Figure 1.12: The charge moved through the inductor.
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V=Q/C
V=0 [ v=o0
=

Figure 1.13: Voltage and current.

change of current through it, or
—L—=V. 1.102
z=V ( )
For the capacitor, the stored charge is the voltage times the capacitance, or

V=Q/C. (1.103)
Putting (1.101)(1.102) and (1.103) together gives
dI d’Q 1
E_LW__aQ' (1.104)
The correspondence between the two systems is the following:
m <« L
K < 1/C (1.105)
r <« @

When we make the substitutions(lh105),the equation of motiorn(1.3), of the mass on a
spring goes int¢1.104). Thus, knowing the solutior{1.€),for the mass on a spring, we can
immediately conclude that the displaced charge initbigircuit oscillates with frequency

w=1/—. (1.106)
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1.7 Units — Displacement and Energy

We have now seen two very different kinds of physical systems that exhibit simple harmonic
oscillation. Others are possible as well, and we will give another example below. This is a
good time to discuss the units of the equations of motions. The “generic” equation of motion
for simple harmonic motion without damping looks like this

X

M dt?

KX (1.107)
where
X is the generalized coordinate,
M is the generalized mass, (1.108)
KC is the generalized spring constant.

In the simple harmonic motion of a point ma¥ds just the displacement from equilibrium,
x, M is the massyn, and Kis the spring constani .

The appropriate units fok1 and/C depend on the units for. They are conventionally
determined by the requirement that

1 [dx\?
5/\/1 (dt) (1.109)
is the “kinetic” energy of the system arising from the change of the coordinate with time, and
%ICXQ (1.110)

is the “potential” energy of the system, stored in the generalized spring.

It makes good physical sense to grant the energy a special status in these problems be-
cause in the absence of friction and external forces, the total energy, the sum of the kinetic
energy in/(1.109) and the potential energy in (1.110), is constant. In the oscillation, the en-
ergy is alternately stored in kinetic energy and potential energy. When the system is in its
equilibrium configuration, but moving with its maximum velocity, the energy is all kinetic.
When the system instantaneously comes to rest at its maximum displacement, all the energy
is potential energy. In fact, it is sometimes easier to ideptfyand IC by calculating the
kinetic and potential energies than by finding the equation of motion directly. We will use
this trick in chapter 11 to discuss water waves.

For example, in ar.C' circuit in Sl units, we took our generalized coordinate to be a
charge(), in Coulombs. Energy is measured in Joules or ¥@Bulombs. The generalized

spring constant has units of

Joules Volts
= 1.111
Coulombs?  Coulombs ( )
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which is one over the unit of capacitance, Coulombs per Volt, or farads. The generalized

mass has units of
Joules x seconds? _ Volts x seconds

= 1.112
Coulombs? Amperes ( )

which is a unit of inductance (Henrys). This is what we used in our correspondence between
the LC circuit and the mechanical oscillator, (1.105).

We can also add a generalized force to the right-hand side of(1.107). The generalized
force has units of energy over generalized displacement. This is right because when the
equation of motion is multiplied by the displacement, (1.109)and (1.110) imply that each of
the terms has units of energy. Thus for example, il theircuit example, the generalized
force is a voltage.

1.7.1 Constant Energy

The total energy is the sum of kinetic plus potential energy from (1.109) and (1.110),

dXx

2
1
dt) + 5/6262. (1.113)

1

If there are no external forces acting on the system, the total energy must be constant. You
can see from (1.113) that the energy can be constant for an oscillating solution only if the
angular frequencyy, is /K /M. Suppose, for example, that the generalized displacement
of the system has the form

X(t) = Asinwt, (1.114)

whereA is an amplitude with the units &f. Then the generalized velocity, is

d
aX(t) = Awcoswt . (1.115)

To make the energy constant, we must have
K=w?M. (1.116)

Then, the total energy, from (1.109) and (1/110) is
1 2 42 2 1 2 1.2 1 2
§Mw A” cos wt+§ICA sin” wt = ilCA . (2.117)

1.7.2 The Torsion Pendulum

One more example may be useful. Let us consider the torsion pendulum, shown in figure
1.14.
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/L,)\g
o——=o N
side view top view

Figure 1.14: Two views of a torsion pendulum.

A torsion pendulum is a simple but very useful oscillator consisting of a dumbbell or rod
supported at its center by a wire or fiber, hung from a support above. When the dumbbell is
twisted by an anglé, as shown in the top view in figure 1.14, the wire twists and provides a
restoring torque on the dumbbell. For a suitable wire or fiber, this restoring torque is nearly
linear even for rather large displacement angles. In this system, the natural variable to use for
the displacement is the an@leThen the equation of motion is

o _

= —ab, (1.118)

wherel is the moment of inertia of the dumbbell about its center-amél is the restoring
force. Thus the generalized mass is the moment of inértigith units of length squared
times mass and the generalized spring constant is the constaith units of torque. As
expected, fronf1.109)and(1.110),the kinetic energy and potential energy are (respectively)

1 /do\>? 1

1.8 A Simple Nonlinear Oscillator

To illustrate some of the differences between linear and nonlinear oscillators, we will give
one very simple example of a nonlinear oscillator. Consider the following nonlinear equation
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of motion:
—Fy forx >0,
d2
m@x =43 Iy forz <0, (1.120)
0 forz=0.

This describes a particle with mass, that is subject to a force to the leftF, when the
particle is to the right of the origin:(¢t) > 0), a force to the rightty, when the particle is to
the left of the origin£(¢) < 0), and no force when the particle is sitting right on the origin.
The potential energy for this system grows linearly on both sides=ef0. It cannot
be differentiated at = 0, because the derivative is not continuous there. Thus, we cannot
expand the potential energy (or the force) in a Taylor series around the poift and the
arguments of (1.21)-(1.24o not apply.
It is easy to find a solution ¢1.120). Suppose that at timeé,= 0, the patrticle is at the
origin but moving with positive velocity;. The particle immediately moves to the right of
the origin and decelerates with constant acceleratiép,/m, so that

F,
a(t) =vt— 212 fort <7, (1.121)
2m
where 5
muv
= 1.122
= h ( )

is the time required for the particle to turn around and get back to the origin. At time,
the particle moves to the left of the origin. At this point it is moving with veloeity,
the process is repeated for negativand positive acceleratioRy/m. Then the solution
continues in the form

F
z(t) = —v(t—71)+ ﬁ(t —7)% forT <t <2r. (2.123)

Then the whole process repeats. The motion of the particle, shown inTi@gireoks su-
perficially like harmonic oscillation, but the curve is a sequence of parabolas pasted together,
instead of a sine wave.

The equation of motion(1.120),is time translation invariant. Clearly, we can start the
particle at the origin with velocity,, at any time¢y. The solution then looks like that shown
in figure1l.15but translated in time bi;. The solution has the form

x4y (1) = x(t — to) (1.124)

wherez(t) is the function described k{t.121),(1.123),etc. This shown in figuré.16 for
t =ty = 37/4. The dotted curve correspondsgo= 0
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Figure 1.15: The motion of a particle with a nonlinear equation of motion.

mv2

2Fy

mv2

"~ 2F,

0O 7 27 37 4t b1 671

Figure 1.16: Motion started from the origintat ¢y = 37/4.

Like the harmonic oscillator, this system oscillates regularly and indefinitely. However, in
this case, the period of the oscillation, the time it takes to repeatepends on the amplitude
of the oscillation, or equivalently, on the initial velocity, The period is proportional tg
from (1.122). The motion of the particle started from the origirt at ¢y, for an initial
velocity v/2 is shown in figurd.17. The dotted curve corresponds to an initial veloeity,

While the nonlinear equation of motio(d..120),is time translation invariant, the sym-
metry is much less useful because the system lacks linearity. From our point of view, the
important thing about linearity (apart from the fact that it is a good approximation in so many
important physical systems), is that it allows us to choose a convenient basis for the solu-
tions to the equation of motion. We choose them to behave simply under time translations.
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Figure 1.17: Initial velocity /2.

Then, because of linearity, we can build up any solution as a linear combination of the basis
solutions. In a situation lik¢l.120), we do not have this option.

Chapter Checklist

You should now be able to:

1. Analyze the physics of a harmonic oscillator, including finding the spring constant,
setting up the equation of motion, solving it, and imposing initial conditions;

2. Find the approximate “spring constant” for the small oscillations about a point of equi-
librium and estimate the displacement for which linearity breaks down;

3. Understand the connection between harmonic oscillation and uniform circular motion;

4. Use complex arithmetic and complex exponentials;

o

Solve homogeneous linear equations of motion using irreducible solutions that are
complex exponentials;

Understand and explain the difference between frequency and angular frequency;
Analyze the oscillations atC circuits;

Compute physical quantities for oscillating systems in Sl units.

© © N ©

Understand time translation invariance in nonlinear systems.
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Problems

1.1 For the mass and spring discussed| (1.1)-(1.8), suppose that the system is hung
vertically in the earth’s gravitational field, with the top of the spring held fixed. Show that the
frequency for vertical oscillations is given by (1.5). Explain why gravity has no effect on the
angular frequency.

1.2a. Find an expression fass 76 in terms ofcos # andsin 6 by using complex expo-
nentials and the binomial expansion.

b. Do the same fogin 56.

C. Use complex exponentials to find an expressionifdf; + 0, + 03) in terms of the
sines and cosines of the individual angles.

d. Do you remember the “half angle formula,”

0 1

2

—=—(1+ ?
cos” o 2( cosf)

Use complex exponentials to prove the “fifth angle formula,”

COSSQ—ECOSQ—&-ECOS%—F—COSQ
5 16 5 16 5 16 '

e. Use complex exponentials to prove the identity

sin 6x = sinx (32 cos® z — 32cos® x + 6 cos CL‘) .

1.3a. Writei + +/3 in the formR . Write 6 as a rational number times

b. Do the same foi — /3.

C. Show that the two square roots®RE* are++/Re/2. Hint: This is easy! Don't
work too hard.

d. Use the result of. to find the square roots ®f and 2 + 2+/3.

1.4 Find all six solutions to the equatiof = 1 and write each in the form + i B and

plot them in the complex planélint: write = = Re® for R real and positive, and find
and 4
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1.5 Find three independent solutions to the differential equation

d3
S5 10+ F() =0,

You should use complex exponentials to derive the solutions, but express the results in real
form.

1.6 A block of massV/ slides without friction between two springs of spring constant
K and 2K as shown. The block is constrained to move only left and right on the paper, so
the system has only one degree of freedom.

K 2K

Calculate the oscillation angular frequency. If the velocity of the block when it is at its
equilibrium position ig, calculate the amplitude of the oscillation.

1.7 A patrticle of massn moves on the: axis with potential energy
_ Eo (4 3 2,2
V(:L‘)—g(x +4dazx® — 8a“x ) .

Find the positions at which the particle is in stable equilibrium. Find the angular frequency of
small oscillations about each equilibrium position. What do you mean by small oscillations?
Be guantitative and give a separate answer for each point of stable equilibrium.

1.8 For the torsion pendulum of figure 1.14, suppose that the pendulum consists of two
0.01kg masses on a light rod of total length 0.1 m. If the generalized spring constiant,
5 x 10~7 N'm. Find the angular frequency of the oscillator.
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Chapter 2

Forced Oscillation and Resonance

The forced oscillation problem will be crucial to our understanding of wave phenomena.
Complex exponentials are even more useful for the discussion of damping and forced oscil-
lations. They will help us to discuss forced oscillations without getting lost in algebra.

Preview

In this chapter, we apply the tools of complex exponentials and time translation invariance to
deal with damped oscillation and the important physical phenomenon of resonance in single
oscillators.

1. We set up and solve (using complex exponentials) the equation of motion for a damped
harmonic oscillator in the overdamped, underdamped and critically damped regions.

2. We set up the equation of motion for the damped and forced harmonic oscillator.

3. We study the solution, which exhibits a resonance when the forcing frequency equals
the free oscillation frequency of the corresponding undamped oscillator.

4. We study in detail a specific system of a mass on a spring in a viscous fluid. We give a
physical explanation of the phase relation between the forcing term and the damping.

2.1 Damped Oscillators

Consider first the free oscillation of a damped oscillator. This could be, for example, a system
of a block attached to a spring, like that shown in figure 1.1, but with the whole system
immersed in a viscous fluid. Then in addition to the restoring force from the spring, the block

37
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experiences a frictional force. For small velocities, the frictional force can be taken to have
the form
—mlv, (2.1)

wherel' is a constant. Notice that because we have extracted the factor of the mass of the
block in (2.1),1/T has the dimensions of time. We can write the equation of motion of the
system as

d? d 9

ﬁx(t) —i—F%x(t) +wiz(t) =0, (2.2)

wherew, = /K /m. This equation is linear and time translation invariant, like the undamped
equation of motion. In fact, it is just the form that we analyzed in the previous chapter, in
(1.16). As before, we allow for the possibility of complex solutions to the same equation,

d? d
73 20 + T = 2(t) + @ =(t) = 0. (2.3)

Because (1.71) is satisfied, we know from the arguments of of chapter 1 that we can find

irreducible solutions of the form
2(t) = e, (2.4)

wherea (Greek letter alpha) is a constant. Puttingl(2.4) into (2.2), we find
(@®>+Ta+wd)e*=0. (2.5)

Because the exponential never vanishes, the quantity in parentheses must be zero, thus

a=-Ca /T2 (2.6)

From (2.6), we see that there are three region§ fwsmpared tav, that lead to different
physics.
2.1.1 Overdamped Oscillators

If I'/2 > wy, both solutions forv are real and negative. The solution to/(2.2) is a sum of de-
creasing exponentials. Any initial displacement of the system dies away with no oscillation.
This is anoverdamped oscillator

The general solution in the overdamped case has the form,

z(t) = 2(t) = Ape T+t 4 A_e7 -1, (2.7)
where

Iy =—+4/——wd. (2.8)
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t=20 t— t=10s
Figure 2.1: Solutions to the equation of motion for an overdamped oscillator.

An example is shown in figu1. The dotted line is '+t forI' = 1 s ' andwy = .4 s7!.
The dashed line isT-!. The solid line is a linear combinatiam,'+! — 1e~T-t,

In the overdamped situation, there is really no oscillation. If the mass is initially moving
very fast toward the equilibrium position, it can overshoot, as shown in Rdlirdowever,
it then moves exponentially back toward the equilibrium position, without ever crossing the
equilibrium value of the displacement a second time. Thus in the free motion of an over-
damped oscillator, the equilibrium position is crossed either zero or one times.

2.1.2 Underdamped Oscillators

If I'/2 < wy, the expression inside the square root is negative, and the solutienarior
complex conjugate pair, with negative real part. Thus the solutions are products of a decreas-
ing exponentiale /2, times complex exponentials (or sines and cosiies]), where

w?=wi —T%/4. (2.9)

This is anunderdamped oscillator.

Most of the systems that we think of as oscillators are underdamped. For example, a
system of a child sitting still on a playground swing is an underdamped pendulum that can
oscillate many times before frictional forces bring it to rest.

The decaying exponentialt/2¢~(«t=f) gspjrals in toward the origin in the complex
plane. Its real parg—1*/2 cos(wt — ), describes a function that oscillates with decreasing
amplitude. In real form, the general solution for the underdamped case has the form,

z(t) = Ae T2 cos(wt — ), (2.10)

or
z(t) = e "2 (¢ cos(wt) + d sin(wt)) , (2.12)
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whereA andf are related te andd by (1.97)and(1.98). This is shown in figur@.2 (to be
compared with figurd.S). The upper figure shows the complex plane witht/2¢—#(wt=0)
plotted for equally spaced valuestofThe lower figure is the real patts(wt — ) —, for

the same values ofplotted versug. In the underdamped case, the equilibrium position is
crossed an infinite number of times, although with exponentially decreasing amplitude!

'
o Tt/2,—i(wt—0)

cos(wt — 0) —

Figure 2.2: A damped complex exponential.



2.1. DAMPED OSCILLATORS 41

2.1.3 Critically Damped Oscillators

If I'/2 = wo, then(2.4), gives only one solution;~"*/2. We know that there will be two
solutions to the second order differential equat{@r®). One way to find the other solution

is to approach this situation from the underdamped case as a limit. If we write the solutions
to the underdamped case in real form, theyeaté’2 coswt ande /2 sinwt. Taking the

limit of the first asv — 0 givese 1*/2, the solution we already know. Taking the limit of

the second gives 0. However, if we first divide the second solutian ibys still a solution
becauses does not depend anNow we can get a nonzero limit:

L 12

lim —

sinwt = te T2, (2.12)
w—0 w

Thuste T2 is also a solution. You can also check this explicitly, by inserting it back
into (2.2). This is called thecritically damped case because it is the boundary between
overdamping and underdamping.

A familiar system that is close to critical damping is the combination of springs and shock
absorbers in an automobile. Here the damping must be large enough to prevent the car from
bouncing. But if the damping from the shocks is too high, the car will not be able to respond
quickly to bumps and the ride will be rough.

The general solution in the critically damped case is thus

ce M2 pdte T2 (2.13)

This is illustrated in figur2.3. The dotted line ig~'* for I' = 1 s7'. The dashed line is
te~It. The solid line is a linear combinatig, — ¢) e~ 1",

1 1

t=20 t— t=10s

Figure 2.3: Solutions to the equation of motion for a critically damped oscillator.

As in the overdamped situation, there is no real oscillation for critical damping. However,
again, the mass can overshoot and then go smoothly back toward the equilibrium position,
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without ever crossing the equilibrium value of the displacement a second time. As for over-
damping, the equilibrium position is crossed either once or not at all.

2.2 Forced Oscillations

The damped oscillator with a harmonic driving force, has the equation of motion

d? d 9
@x(t)+F%:E(t)+wo z(t) = F(t)/m, (2.14)
where the force is
F(t) = Fycoswgt . (2.15)

Thew,/27 is called the driving frequency. Notice that itist necessarily the same as the
natural frequencyyy/2m, nor is it the oscillation frequency of the free system, (2.9). Itis
simply the frequency of the external force. It can be tuned completely independently of the
other parameters of the system. It would be correct but awkward to refeasathe driving
angular frequency. We will simply call it the driving frequency, ignoring its angular character.

The angular frequenciesy andwg, appear in the equation of motion, (2.15), in com-
pletely different ways. You must keep the distinction in mind to understand forced oscilla-
tion. The natural angular frequency of the system),is some combination of the masses
and spring constants (or whatever relevant physical quantities determine the free oscillations).
The angular frequencyy, enteronly through the time dependence of the driving force. This
is the new aspect of forced oscillation. To exploit this new aspect fully, we will look for a
solution to the equation of motion that oscillates with the same angular frequgnay,the
driving force.

We can relate (2.14) to an equation of motion with a complex driving force

2
%z(t) —i—l“%z(t) b2 a() = F(t)/m, (2.16)
where
F(t) = Fye ™t (2.17)

This works because the equation of motion, (2.14), does not invekgicitly and because
Re F(t) = F(t). (2.18)

If z(t) is a solution to[(2.16), then you can prove th@) = Re z(¢) is a solution((2.14) by
taking the real part of both sides of (2.16).

The advantage to the complex exponential force, in(2.16), is that it is irreducible, it
behaves simply under time translations. In particular, we can find a steady state solution
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proportional to the driving force; ™!, whereas for the real driving force, thes wyt and
sin wgt forms get mixed up. That is, we look for a steady state solution of the form

2(t) = Ae it (2.19)

The steady state solution, (2.19), is a particular solution, not the most general solution to
(2.16). As discussed in chapter 1, the most general solution of (2.16) is obtained by adding
to the particular solution the most general solution for the free motion of the same oscillator
(solutions of[(2.3)). In general we will have to include these more general contributions to
satisfy the initial conditions. However, as we have seen above, all of these solutions die away
exponentially with time. They are what are called “transient” solutions. It is only the steady
state solution that survives for a long time in the presence of damping. Unlike the solutions to
the free equation of motion, the steady state solution has nothing to do with the initial values
of the displacement and velocitl.is determined entirely by the driving force, (2.17). You
will explore the transient solutions in problem (2.4).

Putting (2.19) and (2.17) intd (2.16) and cancelling a facter &fi* from each side of
the resulting equation, we get

F
(—w? — iTwg+wi) A= =2, (2.20)
m

or
Fy/m
w2 —ilTwy — w2’
0 d d

A= (2.21)

Notice that we got the solution just using algebra. This is the advantage of starting with
the irreducible solution, (2.19).

The amplitude, (2.21), of the displacement is proportional to the amplitude of the driving
force. This is just what we expect from linearity (see problem (2.2)). But the coefficient of
proportionality is complex. To see what it looks like explicitly, multiply the numerator and
denominator of the right-hand side lof (2.21)8y+ iTw, — w3, to get the complex numbers
into the numerator

wWE 4+ iTwg — w?) Fy/m

G . ‘;2 d)2°2/ . (2.22)

(wg —wg)” +Twj

The complex numbed can be written ad + ¢B, with A and Breal:
(w§ — wi) Fo/m

A= 5 VERTICE (2.23)

(wf —wg)” + Mwj

T

B wa Fo/m (2.24)

(o —wd)® + T2
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Then the solution to the equation of motion for the real driving farce,/ (2s14),
z(t) = Re z(t) = Re (.Ae_iwdt> = Acoswgt + Bsinwgt . (2.25)

Thus the solution for the real force is a sum of two terms. The term proportiohas o

phase with the driving force (aB80° out of phase), while the term proportionalBds 90°

out of phase. The advantage of going to the complex driving force is that it allows us to get
both at once. The coefficientd,and B are shown in the graph in figi2ed forl’ = wq/2.

Fo
mwo

0 Wqg — Wy 2wo

Figure 2.4: The elastic and absorptive amplitudes, plotted vegsuBhe absorptive ampli-
tude is the dotted line.

The real part of A, A = Re A, is called the elastic amplitudendthe imaginary part
of A, B = Im A, is called the absorptive amplitude. The reason for these names will
become apparent below, when we consider the work done by the driving force.

2.3 Resonance

The (wZ — w?)” term in the denominator ¢2.22)goes to zero favy = wy. If the damping
is small, this behavior of the denominator gives rise to a huge increase in the response of the
system to the driving force at; = wy. The phenomenon is called resonance. The angular
frequencywy is the resonant angular frequency. Whgn=uuvg, the system is said to be “on
resonance”.

The phenomenon of resonance is both familiar and spectacularly important. It is familiar
in situations as simple as building up a large amplitude in a child’s swing by supplying a
small force at the same time in each cycle. Yet simple as it is, it is crucial in many devices
and many delicate experiments in physics. Resonance phenomena are used ubiquitously to
build up a large, measurable response to a very small disturbance.
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Very often, we will ignore damping in forced oscillations. Near a resonance, this is not a
good idea, because the amplitude, (2.22), goes to infinity-as0 for wgy = wp. Infinities
are not physical. This infinity never occurs in practice. One of two things happen before the
amplitude blows up. Either the damping eventually cannot be ignored, so the response looks
like (2.22) for nonzerd’, or the amplitude gets so large that the nonlinearities in the system
cannot be ignored, so the equation of motion no longer looks like (2.16).

2.3.1 Work

It is instructive to consider the work done by the external force inl (ZT@&)o this we must

use the real force,[(2.14), and the real displacement (2.25), rather than their complex
extensions, because, unlike almost everything else we talk about, the work is a nonlinear
function of the force. The power expended by the force is the product of the driving force
and the velocity,

P(t) = F(t) %x(t) = — FywgA cos wyt sinwgt + FowyB cos® wgt . (2.26)

The first term in[(2.26) is proportional #n 2wyt. Thus it is sometimes positive and
sometimes negative. It averages to zero over any complete half-period of oscillation, a time
7 /wq, because

to+m/wq 1
/ dt sin 2wgt = —5 cos det\ingﬂ/wd =0. (2.27)
to
This is whyA is called the elastic amplitude. Afdominates, then energy fed into the system
at one time is returned at a later time, as in an elastic collision in mechanics.
The second term in (2.26), on the other hand, is always positive. It averages to

1
Payerage = iFOWdB . (2.28)

This is whyB is called the absorptive amplitude. It measures how fast energy is absorbed by
the system. The absorbed powElyerage, reaches a maximum on resonanceyat= wq.

This is a diagnostic that is often used to find resonances in experimental situations. Note that
the dependence @ onw, looks qualitatively similar to that @f,yerage, Which is shown in

figure 2.5 forl’ = wy /2. However, they differ by a factor af;. In particular, the maximum

of B occurs slightly below resonance.

2.3.2 Resonance Width and Lifetime

Both the height and the width of the resonance curve in figure 2.5 are determined by the
frictional term,T", in the equation of motion. The maximum average power is inversely
proportional td”,
Fg
2mI

(2.29)
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g
2mlI’

|

P, average

0 t
0 Wwqg — wo 2w

Figure 2.5: The average power lost to the frictional force as a functigpfof I' = wg /2.

The width (for fixed height) is determined by the ratid @ wy. In fact, you can check that
the values ofu,; for which the average power loss is half its maximum value are

/ rz r

Thel is the “full width at half-maximum?” of the power curve. In figiZ.€ and figure2.7,we
show the average power as a functiowofor I' = wy /4 andl’ = wy. The linear dependence
of the width orT" is clearly visible. The dotted lines show the position of half-maximum.

2ml /\
P, average |  [7¢
T
—
0
0 Wwqg — wo 2wo

Figure 2.6: The average power lost to the frictional force as a functigpfof I' = wy /4.
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L
2mI’
Paerage | o
r
—_
0
0 Wwqg — wo 2w

Figure 2.7: The average power lost to the frictional force as a functigpfof I' = wy.

This relation is even more interesting in view of the relationship betiwew the time
dependence of the free oscillation. The lifetime of the state in free oscillation is of drder
In other words, the width of the resonance peak in forced oscillation is inversely proportional
to the lifetime of the corresponding normal mode of free oscillation. This inverse relation
is important in many fields of physics. An extreme example is particle physics, where very
short-lived particles can be described as resonances. The quantum mechanical waves associ-
ated with these particles have angular frequencies proportional to their energies,

E =hw (2.31)
whereh is Planck’s constant divided I2yr,
ha~6.626 x 10734 Js. (2.32)

The lifetimes of these particles, some as shorba$* seconds, are far too short to measure
directly. However, the short lifetime shows up in the large width of the distribution of energies
of these states. That is how the lifetimes are actually inferred.

2.3.3 Phase Lag

We can also write (2.2%)s
x(t) = Rcos(wqt — 0) (2.33)

for
R=+vVA?2+B?, 0=arg(A+iB). (2.34)
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The phase angl€), measures thphase laghetween the external force and the system’s
response. The actual time lagjsv,. The displacement reaches its maximum a tithe;
after the force reaches its maximum.

Note that as the frequency increagemcreases and the motion lags farther and farther
behind the external force. The phase arjles determined by the relative importance of the
restoring force and the inertia of the oscillator. At low frequencies (compas&gl, imertia
(an imprecise word for thewa term in the equation of motion) is almost irrelevant because
things are moving very slowly, and the motion is very nearly in phase with the force. Far
beyond resonance, the inertia dominates. The mass can no longer keep up with the restoring
force and the motion is nearlg0° out of phase with the force. We will work out a detailed
example of this in the next section.

The phase lag goes througli2 at resonance, as shown in the graph in fi@uéor
I' = wp/2. A phase lag of-/2 is another frequently used diagnostic for resonance.

T -

B

0 + |
0 wo 2w

Figure 2.8: A plot of the phase lag versus frequency in a damped forced oscillator.

2.4 An Example
2.4.1 Feeling It In Your Bones

L0l2-1

We will discuss the physics of forced oscillations further in the context of the simple system
shown in figuré.S. The block has mass. The block moves in a viscous fluid that provides

a frictional force. We will imagine that the fluid is something like a thick silicone oil, so that
the steady state solution is reached very quickly. The block is attached to a cord that runs
over a pulley and is attached to a spring, as shown. The spring has spring dénstaat
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dg cos wgt

—

Figure 2.9: An oscillator that is damped by moving in a viscous fluid.

hold on to the other end of the spring and move it back and forth with displacement
dy cos wgt . (2.35)

In this arrangement, you don’t have to be in the viscous fluid with the block — this makes it
a lot easier to breathe.

The question is, how does the block move? This system actually has exactly the equation
of motion of the forced, damped oscillator. To see this, note that the change in the length of
the spring from its equilibrium length is the difference,

x(t) — dy coswgt . (2.36)

Thus the equation motion looks like this:

2

m % z(t) +ml % x(t) = =K [z(t) — dop coswgt] . (2.37)

Dividing by m and rearranging terms, you can see that this is identical to (2.14) with
Fo/m = K do/m = widy . (2.38)

Moving the other end of the spring sinusoidally effectively produces a sinusoidally varying
force on the mass.

Now we will go over the solution again, stressing the physics of this system as we go.
Try to imagine yourself actually doing the experiment! It will help to try to feel the forces
involved in your bones. It may help to check out program 2-1 on the supplementary programs
disk. This allows you to see the effect, but you should really tigetdt!
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The first step is to go over to the complex force, as inl(2.16). The result looks like

inertial frictional spring driving
—— —— = ——

d? d ,
p7e] z(t)+T p 2(t) + wd 2(t) = widg e ™at | (2.39)

We have labeled the terms in (2.39) to remind you of their different physical origins.
The next step is to look for irreducible steady state solutions of the form of (2.19):

2(t) = Ae ™t (2.40)
Inserting (2.40) into (2.39), we get
|—wd — iTwg + wf| AeT0t = w3dg et (2.41)

What we will discuss in detail is the phase of the quantity in square brackets on the left-
hand side of (2.41). Each of the three terms, inertial, frictional and spring, has a different
phase. Each term also depends on the angular frequeriaya different way. The phase of
A depends on which term dominates.

For very smallvg, in particular for

wg <K wo, I, (2.42)

the spring term dominates the sum. Théis in phase with the driving force. This has a
simple physical interpretation. If you move the end of the spring slowly enough, both friction
and inertia are irrelevant. When the block is moving very slowly, a vanishingly small force
is required. The block just follows along with the displacement of the end of the spring,
A = dy. You should be able to feel this dependence in your bones. If you move your hand
very slowly, the mass has no trouble keeping up with you.

For very largevy, that is for

wq > wo, I, (2.43)

the inertial term dominates the sum. The displacement isl#&nout of phase with the
driving force. It also gets smaller and smallewgéncreases, going like

An =0 4,. (2.44)

Again, this makes sense physically. When the angular frequency of the driving force gets
very large, the mass just doesn’t have time to move.

In between, at least two of the three terms on the left-hand side of (2.41) contribute
significantly to the sum. At resonance, the inertial term exactly cancels the spring term,
leaving only the frictional term, so that the displacemef®isout of phase with the driving
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force. The size of the damping force determines how sharp the resonance is.mtich
smaller tharnwy, then the cancellation between the inertial and spring terms in (2.39) must
be very precise in order for the frictional term to dominate. In this case, the resonance is
very sharp. On the other handl'if> wg, the resonance is very broad, and the enhancement
at resonance is not very large, because the frictional term dominates for a large tange of
around the point of resonancg, = wy.

Try it! There is no substitute for actually doing this experiment. It will really give you
a feel for what resonance is all about. Start by moving your hand at a very low frequency,
so that the block stays in phase with the motion of your hand. Then very gradually increase
the frequency. If you change the frequency slowly enough, the contributions from the tran-
sient free oscillation will be small, and you will stay near the steady state solution. As the
frequency increases, you will first see that because of friction, the block starts to lag behind
your hand. As you go through resonance, this lag will increase and go thtSudtinally at
very high frequency, the block will H80° out of phase with your hand and its displacement
(the amplitude of its motion) will be very small.

Chapter Checklist
You should now be able to:

1. Solve for the free motion of the damped harmonic oscillator by looking for the irre-
ducible complex exponential solutions;

2. Find the steady state solution for the damped harmonic oscillator with a harmonic
driving term by studying a corresponding problem with a complex exponential force
and finding the irreducible complex exponential solution;

3. Calculate the power lost to frictional forces and the phase lag in the forced harmonic
oscillator;

4. Feel it in your bones!

Problems
2.1 Prove that an overdamped oscillator can cross its equilibrium position at most once.
2.2 Prove, just using linearity, without using the explicit solution, that the steady state

solution to (2.16) must be proportional fp.
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2.3 For the system with equation of motion (2.14), suppose that the driving force has
the form
fo coswot cos ot

where
0wy and T'=0.

As é — 0, this goes on resonance. What is the displacementifonzero tdeading order
in /wo? Write the result in the form

a(t) coswot + B(t) sinwpt

and finda(t) and(t). Discuss the physics of this resudtint: First show that

1 . .
cos wot cos 0t = 3 Re (e‘l(wo+5)t 4 @—Z(wo—é)t) '

2.4 For the system shown in figure 2.9, suppose that the displacement of the end of the
wire vanishes fot < 0, and has the form

dosinwgt for t>0.

a. Find the displacement of the block for- 0. Write the solution as the real part of
complex solution, by using a complex force and exponential solutions. Do not try to simplify
the complex numberslint:  Use (2.23),[(2.24) and (2.6). If you get confused, go on to part
b.

b. Find the solution whei® — 0 and simplify the result. Even if you got confused by
the complex numbers i, you should be able to find the solution in this limit. When there
is no damping, the “transient” solutions do not die away with time!

2.5 For the LC circuit shown in figure 1.10, suppose that the inductor has nonzero re-
sistance R. Write down the equation of motion for this system and find the relation between
friction term,mI’, in the damped harmonic oscillator and the resistafddat completes the
correspondence of (1.105). Suppose that the capacitors have capac€itan0e)0667uF,

the inductor has inductanck,~ 150pH and the resistanc&® ~ 15¢2. Solve the equation

of motion and evaluate the constants that appear in your solution in units of seconds.



Chapter 3

Normal Modes

Systems with several degrees of freedom appear to be much more complicated than the simple
harmonic oscillator. What we will see in this chapter is that this is an illusion. When we look
at it in the right way, we can see the simple oscillators inside the more complicated system.

Preview

In this chapter, we discuss harmonic oscillation in systems with more than one degree of
freedom.

1. We will write down the equations of motion for a system of particles moving under
general linear restoring forces without damping.

2. Next, we introduce matrices and matrix multiplication and show how they can be used
to simplify the description of the equations of motion derived in the previous section.

3. We will then use time translation invariance and find the irreducible solutions to the
equations of motion in matrix form. This will lead to the idea of “normal modes.” We
then show how to put the normal modes together to construct the general solution to
the equations of motion.

4. * We will introduce the idea of “normal coordinates” and show how they can be used
to automate the solution to the initial value problem.

5. * We will discuss damped forced oscillation in systems with many degrees of freedom.

53
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3.1 More than One Degree of Freedom

In general, the number of degrees of freedom of a system is the number of independent
coordinates required to specify the system’s configuration. The more degrees of freedom the
system has, the larger the number of independent ways that the system can move. The more
possible motions, you might think, the more complicated the system will be to analyze. In
fact, however, using the tools of linear algebra, we will see that we can deal with systems
with many degrees of freedom in a straightforward way.

3.1.1 Two Coupled Oscillators

1 RRQQQQQQ 5

Figure 3.1: Two pendulums coupled by a spring.

Consider the system of two pendulums shown in figute The pendulums consist of
rigid rods pivoted at the top so they oscillate without friction in the plane of the paper. The
masses at the ends of the rods are coupled by a spring. We will consider the free motion of the
system, with no external forces other than gravity. This is a classic example of two “coupled
oscillators.” The spring that connects the two oscillators is the coupling. We will assume that
the spring in figur®.1is unstretched when the two pendulums are hanging straight down, as
shown. Then the equilibrium configuration is that shown in fiute This is an example
of a system with two degrees of freedom, because two quantities, the displacements of each
of the two blocks from equilibrium, are required to specify the configuration of the system.
For example, if the oscillations are small, we can specify the configuration by giving the
horizontal displacement of each of the two blocks from the equilibrium position.

Suppose that block 1 has mass, block 2 has mass., both pendulums have length
and the spring constant ig@reek letter kappa). Label the (small) horizontal displacements
of the blocks to the righty; andzo, as shown in figur@.2. We could have called these
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Figure 3.2: Two pendulums coupled by a spring displaced from their equilibrium positions.

masses and displacements anything, but it is very convenient to use the samexsyitbol,
different subscripts. We can then write Newton'’s l1&v= ma, in a compact and useful
form.
d2
mjﬁ:rj = Fj y (31)

for j = 1to 2, whereF] is the horizontal force on block 1 aid is the horizontal force
on block 2. Because there are two valueg, dB.1) is two equations one for; = 1 and
another forj; = 2. These are the two equations of motion for the system with two degrees
of freedom. We will often refer to all the masses, displacements or forces at engeras
or F;, respectively. For example, we will say tiatis the horizontal force on thih block.
This is an example of the use of “indiceg”i¢ an index) to simplify the description of a
system with more than one degree of freedom.

When the blocks move horizontally, they will move vertically as well, because the length
of the pendulums remains fixed. Because the vertical displacement is second ordeysin the

7
vi &5 (3.2)

we can ignore it in thinking about the spring. The spring stays approximately horizontal for
small oscillations.

To find the equation of motion for this system, we must find the fofGesn terms of
the displacements;;. It is the approximate linearity of the system that allows us to do this
in a useful way. The forces produced by the Hooke’s law spring, and the horizontal forces
on the pendulums due to the tension in the string (which in turn is due to gravity) are both
approximately linear functions of the displacements for small displacements. Furthermore,
the forces vanish when both the displacements vanish, because the system is in equilibrium.
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Thus each of the forces is some constant (different for each block)tinpiss some other
constant times. It is convenient to write this as follows:

Fy = —Knx — Kigve, Fp = —Kory — Koo, (3.3)
or more compactly,

2
Fj = — Z Kjka:k (34)
k=1

for j = 1to 2. We have written the four constantsias, K12, K21 and Koo in order to
write the force in this compact way. Later, we will call these constants the matrix elements
of the K'matrix. In this notation, the equations of motion are

d? :
My = = kz Kjkxy, (3.5)
-1

forj =1to 2.

ST S S
|

Z2

Figure 3.3: Two pendulums coupled by a spring with block 2 displaced from an equilibrium
position.

Because of the linearity of the system, we can find the consfaptspy considering
the displacements of the blocks one at a time. Then we find the total forcé3.4)ngor
example, suppose we displace block 2 with block 1 held fixed in its equilibrium position and
look at the forces on both blocks. This will allow us to comgie and K»,. The system
with block two displaced is shown in figuB2. The forces on the blocks are shown in
figure3.4,whereT} is the tension in thgth pendulum stringF» is the force on block 1 due
to the displacement of block Zy; is the force on block 2 due to the displacement of block 2.
For small displacements, the restoring force from the spring is nearly horizontal and equal to
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ka2 on block 1 and-xx5 on block 2. Likewise, in the limit of small displacement, the vertical
component of the force from the tensiBnnearly cancels the gravitational force on block 2,
mag, SO that the horizontal component of the tension gives a restoring-fosee,g/¢ on
block 2. For block 1, the force from the tensifnjust cancels the gravitational foree g.

Thus
magx2

F12 ~ KZ9, F22 ~ — — RZ2, (36)
and Mg
Ku%—lﬁ, K22%72+f£. (37)
An analogous argument shows that
m
Kglﬁ—,‘{, K11%719+I£. (38)
Notice that
Ko = Ko . (3.9)

We will see below that this is an example of a very general relation.

T T
Fis Fy
1— <2
KT —RX2
mig mag

Figure 3.4: The forces on the two blocks in ficBir&

3.1.2 Linearity and Normal Modes

Os1
We will see in this chapter that the most general possible motion of this system, and of any
such system of oscillators, can be decomposed into particularly simple solutions, in which all
the degrees of freedom oscillate with the same frequency. These simple solutions are called
“normal modes.” The displacements for the most general motion can be written as sums of
the simple solutions. We will study how this works in detail later, but it may be useful to see it
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first. A possible motion of the system of two coupled oscillators is animated in program 3-1.
Below the actual motion, we show the two simple motions into which the more complicated
motion can be decomposed. For this system, the normal mode with the lower frequency is
one in which the displacements of the two blocks are the same:

x1(t) = xo(t) = by cos(wit — 7). (3.10)
The other normal mode is one in which the displacements of the two blocks are opposite
x1(t) = —x2(t) = bo cos(wat — O2) . (3.11)

The sum of these two simple motions gives the much more complicated motion shown in
program 3-1.

3.1.3 n Coupled Oscillators

Before we try to solve the equations of motion, /(3.5), let us generalize the discussion to
systems with more degrees of freedom. Consider the oscillation of a systepaxicles
connected by various springs with no damping. Our analysis will be completely general, but
for simplicity, we will talk about the particles as if they are constrained to move in the
direction, so that we can measure the displacement gftthgarticle from equilibrium with
the coordinate:;. Then the equilibrium configuration is the one in which allatfeare all
zero.

Newton’s law,F' = ma, for the motion of the system gives

2, .
d°xz;

wherem; is the mass of thgth particle,F}; is the force on it. Because the system is linear,
we expect that we can write the force as follows (as in (3.4)):

Fj=-=> Kjay (3.13)
k=1

for j = 1ton. The constant- Ky, is the force per unit displacement of jile particle due
to a displacement;, of thekth particle. Note that all the;s vanish at equilibrium when all
thex;s are zero. Thus the equations of motion are

d*x;
m;j WQJ =— Z K, oy, (3.14)
k

forj = 1ton.
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To measureK;;,, make a small displacementy, of the kth particle, keeping all the
other particles fixed at zero, assumed to be an equilibrium position. Then measure the
force, F};, on the jth particle with only the kth particle displaced. Since the system is
linear (because it is made out of springs or in general, as long as the displacement is
small enough), the force is proportional to the displacement;;,. The ratio of F};, to z;,
is *Kjkl

K, = —Fji/x, when x, =0 for { #k. (3.15)
Note thatK;, is defined with a- sign, so that a positiv& is a force that is opposite to the
displacement, and therefore tends to return the system to equilibrium.

Because the system is linear, the total force due to an arbitrary displacement is the sum
of the contributions from each displacement. Thus

Fj=Y Fj=-> Kja. (3.16)
k k

Let us now try to understand (3.9). If we consider systems with no damping, the forces
can be derived from a potential energy,

Fj=—%—. (3.17)

But then by differentiating equation (3.16) we find that

A
k= 8xj8xk '

(3.18)

The partial differentiations commute with one another, thus equation (3.18) implies
K, = Ky;j . (3.19)

In words, the force on patrticledue to a displacement of partidlas equal to the force on
particlek due to the displacement of partigle

3.2 Matrices

It is very useful to rewrite equation (3.14) in a matrix notation. Because of the linearity of
the equations of motion for harmonic motion, it will be very useful to have the tools of linear
algebra at hand for our study of wave phenomena. If you haven't studied linear algebra (or
didn’t understand much of it) in math courde@N'T PANIC . We will start from scratch by
describing the properties of matrices and matrix multiplication. The important thing to keep
in mind is that matrices are nothing very deep or magical. They are just bookkeeping devices
designed to make your life easier when you deal with more than one equation at a time.
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A matrix is a rectangular array of numbers. A M matrix hasN rows andM
columns. Matrices can be added and subtracted simply by adding and subtracting each of
the components. The difference comes in multiplication. It is very convenient to define
a multiplication law that defines the product of /six M matrix on the left with a\/ x L
matrix on the right (the order is important!) to beMr L matrix as follows:

Call the N x M matrix A and letA;; be the number in thg¢th row andkth column for
1 <j< Nandl <k < M. These individual components of the matrix are called matrix
elements. In terms of its matrix elements, the matrimoks like:

A A - A
A A oA
A= |72 TEo T (3.20)
Ayt An2 -+ Anwm
Call the M x L matrix B with matrix element®,,; for 1 <k < M andl <[ < L:
By B2 -+ DBig
B=| 7 77 2k (3.21)
Byi Bu2 - Bur
Call the N x L matrix C'with matrix elementg’;; for1 < j < N andl <1 < L.
Cn Cip -+ Cq
C = Cfl C,? N CfL (3.22)
Cn1 Cn2 -+ Cng
Then the matrixC is defined to be the product matdxB if
M
Cii=Y_ Ajx-Bu. (3.23)

k=1

Equation(3.23) is the algebraic statement of the “row-column” rule. To compute the
j¢ matrix element of the product matriX,B, take thejth row of the matrixA and thefth
column of the matrixB and form their dot-product (corresponding to the sum évier
(3.23)). This rule is illustrated below:

All Alk AlM By - Blﬁ .-+ By

Ajp - A - Ay By | Bw |-+ Bir

ANt - ANk - ANm By oo | Bme |-+ Bur
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Cll Clé CIL
— e el o | (3.24)
CNl CNK CNL

For example,

2 3 2 3 13

(0 1).(333):(0 | 3). 629

2 -1 2 -1 1
It is easy to check that the matrix product defined in this way is associdiBy(C =
A(BC). However, in general, it is not commutativéB # BA. In fact, if the matrices
are not square, the product in the opposite order may not even make any sense! The matrix
productAB only makes sense if the number of columnsia$ the same as the number of
rows of B. Beware!

Except for the fact that it is not commutative, matrix multiplication behaves very much

like ordinary multiplication. For example, there are “identity” matrices. VheVN identity
matrix, calledl, has zeros everywhere except for 1's down the diagonal. For example, the

3 x 3 identity matrix is
1 0 0
I=10 1 0]. (3.26)

0 0 1
The Nx N identity matrix satisfies

1A = Al = Aforany N x N matrix A;
IB = B for any N x M matrix B; (3.27)

C1 = C for any M x N matrix C.

We will be primarily concerned with “square” (thatsx N) matrices.

Matrices allow us to deal with many linear equations at the same time.

An N dimensional column vector can be regarded a& arl matrix. We will call this
object an NV-vector.” It should not be confused with a coordinate vector in three-dimensional
space. Likewise, we can think of &hdimensional row vector as axIV matrix. Matrix
multiplication can also describe the product of a matrix with a vector to give a vector. The
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particularly important case that we will need in order to analyze wave phenomena involves
square matrices. Consider Anx N matrix A multiplying anN-vector, X, to give another
N-vector,F. The square matrixd hasN? matrix elementsd;; for j andk =1toN. The
vectorsX and F each hav& matrix elements, just their componenfsand F; for j = 1 to
N. Then the matrix equation:

AX=F (3.28)

actually stands folN equations:
N
> Aj- Xp=F, (3.29)
k=1

for j=1 toN. In other words, these afé simultaneous linear equations for tNeX;'s. You

all know, from your studies of algebra how to solve forihés in terms of theF;’'s and the
Aji’s but it is very useful to do it in matrix notation. Sometimes, we can find the “inverse”
of the matrix4, A—!, which has the property

AA ' =A7A=T, (3.30)

where[ is the identity matrix discussed in (3.26) and (3.27). If we can find such a matrix,
then theN simultaneous linear equations, (3.29), have a unigue solution that we can write in
a very compact form. Multiply both sides of (3.29) Ay!. On the left-hand side, we can

use [(3.30) and (3.27) to get rid of the' A and write the solution as follows:

X=A'F, (3.31)

3.2.1 *Inverse and Determinant

We can computel—! in terms of the “determinant” ol. The determinant of the matrix
is a sum of products of the matrix elementslafith the following properties:

e There areV! terms in the sum;
e Each term in the sum is a productéfdifferent matrix elements;
¢ In each product, every row number and every column number appears exactly once;

e Every such product can be obtained from the product of the diagonal elements, - - - Ay n,
by a sequence of interchanges of the column labels. For exatpphe,; Ass - - Ann
involves one interchange whikg 2 Ax3A31 A44 - - - Axn requires two.

e The coefficient of a product in the determinant is +1 if it involves an even number of
interchanges and1 if it involves an odd number of interchanges.
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Thus the determinant of ax2 matrix, A is
det A = A1 A9 — A10A9 . (3.32)
The determinant of ax33 matrix, A is

det A = A1 Ago Ass + A1 A23As1 + A13 A2 Aso
—A11 A3 A3 — A13A20A31 — A12A21A33 .

(3.33)

Unless you are very unlucky, you will never have to compute the determinant of a matrix
larger tharB x 3 by hand. If you are so unlucky, it is best to use an inductive procedure that
builds it up from the determinants of smaller submatrices. We will discuss this procedure
below.

If det A = 0, the matrix has no inverse. It is not “invertible.” In this case, the simul-
taneous linear equations have either no solution at all, or an infinite number of solutions. If
det A # 0, the inverse matrix exists and is uniquely given by

1= defA (3.34)
whereA is the cofactomatrix defined by its matrix elements as follows:
(A)x = det A(jk) (3.35)
with
A(jk)y, =1ifm = jand = k;

(k)
A(jk)im = 0ifm = j and I# k;
A(jk)im = 0ifm # jand = k;

A(GK)im = Apn ifm # 7 andl # k.

In other words A(jk) is obtained from the matriX by replacing the:j matrix element by
1 and all other matrix elements in révor columnj by 0. Thus if

Ay | Ay | Al

A= || Ap - | A | Ay || (3.36)

Axr - | Anj |- Ann
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Ay |0 Ay
A(jk) = 0O ---|1|--- 0 . (3.37)
Any - 0 ANN

Note the sneaky interchangejof- k in this definition, compared td (3.23).
For example if

. (;1 g) (3.38)
then
A(ll):((l) (2)) A(12):(0 3) (3.39)
A(21):<(5) é A(22)=< ’
Thus,

A= ( 2 _3) (3.40)
and sincelet A =4-2—-5-3 = -7,

1 (=2/T 37
Al_(5/7 _4/7>. (3.41)

A~ satisfiesd A=! = A~ A = I wherel is the identity matrix:

I:(é ?) . (3.42)

In terms of the submatriced(jk), we can define the determinant inductively, as promised
above. In fact, the reason that (3.8@yks is that the determinant can be written as

N
det A=Y Ay det A(k1). (3.43)
k=1

Actually this is true for any row, not jugt= 1. The relation, (3.30) can be rewritten as
det A for j = 5’

N
> Ajpdet A(kj') = (3.44)
k=1 0 for j # j
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The determinants of the submatricés; A(k1), in (3.43)can, in turn, be computed by the

same procedure. The result is a definition of the determinant that refers to itself. However,
eventually, the process terminates because the matrices keep getting smaller and the determi-
nant can always be computed in this way. The only problem with this procedure is that it is
very tedious for a large matrix. For anx n matrix, you end up computing! terms and

adding them up. For large this is impractical. One of the nice features of the techniques
that we will discuss in the coming chapters is that we will be able to avoid such calculations.

3.2.2 More Useful Facts about Matrices

Suppose thatl andB are N x N matrices and is an Nvector.

1. If you know the inverses ol and B, you can find the inverse of the produdf3, by
multiplying the inverses in the reverse order:

(AB)"'=B"1A"L. (3.45)
2. The determinant of the produet3, is the product of the determinants:
det(AB) = det A det B, (3.46)
thus ifdet(AB) = 0, then eitherd or B has vanishing determinant.

3. A matrix multiplying a nonzero vector can give zero only if the determinant of the
matrix vanishes:
Av=0 = detA=0 or v=0. (3.47)

This is the statement, in matrix language, tNahomogeneous linear equations in
N unknowns can have a nontrivial solutian,# 0, only if the determinant of the
coefficients vanishes.

4. Similarly, if det A = 0, there exists a nonzero vectorthat is annihilated by:
det A=0 = Jv+#0 suchthatdv =0. (3.48)

This is the statement, in matrix language, tNatomogeneous linear equationsNn
unknownsactually do have a nontrivial solutiony # 0, if the determinant of the
coefficients vanishes.

5. The transpose of aN x M matrix A, denoted byd”', is theM x N matrix obtained by
reflecting the matrix about a diagonal line through the upper left-hand corner. Thus if
A A o Awg
A1 Agp - Aoy
A= : T : (3.49)

An1 An2 - Anm
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then
All A21 ANl
A A el oo A
AT | T e (3.50)
AIM A2M ANM

Note that if N # M, the shape of the matrix is changed by transposition. Only for
square matrices does the transpose give you back a matrix of the same kind. A square
matrix that is equal to its transpose is called a “symmetric” matrix.

3.2.3 Eigenvalue Equations

We will make extensive use of the concept of an “eigenvalue equation.” Roxan matrix,
R, the eigenvalue equation has the form:

Rc=hec, (3.51)

wherec is anonzero N-vector: andh is a number. The idea is to find both the number,
which is called the eigenvalue, and the vecatowhich is called the eigenvector. This is the
problem we discussed in chapter 1(1n78&)in connection with time translation invariance,
but now written in matrix form.

A couple of examples may be in order. SupposeRhata diagonal matrix, like

R= (3 (1)> . (3.52)

Then the eigenvalues are just the diagonal elements, 2 and 1, and the eigenvectors are vectors
in the coordinate directions,

R(é):Q(é), R((l)):l ((1)) (3.53)
A less obvious example is
R= (f ;) (3.54)

This time the eigenvalues are 3 and 1, and the eigenvectors are as shown below:

f)-s () 8 () (1) e

It may seem odd that in the eigenvalue equation, both the eigeavaltige eigenvector
are unknowns. The reason that it works is that for most valugstd equation(3.51),has

1¢ = 0 doesn't count, because the equation is satisfied trivially fohakiye are interested only in nontrivial
solutions.
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no solution. To see this, we wri(8.51) as a set of homogeneous linear equations for the
components of the eigenvector,

(R—hI)c=0. (3.56)

The set of equation$3.56),has nonzero solutions foronly if the determinant of the coef-
ficient matrix,R — hl, vanishes. But this will happen only féf values ofh, because the
condition

det (R—hI)=0 (3.57)

is anN'th order equation fok. For eachh that solveg3.57),we can find a solution far.?
We will give some examples of this procedure below.
3.2.4 The Matrix Equation of Motion

It is very useful to rewrite the equation of moti¢8,14),in a matrix notation. Define a
column vector, X', whosejth row (from the top) is the coordinate:

1
Z2
x=|"71. (3.58)

Ln

Define the K matrix”, annxn matrix that has the coefficie;;, in its jth row andkth
column:

K1 K2 -+ Kip
g | f B R (3.59)
Knl Kn? et Knn

Ky, is said to be thejk matrix element” of thed matrix. Because of equati¢8.19),the
matrix K is symmetrick = K.
Define the diagonal matrix/ with m; in the jth row andjth column and zeroes else-

where

my 0O -+ 0
0 mg -+ 0

M = : _— . . (3.60)
0 0 - my,

M is called the “mass matrix.”

2The situation is slightly more complicated when the solutions foe degenerate. We discuss thi(Sii17)
below.



68 CHAPTER 3. NORMAL MODES

Using these definitions, we can rewrite (3.14) in matrix notation as follows:

d>X

M—=-KX. 3.61
There is nothing very fancy going on here. We have just used the matrix notation to get rid
of the summation sign in (3.14)fhe sum is now implicit in the matrix multiplication in
(3.61). This is useful because we can now use the properties of matrices and matrix multi-
plication discussed above to manipulate (3.61). For example, we can simplify (3.61) a bit by
multiplying on the left byl ~! to get

d*X

_ -1
o = MTKX. (3.62)

3.3 Normal Modes

If there is only one degree of freedom, then h&trand M/ ~! are just numbers and the
solutions to the equation of motion, (3.62), have the form of a constant amplitude times an
exponential factor. In fact, we saw that this form is related to a very general fact about the
physics — time translation invariance, (1..33). The arguments of chapter 1, [(1.71)-(1.85), did
not depend on the number of degrees of freedom. Thus they show that here again, we can
find irreducible solutions, that go into themselves up to an overall constant when the clocks
are reset. As in chapter 1, the first step is to allow the solutions to be complex. That is, we
replacel(3.62) by

d*z

dt?
whereZ is a complex: vector with components,;. The real parts of the componentsZof
are the components of a real solution satisfying (3.62),

=-M'K_Z, (3.63)

zj = Rez;. (3.64)
We will say that the real vectak], is the real part of the complex vectat,
X =ReZ, (3.65)

if (3.64) is satisfied.
Just as in chapter 1, we know that we can find irreducible solutions that have the same
form up to an overall constant when the clocks are ré&fetknow from [(1.85) that these
have the form
Z(t) = Ae Wt (3.66)

where A is some constant-vector and the angular frequeney;is still just a number. Now
ift —t+a, '
Z{t)— Z({t+a)=e""Z(t). (3.67)



3.3. NORMAL MODES 69

While the irreducible form/| (3.66), comes just from time translation invariance, we must
still look at the equations of motion to determine the vectaand the angular frequency,
w. Inserting|(3.66) intc (3.63), doing the differentiation and canceling the exponential factors
from both sides, we find that (3/66) is a solution if

WwWPA=M1T1KA. (3.68)

This matrix equation is an eigenvalue equation of the form that we discussed!in((3.51)-(3.57).
w? is the eigenvalue of the matrl¥ ! K and A is the corresponding eigenvector. Let us see
what it means physically.

The real part of the column vectdrspecifies the displacement of each of the degrees
of freedom of the system. The eigenvalue equation, /(3.68), does not involve any complex
numbers (because we have not put in any damping). Therefore (as we will see explicitly
below), we can choose the solutions so that all the componenAtaraf real. Then the real
part of the complex solutions we seek in (3.66) is

X (t) = Acoswt, (3.69)

or in terms of the components 4f

ai
A=|a2 |, (3.70)
x1(t) = aj coswt, x9(t) =agcoswt, etc. (3.71)

Not only does everything move with the same frequency, butaties of displacements

of the individual degrees of freedom are fixed. Everything oscillates in phase. The only
difference between the motion of the different degrees of freedom is their different amplitudes
from the different components df.

The point is worth repeating. Time translation invariance and linearity imply that we can
alwaysfind irreducible solutions| (3.67), in which all the degrees of freedom oscillate with
the same frequency. The extra piece of information that leads to (3.69) is dynamical. If there
is no damping, then all the componentsioan be chosen to be real, and all the degrees of
freedom oscillate not only with the same frequency, but also with the same phase.

If such a solution is to satisfy the equations of motion, then the acceleration must also
be proportional t4, so that the individual displacements don'’t get out of synch. But that is
what (3.68) is telling us— M~ K is the matrix that, acting on the displacement, gives the
acceleration. The eigenvalue equation (3.68) means that the acceleration is propottional to
again. The constant of proportionality?, is the return force per unit displacement per unit
mass for the particular displacement specifiediby
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We have already discussed the mathematical structure of the eigenvalue equation in
(3.51)-B.57). We will do it again, for emphasis, in the case of physical interest, (3.68).
It should be clear that not every valuebfindw? gives a solution of (3.68). We will solve
for the allowed values by first finding the possible values®aénd then finding the corre-
sponding values ofl. To find the eigenvalues, note that (3.68) can be rewritten as

{M’lK - oﬂf} A=0, (3.72)

wherel is then xn identity matrix. (3.72) is just a compact way of representifgmoge-
neous linear equations in thecomponents off where the coefficients depend oh. We

saw in (3.47) and (3.48) that for systems ¢fomogeneous linear equationsiininknowns,

a nonzero solution exists if and only if the determinant of the coefficient matrix vanishes.
The reason is that if the determinant were nonzero, then the midtrixk’ — w21, would

have an inverse, and we could use (3.31) to conclude that the only solution for theAsector,
is A= 0. Thus to have a nonzero amplitudie, we must have

det [M1K — wﬂ ~0. (3.73)

(3.73)is a polynomial equation for?. It is an equation of degresin w?, because the term in

the determinant from the product of all the diagonal elements of the matrix contains a piece
that goes a$w2]". All the coefficients in the polynomial are real. Physically, we expect
all the solutions fow? to be real and positive whenever the system is in stable equilibrium
because we expect such systems to oscillate. Mathematically, we can shotistettvays

real, so long as all the masses are positive. We will do this below in(3.127)-(3.130).

Negativew? are associated with unstable equilibrium. For example, consider a mass at
the end of a rigid rod, free to swing in the earth’s gravitational field in a vertical plane around
a frictionless pivot, as shown in figure 13.Bhe mass can move along the dotted line. The
stable equilibrium position is indicated by the solid line. The unstable equilibrium position
is indicated by the dashed line.

When the mass is at the unstable equilibrium point, the smallest disturbance will cause it
to fall. Once away from equilibrium, the displacement increases exponentially until the angle
from the vertical becomes so large that the nonlinearities in the equation of motion for this
system take over. We will discuss this nonlinear oscillator further in appendix B.

Once we have found the possible values,tf we can put each one back into (3.72)
to get the corresponding. Becausel (3.72) is homogeneous, the overall scalke isfnot
determinedbut all the ratios, a;/ay, are fixed for eachu?.

3.3.1 Normal Modes and Frequencies

The vector A is called the “normal mode” of the system associated with the frequency
w. Becaused is real, in the absence of friction, the complex solutions, /(3.66), can be put
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R

Figure 3.5: A mass on a rigid rod, free to swing in the earth’s gravity in a vertical plane.

together into real solutions, liK8.69). The general real solution is of the form

X(t)=Re [(b+ic)Z(t)] =

(3.74)
bA coswt+cAsinwt =dA cos(wt —0)

whereb andc (or d and ¢ are real numbers.

We can now construct the complete solution to the equation of motion. Because of lin-
earity, we get it by adding together all the normal mode solutions with arbitrary coefficients
that must be set by the initial conditions.

We can now see that the number of different normal modes is always equaht®
number of degrees of freedom. Label the normal models* asherea is a label that (we
will argue below) goes from 1 te. Label the corresponding frequencies Then the most
general possible motion of the system is a sum of all the normal modes,

Z(t) =) waA%e et (3.75)
a=1
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or in real form (withw = b + ic)

X(t) = Z [ba A% cos(wat) + co A% sin(wat)]
o=t (3.76)
=) daA%cos(wat — ba)

whereb, andc, (or d, andd,) are real numbers that must be determined from the initial
conditions of the systenNote that the set of all the normal mode vectors must be “com-

plete,” in the mathematical sense that any possible configuration of this system can be
described as a linear combination of normal mode®therwise, we could not satisfy arbi-

trary initial conditions with the solution, (3/76). This can be proved mathematically (because
the matrix, K, is symmetric and the masses are positive), but the physical argument will
be enough for us here. Likewise no normal mode can possibly be a linear combination of
the other normal modes, because each corresponds to an independent possible motion of the
physical system with its own frequency. The mathematical way of saying this is that the set
of all the normal modes is “linearly independent.”

Because the set of normal modes must be both complete and linearly in-
dependent, there must be preciselyormal modes, where againjs the (3.77)
number of degrees of freedom.

If there were fewer than normal modes, they could not possibly describe all possible
configurations of the: degrees of freedom. If there were more tharthey could not be
linearly independent dimensional vectors. At least one of them could be written as a linear
combination of the others. As we will see later, (3.77) is the physical principle behind Fourier
analysis.

It is worth noting that solving the eigenvalue equation, (3.68), gets hard very rapidly as
the number of degrees of freedom increases. First you have to compute the determinant of
ann x n matrix. If all the entries are nonzero, this requires adding!dprms. Once you
have finished that, you still have to solve a polynomial equation of degfe®n > 3, this
cannot be done analytically except in special cases.

On the other hand, it is always straightforward to check whether a given vector is an
eigenvector of a given matrix and, if so, to compute the eigenvalue. We will use this fact in
the problems at the end of the chapter.

3.3.2 Back to the 2x2 Example

Let us return to the example from the beginning of this chapter in the special case where the
two pendulum blocks have the same mass= ms = m. Simple as it is, this will be a very
important system for our understanding of wave phenomena. Let us see how the techniques
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that we have developed allow us to solve for the allowed frequencies and the corresponding
A vectors, the normal modes. Fram (3.7) and (3.8)Athmatrix has the form

o (mg/_{:—:‘i mg/—g/:_/{) ' (3.78)

The M matrix is

0 m

M:(m 0) : (3.79)
Thus from[(3.78) and (3.79),

1, (9/l+K/m  —K/m
M 1K_<g i g/£+,<,/m>' (3.80)

The matrixM 'K — w2l is

Y —
MUK — W = (g/g +—Z//ng © g/£+§//$— WQ) . (3.81)

To find the eigenvalues af —! K, we form the determinant

K/m — w? —Kk/m
det[M 'K — wI] = det [(g/f +—f<c//m g/t + /f//m W2 ﬂ
= (9/t+ K/m —w?)* — (k/m)? (3.82)

= (W = g/O)(W* — g/t —2r/m) = 0.
Thus the angular frequencies of the normal modes are
wi=g/l, wi=g/l+2x/m. (3.83)

To find the corresponding normal modes, we substitute these frequencies back into the
eigenvalue equation. Faf, the normal mode vectad!,

Al = (“%> (3.84)
=) ,
2
satisfies the matrix equation
(MK —WifA = 0. (3.85)
From (3.81) anc (3.83),
MK —w2r = (B (3.86)
1 —Kk/m  K/m
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Thus (3.85becomes

< Kk/m —ﬁ/m) <a%)_0

—k/m  K/m a (3.87)
1_ 1

_ K[ a1—ay 1_ 1

T m (—a%—i—a%) = ap =0y

We can take] = 1 because we can multiply the normal mode vector by any number we like.
Only the ratioa{ /a} matters. So, for example, we can take

Al = G) . (3.88)

This gives(3.10). The displacement in this normal mode is shown in fi§ute

1199999999

Figure 3.6: The displacement in the normal motle,

Forw3, the normal mode vectad?,
2 ai
A= (1), (3.89)
2

satisfies the matrix equation (where the identity matrix multiplyiigs understood)

[MT'K —w3]A% = 0. (3.90)

31t is tiresome writing the identity matrix, everywhere. It is not really necessary because you can always
tell from the context whether it belongs there or not. From now on, we will often leave it out. Thus, if you see
something that looks like a number in a matrix equation, like-th& in (3.90),you should mentally include a
factor ofI.
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This time, (3.81and (3.83pive

. ([ —Kk/m —kK/m
MK —wi = (_H/m _R/m) : (3.91)

Thus (3.90becomes

<—/<;/m —ﬁ/m) (a%)
2 ) =0
—Kk/m 2 —/{/2m as (3.92)
K (af +a
Again, only the rati@? /a3 matters, so we can take
A% = (_11> . (3.93)

This gives(3.11). The displacement in this normal mode is shown in figure

Figure 3.7: The displacement in the normal motfe,

The physics of these modes is easy to understand. In mode 1, the blocks move together
and the spring is never stretched from its equilibrium position. Thus the frequency; j¢just
the same as an uncoupled pendulum. In mode 2, the blocks are moving in opposite directions,
so the spring is stretched by twice the displacement of each block. Thus there is an additional
restoring force ofx, and the square of the angular frequency is correspondingly larger.

3.3.3 n=2 —the General Case

Let us work out explicitly the case of= 2 for an arbitraryX’ matrix,

1 [ Kii/mi Kig/my
M K_<K12/m2 Kon/ms ) (3.94)
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where we have usdd,; = K15. Then|(3.73) becomes

K11 Kgs — K2 Ky K
(Kl =B _(Kun | B o, (2.95)
mimeo mi ma
with solutions
1 /K, K 1 /K  Kp\? K2
w2:(“+22>j: ( o 22) + 2 (3.96)
2\m mo 4\ my mo myma

For eachw?, we can take; = 1. Then

mi w2 — Kll
Ko

As we anticipated, the eigenvectors turned out to be real. This a general consequence of
the reality of M/ ~'K andw?. The argument is worth repeating. When all the elements of
the matrix\/ ~' K — w?I are real, the ratiosy;/a;, are real (because they are obtained by
solving a set of simultaneous linear equations with real coefficients). Thus if we choose one
component of the vectot to be real (multiplying, if necessary, by a complex number), then
all the components will be real. Physically, this means that for the solution, (3.66), all the
different parts of the system are oscillating not only with the same frequency, but with the
same phase up to a sign. This is true only because we have ignored damping. We will return
to the question in the last section (an optional section that is not for the fainthearted).

(3.97)

ag =

3.3.4 The Initial Value Problem

Once you have solved for the normal modes and corresponding frequencies, it is straightfor
ward to put them together into the most general solution to the equations of motion for the
set of NV coupled oscillators| (3.76). Itis

X(t) = Z (ba A% coswat + co A% sinwyt) . (3.98)

[0}

The 2N constant$,, andc, are determined by the initial conditions. Theare related to
the initial displacementsy (0):

X(0) =) baA”. (3.99)

In words,b,, is the coefficient of the normal modg' in the initial displacemenk (0). The

c,, are related to the initial velocitie% ‘t*O:

dX (t)
dt

=3 Cawad®. (3.100)
t=0 .
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The equations/ (3.99) and (3.100), are two sets of simultaneous linear equationgfor the
andc,. They can be solved by hand. This is easy enough for a small number of degrees of
freedom. We will see in the next section that we can also get the solutions directly with very
little additional work by manipulating the normal modes.

Meanwhile, we should pause again to consider the physics of (3T188&.shows ex-
plicitly how the most general motion of the system can be decomposed into the simple mo-
tions associated with the normal modes. It is worth staring at an example (real, animated or
preferably both) at this point. Try to construct the system in figureAhg.two identical
oscillators with a relatively weak spring connecting them will do. Convince yourself that the
normal modes exist. If you start the system oscillating with the blocks moving the same way
with the same amplitude, they will stay that way. If you get them started moving in opposite
directions with the same amplitude, they will continue doing that. Now set up a random mo-
tion. See if you can understand how to take it apart into normal modes. It may help to stare
again at program 3-1 on the program disk, in which this is done explicitly. In this animation,
you see the two blocks of figure 3.1 and below, the two normal modes that must be added to
produce the full solution.

3.4 * Normal Coordinates and Initial Values

There is another way of looking at the solutions of (3.14). We can find linear combinations
of the original coordinates that oscillate only with a single frequency, no matter what else is
going on. This construction is also useful. It allows us to use the form of the normal modes
to simplify the solution to the initial value problem.

To see how this works, let us return to the simple example of two identical pendulums,
(3.78)-B.93). The most general possible motion of this system looks like

X(t) = bA cos(wit — 01) + cA% cos(wat — 6), (3.101)
or, using|(3.88) and (3.93)

z1(t) = beos(wit — 61) + ccos(wat — b2) , (3.102)
x9(t) = beos(wit — 01) — ccos(wat — 62) .

The motion of each block is nonharmonic, involving two different frequencies and four con-
stants that must be determined by solving the initial value problem for both blocks.
But consider the linear combination

X1(t) = z1(t) + 2o(t) . (3.103)
In this combination, all dependence ©and 6 goes away,

X1(t) = 2bcos(wit — 6). (3.104)
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This combination oscillates with the single frequengy,and depends on only two constants,
b andf;, no matter what the initial conditions are. Likewise,

X2(t) = x1(t) — x2(t) (3.105)
oscillates with the frequenaysg,
X2(t) = 2ccos(wyt — ). (3.106)

X' and X? are called “normal coordinates.” We can just as well describe the motion
of the system in terms of! and X2 as in terms of;; andz,. We can go back and forth
using the definitions| (3.103) and (3.105). Whileandz- are more natural from the point
of view of the physical setup of the system, figure X1,and X? are more convenient for
understanding the solution. As we will see below, by going back and forth from physical
coordinates to normal coordinates, we can simplify the analysis of the initial value problem.

It turns out that it is possible to construct normal coordinates for any system of normal
modes. Consider a normal modé corresponding to a frequency,. Construct the row
vector

B = A°T M (3.107)

whereA®T is the transpose of®, a row vector withu$ in the jth column.
The row vectorB® is also an eigenvector of the matix—' K, but this time from the
left. That is

B“M™'K = w2 B*. (3.108)
To derive [(3.108), note that (3/68) can be transposed to give
AT K ML =2 AeT (3.109)

because\/ ! and K are both symmetric (see (3.18) and notice that the ordeirdfand K’
are reversed by the transposition). Then

BM'K = A*TMM'K = A°TKM~'M (3.110)
= w2ATM = W2 Be. (3.111)

Given a row vector satisfying (3.108), we can form the linear combination of coordinates
X*=B*-X=> blz;. (3.112)

J
ThenX“ is the normal coordinate that oscillates with angular frequepdyecause

d? X d*X _

g =B 5 =-B'M KX = —w?B® - X = —w2Xx°. (3.113)
Thus each normal coordinate behaves just like the coordinate in a system with only one
degree of freedonrhe B vectors from which the normal coordinates are constructed
carry the same amount of information as the normal modes. Indeed, we can go back

and forth using (3.107).
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3.4.1 More on the Initial Value Problem

Here we show how to use normal modes and normal coordinates to simplify the solution of
the initial value problem for systems of coupled oscillators. At the same time, we can use
our physical insight to learn something about the mathematics of the eigenvalue problem. We
would like to find the constantg @ndc, determined by (3.99) and (3.100) without actually
solving these linear equations. Indeed there is an easy way. We can make use of the special
properties of the normal coordinates. Consider the combination

BB A~ (3.114)

This combination is just a number, because it is a row vector times a column vector on the
right. We know, from[(3.112), that® = BAX is the normal coordinate that oscillates with
frequencywg, that is:

BP X (t) oc st (3.115)

On the other hand, the only terms|in (3.98) that oscillate with this frequency are those for
whichw, = wg. Thus ifws is not equal to,, thenB” A* must vanish to give consistency
with (3.115).

If the system has two or more normal modes with differendectors, but the same
frequency, we cannot use (3.115) to distinguish them. In this situation, we say that the modes
are “degenerate.” Suppose thtand £ are two different modes with the same frequency,

M1IKA'=w?AY, MK A?=0%A%. (3.116)

Because the eigenvalues are the same, any linear combination of the two mode vectors is still
a normal mode with the same frequency,

MK (51A1 4 ﬂ2A2) =2 (51A1 T ﬂQAZ) , (3.117)

for any constantsj; and ..
Now if AT'M A2 +# 0, we can use (3.117) to choose a n&has follows:

AT N A2
2 2 1
A% — A — T AT A (3.118)
This new normal mode satisfies
AT M A% =0. (3.119)

The construction iri (3.118) can be extended to any number of normal modes of the same
frequency. Thus even if we have several normal modes with the same frequency, we can still
use the linearity of the system to choose the normal modes to satisfy

BPAY = AP MAY = 0for B+ a. (3.120)
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We will almost always assume that we have done this.
We can use (3.120) to simplify the initial value problem. Consider!(3.99). If we multiply
this vector equation on both sides by the row veBtrwe get

BPX(0) =B b, A" = b,BA* =3B AP . (3.121)

where the last step follows because of (3.120), which implies that the sum omlsrcon-
tributes fora = 3. Thus we can calculatg directly from the normal modes ad(0),

_ B*X(0)

bo = — . 3.122
To Aa (3.122)

Similarly
1 o dX (1)
B>A« dt  |i—o
The point is that we have already solved simultaneous linear equations like (3.99) in
finding the eigenvectors af/ 'K so it is not necessary to do it again in solving tfer
andc,. Physically, we know that the normal coordinai€ must be proportional to the
coefficient of the normal mod&® in the motion. The precise statement of this is (3.122).

(3.123)

WaCa =

3.4.2 * Matrices from Vectors

We can also use (3.120) and the physical requirement of linear independence of the normal
modes to writel/ ~! K and the identity matrix in terms of the normal modes.

First consider the identity matrix. One can think of the identity matrix as a machine that
takes any vector and returns the same ved&at, using (3.120), we can construct such a
machine out of the normal modes. Consider the matrix H, defined as follows:

(0% «
H = Za: ’;aia . (3.124)

Note thatH is a matrix becausd®B“ in the numerator is the product of a column vector
times a row vectoon the right, rather than on the left. If we |&f act on one of the normal
mode vectorsA?, and use!(3.120), it is easy to see that only the term 3 in the sum
contributes and? - A° = AP. But because the normal modes are a complete s¥t of
linearly independent vectors, that implies that V' = V for any vector). ThusH is the
identity matrix,

H=1I. (3.125)

We can use this form faf to get an expression fav/~!K in terms of a sum over
normal modes. Consider the prodiét ' K - H = M~ K, and use the eigenvalue condition
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M~1K A% = w2 A to obtain

2 A B
MK =322 3.126
> (3.126)

In mathematical language, what is going on in (3.124)/and (3.126) is a change of the basis
in which we describe the matrices acting on our vector space from the original basis of some
obvious set of independent displacements of the degrees of freedom to the less obvious but
more useful basis of the normal modes.

3.4.3 * w?is Real

We can use (3.120) to show that all the eigenvalues dffthel are real. This is a particular
example of an important general mathematical theorem. You will use it frequently when you
study quantum mechanics. To prove it, let us assume the contrary and derive a contradiction.
If w? is a complex eigenvalue with eigenvectdr,then the complex conjugate?™, is also

an eigenvalue with eigenvecter:. This must be so because fe ! K matrix is real, which

implies that we can take the complex conjugate of the eigenvalue equation,

M1'KA=uw?A, (3.127)

to obtain
MK A* = w*" A, (3.128)

Then ifw? is complexw? and «#* are different and (3.120) implies
ATpma=0. (3.129)

But (3.129) is impossible unlegs= 0 or at least one of the masseslinis negative. To see
this, let us expand it in the componentsiof

A*TMA = Z a;mjaj = Z mj|aj|2 . (3130)
7=1 7=1

Each of the terms in (3.130) is positive or zeftws the only solutions of the eigenvalue
equation,(3.127), for complex’ are the trivial ones in whicd = 0 on both sides. All the
normal modes have reaf.

Thus there are only three possibilities? > 0 corresponds to stable equilibrium and
harmonic oscillationw? < 0, in which casev is pure imaginary, occurs when the equilibrium
is unstablew? = 0 is the situation in which the equilibrium is neutral and we can deform the
system with no restoring force.
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3.5 * Forced Oscillations and Resonance

One of the advantages of the matrix formalism that we have introduced is that in matrix
language we can take over the above discussion of forced oscillation and resonance in chapter
2 almost unchanged to systems with more than one degree of fredtosimply have to

replace numbers by appropriate vectors and matricedn particular, the forcé’(¢) in the

equation of motion, (2.2), becomes a vector that describes the force on each of the degrees
of freedom in the system. The only restriction here is that the frequency of oscillation is the
same for each component of the force. THen the equation of motion| (2.2), becomes

the matrix M/ ' K. The frictional terml’ becomes a matrix. In terms of the maffrixthe

frictional force vector isM/T'dZ/dt (compare((2/1)). Then we can look for an irreducible,
steady state solution to the equation of motion of the form

Z(t) = We ™t (3.131)
whereWW is a constant vector, which yields the matrix equation
[—w2 —iTw + M—lK} W=M"F,. (3.132)
Formally, we can solve this by multiplying by the inverse matrix
-1 2 17t
W = [M K—w —zrw} M™E,. (3.133)

If I" were zero in the matrix
[—w2 —iTw + M—IK} : (3.134)

then we know that the inverse matrix would not exist for any value adrresponding to
a free oscillation frequency of the system, because the determinant of the ' K — w3
matrix is zero. The amplitudé” would go tooco in this limit, in the direction of the normal
mode associated with the driving frequency, so long as the driving force has a component
in the normal mode directionFor w close towy, if there is no damping, the response
amplitude is very large, proportional to 1/(w3 — w?), almost in the direction of the
normal mode. However, in the presence of damping, the response amplitude does not go to
oo even forw = wy, because thd w term is still nonvanishing.

We can see all this explicitly if the damping matriis proportional to the identity matrix,

T=~1. (3.135)

Then we can usé (3.124)-(3.126) to wiifd "' K — w? — iTw] as a sum over the normal
modes, as follows:

A“B¢
BaAa

MK —w? - iFw} = Z (wi —w? — i’yw)

(3.136)

«
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Then the inverse matrix can be constructed in a similar way, just by inverting the factor in the
numerator:

-1 2 . 17h 2 o . \TLA"B®
MTK —w? —ilw| = }a: (w2 - w? = irw) e (3.137)
Using (3.137), we can rewrite (3.133) as
A% BM~'Fy
= A
W za: w2 —w? —iyw  BYA (3.138)

This has a simple interpretation. The second factor on the right hand side of (3.138) is the
coefficient of the normal modé&~ in the driving term/—! Fy. This coefficient is multiplied
by the complex number
1
{22} , (3.139)
Wi — w® —1yw
which is exactly analogous to the factoriin (2.21) in the one dimensional case. Thud jf
then, for each normal mode, the forced oscillation works just as it does for one degree of free-
dom. IfI" is not proportional to the identity matrix, the formulas are a bit more complicated,
but the physics is qualitatively the same.

3.5.1 Example

We will illustrate these considerations with our favorite example, the system of two identical
coupled oscillators, witd/ —! K matrix given by/(3.80). We will imagine that the system is
sitting in a viscous fluid that gives a uniform dampihg- ~I, and that there is a periodic
force that acts twice as strongly on block 1 as on block 2 (for example, we might give the
blocks electric chargey andg and subject them to a periodic electric field), so that the force
is

F(t)= (i) focoswt = Re [(?) foe_i“t} . (3.140)
Thus
MF, = (2> fo. (3.141)
1/ m
Now to usel(3.133), we need only invert the matrix
-1 2 . g—i-ﬁ—wQ—z"yw —£
MK —w —zrw]:<£ mo gk My ) (3.142)
— 7t 5w —nw
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This is simple enough to do by hand. We will do that first, and then compare the result with
(3.137). The determinant is

2 2
¢t m m (3.143)

Z(‘Z%—Qﬁ—w2—i’yw>'<‘z—w2—i7w).
m

Applying (3.34), we find

(MK —w? —iTw] ™!

_ 1 (3.144)
(2428 —w? —iw) (4 —w? —iw)
(#r R f)
£ g4+ L —w?—iyw

If we isolate the contribution of the two zeros in the denominator of (3.144), we can write

(MK —w? —iTw] !

N =

1 11 (3.145)
(§ —w? —iw) (1 1>
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which is just/(3.137), as promised. Now substituting into (3.133), we find

(3.146)

from which we can read off the final result:

o coswt + 1 sin wt) (3.147)

_ —twt) __
X(t) = Re (We ) o (042 cos wt + P sin wt

where

(% - w2)2 + ('YW)Q m (3.148)

and

(4 —w?)’ + ()’ m (3.149)
2(4+22 - w2)’ + ()’ m

The power expended by the external force is the sum over all the degrees of freedom of
the force times the velocity. In matrix language, this can be written as

P(t)=F(t)T- ‘U;E” . (3.150)
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The average power lost to the frictional force comes fromditast term in (3.1508mnd is

_ 1 9w f§
(7 —w?) 4 ()™ Am (3.151)
1 w3

2 4Am

NCRETEro e
Figure3.8 shows a graph of this (for/m = 3g/2¢ andy? = g/4¢). There are two
things to observe about figuB8. First note the two resonance peakswht= ¢/¢ and
w? = g/l + 2k/m = 4g/¢. Secondly, note that the first peak is much more pronounced that
the second. That is because the force is more in the direction of the normal mode with the
lower frequency, thus it is more efficient in exciting this mode.

0 g/t 2y/g/t
—

w

Figure 3.8: The average power lost to friction in the exampBeld0.

Chapter Checklist
You should now be able to:

1. Write down the equations of motion for a system with more than one degree of freedom
in matrix form;

2. Find theM and Kmatrices from the physics;

3. Add, subtract and multiply matrices;
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4. Find the determinant and inverse of2and 3«3 matrices;

5. Find normal modes and corresponding frequencies of a system with two degrees of
freedom, which means finding the eigenvectors and eigenvalues<@f matrix;

6. Check whether a given vector is a normal mode of a system with more than two degrees
of freedom, and if so, find the corresponding angular frequency;

7. Given the normal modes and corresponding frequencies and the initial positions and
velocities of all the parts in any system, find the motion of all the parts at all subsequent
times;

8. * Go back and forth from normal modes to normal coordinates;
9. * Reconstruct thé/ —1 K matrix from the normal modes and normal coordinates:;

10. * Explicitly solve for the free oscillations of system with two degrees of freedom with
damping and be able to analyze systems with three or more degrees of freedom if you
are given the eigenvectors;

11. * Explicitly solve forced oscillation problems with or without damping for systems
with three or fewer degrees of freedom.

Problems

3.1 The 3 component column vectot, the3 component row vectoB and the3 x 3
matrix C' are defined as follows:

0 1 1 1
A:(z), B=(3 -2 1), C:(O —2 1).
1 2 2 0

Compute the following objects:
BA, BC, AB.
3.2 Consider the vertical oscillation of the system of springs and masses shown below

with the spring constant& 4 = 78, Ky = 15 and K¢ = 6 (all dynes/cm). Find the normal
modes, normal coordinates and associated angular frequencies. If the 1 g. block is displaced
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up 1 cm from its equilibrium position with the 3 g block held at its equilibrium position and
both blocks released from rest, describe the subsequent motion of both blocks.

Ky
39 K¢
Kp
1g.
3.3 Consider the system of springs and masses shown below:
2110 90 81 1701

with the spring constants in newtons/meter given above the springs anawith100 kg,
me = 9 kg and m = 81 kg.

a. Which of the following are normal modes of the system and what are the correspond-
ing angular frequencies? Note that file”! K’ matrix may look a little complicated.

()= () (@) () (2) (2)

b. If the system is released from rest with an initial displacement as shown below (with
the displacements measured in mm), how long does it take before it first returns to its initial

configuration?
(001 9
(2)-()
3 10



PROBLEMS 89

3.4*. A system of four masses connected by springs is described by a mass matrix,
1 0 0 O
02 00
M= 0 010
0 0 0 2

and a K matrix

-10 58 —-14 -2

E=1_4 —1u 31 —2
-2 =2 =26 74
a. Which of the following are normal modes?
1 1 2 2 4 0
2 1 1 1 -3 1
1 2 1 —1 0 —4
1 1 1 -1 1 3
b. For each normal mode, find the corresponding angular frequedimty. this requires

a little arithmetic. If you are lazy, you might want to use a programmable calculator or write
a little computer program to check these for you. But the point of this problem is to show
you that the amount of work required to check whether the vectors are normal modes is really
tiny compared to the work involved in finding the modes from scratch.

C. If blocks are released from rest from an initial displacement that is proportional to
1
—1 ’
1

which normal mode is not present in the subsequent motion?

d. Find the normal coordinates corresponding to each of the normal modes of the sys-
tem.
3.5. Consider the longitudinal oscillations of the system shown below:
dyn dyn dyn
15 <2< 90 L= 10 °2°

Wlwzm
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The blocks are free to slide horizontally without friction. The displacements of the blocks
from equilibrium are both measured to the right. Block 1 has a mass of 15 grams and block
2 a mass of 10 grams. The spring constants of the springs are shown in dynes/cm.

a. Show that thel/ —' K matrix of this system is

A (T -6
M K‘(—9 10 )

b. Show that the normal modes are
1 (1 2 (2
a=(1) #=(5)-
Find the corresponding angular frequencigsandws.

3.6. Consider the longitudinal oscillations of the system shown below:

K, Ky K3

paodThosnssos(zlans

The blocks are free to slide horizontally without friction. The displacements of the blocks
from equilibrium are both measured to the right. Block 1 has a mass of 15 grams and block 2
a mass of 10 grams. The spring constants of the sprind§,af€, and K3, as shown. The
normal modes of this system are

o-(@). #-(3)

with corresponding frequencies

a. If the system is at rest at time= 0 with displacements;(0) = 5 cm,z2(0) = 0, or

_(=(0)) _ (5
X0 = (o) = (o) =
Find the displacement of block 2 at tithe: 7 s.

b. Find K1, K> anng.
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3.7* . In the system of problem (3.5), suppose we immerse the system in a damping
fluid so that 0
_ (7
b= (0 v)
with v = 1 s, and that an external force of the following form is applied (in dynes):
1
F(t) = fcoswt = <0> coswt .

Find and graph the average power lost to the frictional force as a functiofiarh w = 0
to10 st
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Chapter 4

Symmetries

Symmetry is an important concept in physics and mathematics (and art!). In this chapter, we
show how the mathematics of symmetry can be used to simplify the analysis of the normal
modes of symmetrical systems.

Preview
In this chapter, we introduce the formal concept of symmetry or invariance.

1. We will work out some examples of the use of symmetry arguments to simplify the
analysis of oscillating systems.

4.1 Symmetries

Let us return to the system of two identical pendulums coupled by a spring, discussed in
chapter 3, in (3.78)-(3.93). This simple system has more to teach us. It is shown In figure 4.1.
As in (3.78)4(3.93), both blocks have massboth pendulums have lengtland the spring
constant isc. Again we label the small displacements of the blocks to the sighihd .

We found the normal modes of this system in the last chapter. But in fact, we could have
found them even more easily by making use of the symmetry of this system. If we reflect
this system in a plane midway between the two blocks, we get back a completely equivalent
system. We say that the system is “invariant” under reflections in the plane between the
blocks. However, while the physics is unchanged by the reflection, our description of the
system is affected. The coordinates get changed around. The reflected system is shown in
figure[4.2. Comparing the two figures, we can describe the reflection in terms of its effect on
the displacements,

1 — —Ty, Tg— —X71. 4.1

93
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Figure 4.1: A system of coupled pendulums. Displacements are measured to the right, as
shown.

Figure 4.2: The system of coupled pendulums after reflection in the plane through between
the two.
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In particular, if

z1(t) >
X(t) = 4.2
®) (952(75) (42)
is a solution to the equations of motion for the system, then the reflected vector,
lnd o —wg(t) )
X = , 4.3
®) (561(75) (43)

must also be a solution, because the reflected system is actually identical to the original.
While this must be so from the physics, it is useful to understand how the math works. To
see mathematically that (4.3) is a solution, define the symmetry niatrix,

s::(fi 'Bl>, (4.4)

so thatX (¢) is related taX (¢) by matrix multiplication:
X(t) = (01 _01> (28) — S5X(1). (4.5)

The mathematical statement of the symmetry is the following condition oi/thed K
matricest
MS=SM, (4.6)

and
KS=SK. 4.7)

You can check explicitly that (4.6) and (4.7) are true. From these equations, it follows that if
X (t) is a solution to the equation of motion,

d2
MWX(t) =-KX(), (4.8)
then X(t) is also. To see this explicitly, multiply both sides[of(4.8) by §et

d2
SM 5 X(H) = —SKX(1). (4.9)

Then using (4.6) and (4.7) in (4.9), we get

d2
MS—5X(t) = —K SX(t). (4.10)

1Two matrices A and B, that satisfyAB = BA are said to “commute.”
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The matrixS is a constant, independent of time, thus we can move it through the time deriva-
tives in (4.10) to get
d2

But now using/(4.5), this is the equation of motion/fmt),
d2

M@X’(t) = K X(t). (4.12)

Thus, as promised, (4.6) and (4.7) are the mathematical statements of the reflection symmetry
because they imply, as we have now seen explicitly, tBattf is a solution X (¢) is also.
Note that from/(4.6), you can show that

M1ts=s5M1 (4.13)
by multiplying on both sides by/~!. Then[(4.13) can be combined with (4.7) to give
MKS=SM'K. (4.14)

We will use this later.
Now suppose that the system is in a normal mode, for example

X(t) = A coswyt. (4.15)

ThenX (t) is another solution. But it has the same time dependence, and thus the same an-
gular frequency. It must, therefore, be proportional to the same normal mode vector because
we already know from our previous analysis that the two angular frequencies of the normal
modes of the system are different,# wy. Anything that oscillates with angular frequency,

w1, must be proportional to the normal modeé;

X(t) oc A coswt. (4.16)
Thus the symmetry implies
S A o AL, (4.17)

That is, we expect from the symmetry that the normal modes are also eigenvegtorhisf
must be true whenever the angular frequencies are distinct. In fact, we can see by checking
the solutions that this is true. The proportionality constant isjlist

SAl = (_01 _01> Al=_Al (4.18)

and similarly

S A% = (_01 _01> A% = A2, (4.19)
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Furthermore, we can run the argument backward$idfan eigenvector of the symmetry
matrix S, and if all the eigenvalues Sfare different, then because of the symmetry, (4.13),
A'is a normal mode. To see this, consider the veltot K A and act on it with the matrix
S. Using (4.14), we see that if

SA = (A (4.20)

then
SM'KA=M1KSA=pM'KA. (4.21)

In words, [(4.21) means thad ~' K A is an eigenvector o with the same eigenvalue ds

But if the eigenvalues &f are all different, thed/ —! K A must be proportional td, which
means thatl is a normal mode. Mathematically we could say it this way. If the eigenvectors
of S are A" with eigenvalueg,,, then

SA™ = 3,A" , andf, # Bm for n #m = A™ are normal modes. (4.22)

It turns out that for the symmetries we care about, the eigenval$esrefalways all differ
ent?

Thus even if we had not known the solution, we could have used (4.20) to determine
the normal modes without bothering to solve the eigenvalue problem for th&/ 'K
matrix! Instead of solving the eigenvalue problem,

MK A" = 2 A", (4.23)
we can instead solve the eigenvalue problem
S A" = B, A" (4.24)

It might seem that we have just traded one eigenvalue problem for another. But in fact,
(4.24)is easier to solve, because can use the symmetry to determine the eigenvalues,
G, without ever computing a determinant.The reflection symmetry has the nice property
that if you do it twice, you get back to where you started. This is reflected in the property of
the matrixs,
S2=1. (4.25)

In words, this means that applying the mafitwice gives you back exactly the vector that
you started with. Multiplying both sides of the eigenvalue equation, (4.24), e §et
A" =T A" = S2 A" = 53, A"
=B S A" = G} A,

(4.26)

2See the discussion on page[103.
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which implies
B =1 or B,==1. (4.27)

This saves some work. Once the eigenvalues afe known, it is easier to find the eigen-
vectors ofS. But because of the symmetry, we know that the eigenvectérsvidf also be
the normal modes, the eigenvectors\df ' K. And once the normal modes are known, it
is straightforward to find the angular frequency by acting on the normal mode eigenvectors
with M~1K.

What we have seen here, in a simple example, is how to use the symmetry of an oscillating
system to determine the normal modes. In the remainder of this chapter we will generalize
this technique to a much more interesting situation. The idea is always the same.

We can find the normal modes by solving the eigenvalue problem for
the symmetry matrix, S, instead of M/ ' K. And we can use thesym- (4.28)
metry to determine the eigenvalues.

4.1.1 Beats

L[l4-1

The beginnings of wave phenomena can already be seen in this simple example. Suppose that
we start the system oscillating by displacing block 1 an ambwith block 2 held fixed in

its equilibrium position, and then releasing both blocks from rest atttim@. The general

solution has the form

X(t) = Al (by coswit + ¢; sin wit) + A? (be coswat + co sinwat) . (4.29)

The positions of the blocks at= 0 gives the matrix equation:

X(0) = (g) = Alby + A%y, (4.30)
of d=bi+b d
=01+ 02 @
O:_b1+b2:>b1—b2—2- (431)

Because both blocks are released from rest, we know;thatc; = 0. We can see this in
the same way by looking at the initial velocities of the blocks:

X(O) = <8> = wi Alep + weA?es (4.32)
or
O0=c1+c2

O:_Cl+62:>61262:0. (433)
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Thus

x1(t) = = (coswit + cos wat)
2 (4.34)

d
xa(t) = B (coswit — coswat) .

The remarkable thing about this solution is the way in which the energy gets completely
transferred from block 1 to block 2 and back again. To see this, we can (@B#pas
(using (1.64)and another similar identity)

x1(t) = dcos Qt cos dwt

(4.35)
xo(t) = dsin Qt sin dwt
where n
Q:MQ”Q, 5w:°"22“1. (4.36)

Each of the blocks exhibits “beats.” They oscillate with the average angular fregQency,

but the amplitude of the oscillation changes with angular frequencifter a timess— , the

energy has been almost entirely transferred from block 1 to block 2. This behavior is shown
in program 4-1 on your program disk. Note how the beats are produced by the interplay
between the two normal modes. When the two modes are in phase for one of the blocks so
that the block is moving with maximum amplitude, the moded &® out of phase for the

other block, so the other block is almost still.

The complete transfer of energy back and forth from block 1 to block 2 is a feature both
of our special initial condition, with block 2 at rest and in its equilibrium position, and of
the special form of the normal modes that follows from the reflection symmetry. As we will
see in more detail later, this is the same kind of energy transfer that takes place in wave
phenomena.

4.1.2 A Less Trivial Example

L[l4-2

Take a hacksaw blade, fix one end and attach a mass to the other. This makes a nice oscillator
with essentially only one degree of freedom (because the hacksaw blade will only bend back
and forth easily in one way). Now take six identical blades and fix one end of each at a single
point so that the blades fan outat angles from the center with their orientation such that

they can bend back and forththe plane formed by the bladeslf you put a mass at the end

of each, in a hexagonal pattern, you will have six uncoupled oscillators. But if instead you put
identical magnets at the ends, the oscillators will be coupled together in some complicated
way. You can see what the oscillations of this system look like in program 4-2 on the program
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T3 x2

5 T6

Figure 4.3: A system of six coupled hacksaw blade oscillators. The arrows indicate the
directions in which the displacements are measured.

disk. If the displacements from the symmetrical equilibrium positions are small, the system
is approximately linear. Despite the apparent complexity of this system, we can write down
the normal modes and the corresponding angular frequencies with almost no work! The trick
is to make clever use of the symmetry of this system.

This system looks exactly the same if we rotate i6@yyabout its center. We should,
therefore, take pains to analyze it in a manifestly symmetrical way. Let us label the masses 1
through 6 starting any place and going around counterclockwise, betthe counterclock-
wise displacement of thgh block from its equilibrium position. As usual, we will arrange

these coordinates in a vector:
X1

T2
T3
T4
L5
L6

(4.37)

The symmetry operation of rotation is implemented by the cyclic substitution

T1 — Tg — T3 — T4 — L5 — Lg — L1 - (4.38)

3From here on, we will assume that the reader is sufficiently used to complex numbers that it is not necessary
to distinguish between a real coordinate and a complex coordinate.
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This can be represented in a matrix notation as

X—-5X, (4.39)
where the symmetry matris, is
01 00 0O
0 01 00O
0 001 00O
§= 0 00010 (4.40)
0 00 0 01
1 0 00 00O

Note that the 1s along the next-to-diagonal of the maitiig (4.40)implement the substi-
tutions
Tl — X2 — X3 — T4 — Ty — Tg, (441)

while the 1 in the lower left-hand corner closes the circle with the substitution
T — T1 - (4.42)
The symmetry requires that t&matrix for this system has the following form:

r -B -C -D -C -B
-B K -B -C -D —-C
- -B F -B —-C -D
K = D -c -B E -B -C|- (4.43)
-c -b -C¢C -B FE -B
-B -C -D -C —-B FE

Notice that all the diagonal elements are the sdfeds they must be because of the sym-
metry. Thejth diagonal element of th€ matrix is minus the force per unit displacement on
the jth mass due to its displacement. Because of the symmetry, each of the masses behaves
in exactly the same way when it is displaced with all the other masses held fixed. Thus all the
diagonal matrix elements of thi€¢ matrix, K;;, are equal. Likewise, the symmetry ensures
that the effect of the displacement of each blgchkn its neighborj +1 (j+1 — 1if j = 6,
j—1—6if j =1— see(4.42)),is exactly the same. Thus the matrix elements along the
next-to-diagonal B) are all the same, along with ti#s in the corners. And so on! Tlé
matrix then satisfies (4.7),

SK=KS (4.44)

which, as we saw i(4.13)-4.12), is the mathematical statement of the symmetry. Indeed,
we can go backwards and work out the most general symmetric matrix consist€At4«ith
and check that it must have the form, (4.42)u will do this in problem (4.4).
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Because of the symmetry, we know that if a veetas a normal mode, then the vector
SAis also a normal mode with the same frequency. This is physically obvious. If the system
oscillates with all its parts in step in a certain way, it can also oscillate with the parts rotated by
60°, but otherwise moving in the same way, and the frequency will be the same. This suggests
that we look for normal modes that behave simply under the symmetry transformation S. In
particular, if we find the eigenvectors 8fand discover that the eigenvaluesSare all
different, then we know that all the eigenvectors are normal modes,(#@2). In the
previous example, we found modes that went into themselves multiplied lyder the
symmetry. In general, however, we should not expect the eigenvalues to be real because
the modes can involve complex exponentials. In this case, we must look for modes that
correspond to complex eigenvaluesSgt

SA=pBA. (4.45)

As abovein (4.25-(4.27), we canfind the possibleeigervaluesby usingthe symmetry Note
that because siB0° rotations get us back to the starting point, the mattisatisfies

Se=1. (4.46)
Because of (4.46), it follows thaf = 1. Thus gis a sixth root of one,
B=0=e"fork=0to5. (4.47)

Then for eaclt, there is a normal mode

S Ak = g, AF . (4.48)
Explicitly,
Al A
Ak Ak
Ak Ak
E_ N . 3
Ag AL
A Af

If we takeA’f = 1, we can solve for all the other components,

Al = (B (4.50)

“4Even this is not the most general possibility. In general, we might have to consider sets of modes that go
into one another under matrix multiplication. That is not necessary here because the symmetry transformations
all commute with one another.
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Thus
Ak 1
Ab o2ikr/6
Ak oAikm/6
A% = | Gikn/6 | - (4.51)
Ak (Bikm/6
Ak (L0ikm/6

Now to determine the angular frequencies corresponding to the normal modes, we have
to evaluate
MIKAF = 2Ak (4.52)

Since we already know the form of the normal modes, this is straightforward. For example,
we can compare the first components of these two vectors:

W2 = (E _ Be2ikT/6 _ (ipdik/6 _ ) bikn/6 _ i Sikm/6 _ BelOilmr/G) /m
(4.53)
E B k C 2k D
=2 97 cos 9 cos 2T (—1)F=.
m m 3 m 3 m
Notice thatv? = w2 andw3 = w?. This had to be the case, because the corresponding normal

modes are complex conjugate pairs,

Ad =AY, At =A%, (4.54)

Any complex normal mode must be part of a pair with its complex conjugate normal mode

at the same frequency, so that we can make real normal modes out of them. This must be
the case because the normal modes describe a real physical system whose displacements are
real. The real modes are linear combinations (seel (1.19)) of the complex modes,

AR+ AR and (AR — AR /i for k=1or2. (4.55)

These modes can be seen in program 4-2 on the program disk. See appendix A and your
program instruction manual for details.

Notice that the real solution@l.55),are not eigenvectors of the symmetry matsixThis
is possible because the angular frequencies are not all different. However, the eigenvalues of
S are all different, from(4.47). Thus even though we can construct normal modes that are
not eigenvectors aof, it is still true thatll the eigenvectors ofS are normal modes.This
is what we use in (4.48)-(4.50) to determine Mfe

We note thaf4.55)is another example of a very important principlgi17)that we
will use many times in what follows:

If AandA’ are normal modes of a systevith the same an-
gular frequency, w, then any linear combinatioh4 + cA’, is (4.56)
also a normal mode with the same angular frequency.
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Normal modes with the same frequency can be linearly combined to give new normal modes
(see problem 4.3). On the other hand, a linear combination of two normal modd#fesith
entfrequencies gives nothing very simple.

The technigues used here could have been used for any humber of masses in a similar
symmetrical arrangement. Witk masses and symmetry under rotatior2of N radians,
the Nth roots of 1 would replace the 6th roots of one in our example. Symmetry arguments
can also be used to determine the normal modes in more interesting situations, for example
when the masses are at the corners of a cube. But that case is more complicated than the
one we have analyzed because the order of the symmetry transformations matters — the
transformations do not commute with one another. You may want to look at it again after you
have studied some group theory.

Chapter Checklist
You should now be able to:

1. Apply symmetry arguments to find the normal modes of systems of coupled oscillators
by finding the eigenvalues and eigenvectors of the symmetry matrix.

Problems

4.1 Show explicitly that[(4.7) is true for thE€ matrix, (4.43, of system of figure 4.3
by findingSK and K S

4.2 Consider a system of six identical masses that are free to slide without friction on
a circular ring of radius R and each of which is connected to both its nearest neighbors by
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identical springs, shown below in equilibrium:

a. Analyze the possible motions of this system in the region in which it is linear (note
that this is not quite just small oscillations). To do this, define appropriate displacement
variables (so that you can use a symmetry argument), find the form of the K matrix and then
follow the analysis in (4.37)-(4.55). If you have done this properly, you should find that one
of the modes has zero frequency. Explain the physical significance of this lfintde.Do

not attempt to find the form of thi€ matrix directly from the spring constants of the spring

and the geometry. This is a mess. Instead, figure out what it has to look like on the basis of
symmetry arguments. You may want to look at appendix c.

b. If att = 0, the masses are evenly distributed around the circle, but every other mass
is moving with (counterclockwise) velocitywhile the remaining masses are at rest, find and
describe in words the subsequent motion of the system.

4.3

a. Prove(4.56).

b. Prove that ifA and A’ are normal modes correspondinglifierent angular frequen-
cies,w andw’ respectively, where? # w'?, thenbA + cA’ is not a normal mode unlessr

cis zero.Hint: You will need to use the fact that bothand 4 are nonzero vectors.

4.4 Show that/(4.43) is the most general symmeitric6 matrix satisfying((4.44).


http:4.37)-(4.55
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Chapter 5

Waves

The climax of this book comes early. Here we identify the crucial features of a system that
supports waves -space translation invariance and local interactions.

Preview

We identify the space translation invariance of the class of infinite systems in which wave
phenomena take place.

1. Symmetry arguments cannot be directly applied to finite systems that support waves,
such as a series of coupled pendulums. However, we show that if the couplings are
only between neighboring blocks, the concept of symmetry can still be used te under
stand the oscillations. In this case we say that the interactions are “local.” The idea is
to take the physics apart into two different components: the physics of the interior; and
the physics of the boundaries, which is incorporated in the form of boundary condi-
tions. The interior can be regarded as part of an infinite system with space translation
invariance, a symmetry under translations by some distantrethis case the normal
modes are called standing waves.

2. We then introduce a notation designed to take maximum advantage of the space trans-
lation invariance of the infinite system. We introduce the angular wave nuinber,
which plays the role for the spatial dependence of the wave that the angular frequency,
w, plays for its time dependence.

3. We describe the normal modes of transverse oscillation of a beaded string. The modes
are “wavy.”

4. We study the normal modes of a finite beaded string with free ends as another example
of boundary conditions.

107
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5. We study a type of forced oscillation problem that is particularly important for transla-
tion invariant systems with local interactions. If the driving force acts only at the ends
of the system, the solution can be found simply using boundary conditions.

6. We apply the idea of space translation invariance to a system of cdupleidcuits.

5.1 Space Translation Invariance

PO IR S,

Figure 5.1: A finite system of coupled pendulums.

The typical system of coupled oscillators that supports waves is one like the system of
N identical coupled pendulums shown in fighté. This system is a generalization of the
system of two coupled pendulums that we studied in chapters 3 and 4. Suppose that each
pendulum bob has mass, each pendulum has lengtheach spring has spring constant
and the equilibrium separation between bolas Buppose further that there is no friction and
that the pendulums are constrained to oscillate only in the direction in which the springs are
stretched. We are interested in the free oscillation of this system, with no external force. Such
an oscillation, when the motion is parallel to the direction in which the system is stretched in
space is called a “longitudinal oscillation”. Call the longitudinal displacement gftiHmb
from equilibrium+;. We can organize the displacements into a vedtdfor reasons that
will become clear below, it would be confusing to i§eso we choose a different letter, the
Greek letter psi, which looks likg in lower case an@ when capitalized):

Y1
V2
U= ¢3 |. (5.1)
(N
Then the equations of motion (for small longitudinal oscillations) are
d>v
=-M'Kv (5.2)

At
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whereM is the diagonal matrix witin's along the diagonal,

m 0 0 0

0 m 0 0

0 0 m 01, (5.3)
0 0 0 -+ m

and K has diagonal elementsig/¢ + 2x), next-to-diagonal elementsx, and zeroes else-
where,

mg/l + 2k —K 0 0
—K mg/l+ 2k —K 0
0 —K mg/l+2k - 0 ) (5.4)
0 0 0 - mg/l+ 2K

The —x in the next-to-diagonal elements has exactly the same origin asstimethe2 x 2

K matrix in (3.78). It describes the coupling of two neighboring blocks by the spring. The
(mg/¢ + 2k) on the diagonal is analogous to theg/¢ + ) on the diagonal o(3.78).

The difference in the factor of 2 in the coefficienkadrises because there are two springs,
one on each side, that contribute to the restoring force on each block in the system shown in
figure5.1, while there was only one in the system shown in figuteThus M ' K has the

form

2B -C 0 -+ O
-C 2B -C --- 0
o -C 2B --- 0 (5.5)
0 0 0 --- 2B
where
2B =g/l +2k/m, C=r/m. (5.6)

It is interesting to compare the matr{%.5), with the matrix,(4.43),from the previous
chapter. In both cases, the diagonal elements are all equal, because of the symmetry. The
same goes for the next-to-diagonal elements. Howev¢s.5) all the rest of the elements
are zero because the interactions are only between nearest neighbor blocks. We call such
interactions “local.” In(4.43),on the other hand, each of the masses interacts with all the
others. We will use the local nature of the interactions below.

We could try to find normal modes of this system directly by finding the eigenvectors of
M~'K, but there is a much easier and more generally useful technique. We can divide the
physics of the system into two parts, the physics of the coupled pendulums, and the physics
of the walls. To do thisye first consider an infinite system with no walls at all.
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5.1.1 The Infinite System

(01909711900 2 190973199 - QY N Nl -

Figure 5.2: A piece of an infinite system of coupled pendulums.

Notice that in figuré.2, we have not changed the interior of the system shown in fig-
urel5.1 at all. We have just replaced the walls by a continuation of the interior.

Now we can find all the modes of the infinite system of fiWleery easily, making use
of a symmetry argumenthe infinite system of figure5.Z looks the same if it is translated,
moved to the left or the right by a multiple of the equilibrium separation,a. It has the
property of “space translation invariance.” Space translation invariance is the symmetry
of the infinite system under translations by multiplea.ofn this example, because of the
discrete blocks and finite length of the springs, the space translation invariance is “discrete.”
Only translation by integral multiples af give the same physics. Later, we will discuss
continuous systems that have continuous space translation invariance. However, we will see
that such systems can be analyzed using the same techniques that we introduce in this chapter.

We can use the symmetry of space translation invariance, just as we used the reflection
and rotation symmetries discussed in the previous chapter, to find the normal modes of the
infinite systemThe discrete space translation invariance of the infinite system (the sym-
metry under translations by multiples of a) allows us to find the normal modes of the
infinite system in a simple way.

Most of the modes that we find using the space translation invariance of the infinite system
of figurel5.2 will have nothing to do with the finite system shown in figbr® But if we
can find linear combinations of the normal modes of the infinite system of figui2 in
which the Oth and N+1st blocks stay fixed, then they must be solutions to the equations
of motion of the system shown in figur®.1. The reason is that the interactions between
the blocks are “local” — they occur only between nearest neighbor block$hus block 1
knows what block 0 is doing, but not what bloek is doing. If block 0 is stationary it might
as well be a wall because the blocks on the other side do not affect block 1 (or any of the
blocks 1 toN) in any way. The local nature of the interaction allows us to put in the physics
of the walls as a boundary condition after solving the infinite problem. This same trick will
also enable us to solve many other problems.
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Let us see how it works for the system shown in fifute First, we use the symmetry
under translations to find the normal modes of the infinite system of BoZiré\s in the
previous two chapters, we describe the solutions in terms of a véctByt now A has an
infinite number of componentsl; where the integej runs from—oo to +oco. It is a little
inconvenient to write this infinite vector down, but we can represent a piece of it:

A= 43 |. (5.7)
An
ANt

Likewise, theM —' K matrix for the system is an infinite matrix, not easily written down, but
any piece of it (along the diagonal) looks like the interior of (5.5):

2B -C 0 0
-C 2B —-C O
0 -C 2B -C
0 0 —-C 2B

(5.8)

This system is “space translation invariant” because it looks the same if it is moved to the
left a distance.. This moves block+1 to where blocl used to be, thus if there is a mode
with componentsi;, there must be another mode with the same frequency, represented by a
vector,A’ = S A, with components

Al = Ajp. (5.9)

The symmetry matrix$S, is an infinite matrix with 1s along the next-to-diagonal. These are
analogous to the 1s along the next-to-diagon#di#0). Now, however, the transformation
never closes on itself. There is no analog of the 1 in the lower left-hand conde4f
because the infinite matrix has no corner. We want to find the eigenvalues and eigenvectors
of the matrixS, satisfying

A=8SA=pA (5.10)
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or equivalently (from(5.9)), the modes in whidh andA} are proportional:
A} =PA;=A1 (5.11)

whereg is some nonzero constaht.

Equation[(5.11) can be solved as follows: Chadge= 1. ThenA4; = 3, A, = 3%, etc.,
so thatd; = (8) for all nonnegativg.. We can also rewrite (5.11) a§_; = 371 A;, so
that A ; = 37!, A, = 372, etc. Thus the solution is

A= (8) (5.12)

for all . Note that this solution works for any nonzero valugdpfinlike the examples
that we discussed in the previous chapter. The reason is that a translatijomnblge the
symmetries of reflection and rotation 6§° discussed in chapter 4, never gets you back to
where you started no matter how many times you repeat it. Also, the infinite system, with
an infinite number of degrees of freedom, has an infinite number of different normal modes
corresponding to different values @f

For each value of, there is a unique (up to multiplication by an overall constant) eigen-
vector, A. We know that it is unique because we have explicitly constructed!it in (5.12).
Therefore, all of the eigenvalues 8fare distinct. Thus from [(4.22), we know that each
of the eigenvectors is a normal mode of the infinite system. Because there is a one-to-one
correspondence between nonzero numbgrand normal modes, we can (at least for now
— we will find a better notation later), label the normal modes by the eigengalagthe
symmetry matrix,5. We will call the corresponding eigenvectdf, so that/(5.12) can be
written

Al =pr. (5.13)

Now that we know the form of the normal modes, it is easy to get the corresponding
frequencies by acting on (5/12) with thé~! K matrix, (5.8). This gives

w?A) =2BA] —cAl —cAl |, (5.14)
or inserting!(5.13),
W23 =2BpI — CpItt — Cpit = (2B - CB— CR . (5.15)

This is true for allj, which shows that (5.13) is indeed an eigenvector (we already knew
this from the symmetry argument, (4.22), but it is nice to check when possible), and the
eigenvalue is

w?=2B-Cp-Cp*. (5.16)

1zero does not work fg# because the eigenvalue equation has no solution.
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Notice that for almost every value ©f, there are two normal modes, because we can inter
change3 and 3! without changing (5.16)The only exceptions are

w?=2BF2C, (5.17)

corresponding t@ = +1. The fact that there are at most two normal modes for each value
of w? will have a dramatic consequence. It means that we only have to deal with two normal
modes at a time to implement the physics of the boundary. This is a special feature of the
one-dimensional system that is not shared by two- and three-dimensional systems. As we
will see, it makes the one-dimensional system very easy to handle.

5.1.2 Boundary Conditions

Os1
We have now solved the problem of the oscillation of the infinite system. Armed with this
result, we can put back in the physics of the walls. Argxcept3d = =+1) gives a pair
of normal modes for the infinite system of figi&€. But only special values of will
work for the finite system shown in figukel. To find the normal modes of the system
shown in figuréb.1,we usg(4.56),the fact thatny linear combination of the two normal
modes with the same angular frequencyy, is also a normal modelf we can find a linear
combination that vanishes fgr= 0 and forj = N + 1, it will be a normal mode of the
system shown in figui®.1. It is the vanishing of the normal modejat 0 andj = N + 1
that are the “boundary conditions” for this particular finite system.

Let us begin by trying to satisfy the boundary condition-at0. For each possible value
of w?, we have to worry about only two normal modes, the two solutio(& 16)for 5. So
long asg # +1, we can find a combination that vanisheg at 0; just subtract the two
modesA? and A% to get a vector

A=AP— AP (5.18)

or in components
-1 . .
Aj x Af- - Af- =03 -p7. (5.19)

The first thing to notice abo(#.19)is thatA’ cannot vanish for any # 0 unless|3| = 1.
Thus if we are to have any chance of satisfying the boundary conditjoa-av + 1, we
must assume that

B =e?. (5.20)

Then from((5.19),
Aj ocsin g . (5.21)
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Now we can satisfy the boundary conditiorj at NV + 1 by settingAy.1 = 0. This implies
sin[(N + 1)8] =0, or
0 =nn/(N +1), forinteger n. (5.22)

Thus the normal modes of the system shown in figure 5.1 are

A;L:sin<3””>, for n=1,2,--- N. (5.23)

Other values of: do not lead to new modes, they just repeat¥hmodes already shown in
(5.23). The corresponding frequencies are obtained by putting (5.20)-(5.21) info (5.16), to
get

2 . _ _ nm
w*=2B —2Ccosf =28 2CCOS(N+1). (5.24)

From here on, the analysis of the motion of the system is the same as for any other
system of coupled oscillators. As discussed in chapter 3, we can take a general motion apart
and express it as a sum of the normal modes. This is illustrated for the system of coupled
pendulums in program 5-1 on the program disk. The new thing about this system is the
way in which we obtained the normal modes, and their peculiarly simple form, in terms of
trigonometric functions. We will get more insight into the meaning of these modes in the
next section. Meanwhile, note the way in which the simple modes can be combined into the
very complicated motion of the full system.

5.2 k and Dispersion Relations

So far, the equilibrium separation between the blogkfias not appeared in the analysis.
Everything we have said so far would be true even if the springs had random lengths, so long
as all spring constants were the same. In such a case, the “space translation invariance” that
we used to solve the problem would be a purely mathematical device, taking the original
system into a different system with the same kind of small oscillations. Usually, however, in
physical applications, the space translation invariance is real and all the inter-block distances
are the same. Then it is very usefulabel the blocks by their equilibrium position. Take

x = 0 to be the position of the left wall (or the Oth block). Then the first blockis=at,

the second at = 2a, etc., as shown in figure 5.8Ve can describe the displacement of all

the blocks by a functioti(x, t), wherey(ja, t) is the displacement of thih block (the one

with equilibrium positionja). Of course, this function is not very well defined because we
only care about its values at a discrete set of points. Nevertheless, as we will see below when
we discuss the beaded string, it will help us understand what is going on if we draw a smooth
curve through these points.



5.2. kK AND DISPERSION RELATIONS 115

=0 r=a x=2a x=3a " z=Na  2=(N+l)a

Figure 5.3: The coupled pendulums with blocks labeled by their equilibrium positions.

In the same way, we can describe a normal mode of the system shown i fijore
the infinite system of figure 5.2) as a functibfx) where
A(ja) = A;. (5.25)
In this language, space translation invariance, (5.11), becomes
A(r +a) = fA(x). (5.26)
It is conventional to write the constanas an exponential
B = etk (5.27)

Any nonzero complex number can be written as a exponential in this way. In fact, we can
changek by a multiple of27/a without changing3, thus we can choose the real park ¢
be between-7/a and 7 /a

T cRek<”. (5.28)
a a
If we put (5.13)and (5.27)nto (5.25),we get
AP(ja) = eI (5.29)

This suggests that we take the function describing the normal mode correspor{8iag@)to

to be '
A(z) = ek (5.30)

The mode is determined by the numbeatisfying(5.28).
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The parametek (when it is real) is called the angular wave number of the mode. It
measures the waviness of the normal mode, in radians per unit distance. The “wavelength”
of the mode is the smallest lengih(the Greek letter lambda), such that a changelnf A
leaves the mode unchanged,

Alx + ) = A(x). (5.31)

In other words, the wavelength is the length of a complete cycle of the vavadians.
Thus the wavelength\, and the angular wave numbkrare inversely related, with a factor

of 2,
_ 2

o
In this language, the normal modes of the system shown in figure 5.1 are described by
the functions

A (5.32)

A"(x) = sinkz, (5.33)
with nr
k= T (5.34)

whereL = (N+1)ais the total length of the systeffhe important thing about (5.33) and
(5.34)is that they do not depend on the details of the system. They do not even depend
on N. The normal modes always have the same shape, when the system hak.lédfjth
course, asV increases, the number of modes increases. For fixd¢ltis happens because
a = L/(N + 1) decreases a¥ increases and thus the allowed rangk @Emember (5.28))
increases.

The forms[(5.33) for the normal modes of the space translation invariant system are called
“standing waves.” We will see in more detail below why the word “wave” is appropriate. The
word “standing” refers to the fact that while the waves are changing with time, they do not
appear to be moving in thedirection, unlike the “traveling waves” that we will discuss in
chapter 8 and beyond.

5.2.1 The Dispersion Relation

In terms of the angular wave numligthe frequency of the mode is (from (5.16) and (5.27))
w? =2B —2C coska. (5.35)

Such a relation betweerk (actuallyk? becauseos ka is an even function of) and w? is

called a “dispersion relation” (we will learn later why the name is appropriate). The specific
form (5.35) is a characteristic of the particular infinite system of figure 5.2. It depends on the
masses and spring constants and pendulum lengths and separations.
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But it does not depend on the boundary conditionsindeed, we will see below that
(5.35)will be useful for boundary conditions very different from those of the system shown
in figure/5.1.

The dispersion relation depends only on the physics of the infinite sys- (5.36)
tem. '

Indeed, it is only through the dispersion relation that the details of the physics of the infinite
system enters the problem. The form of the mod€%?, is already determined by the
general properties of linearity and space translation invariance.

We will call (5.35) the dispersion relation for coupled pendulumsWe have given it a
special name because we will return to it many times in what follows. The essential physics
is that there are two sources of restoring force: gravity, that tends to keep all the masses in
equilibrium; and the coupling springs, that tend to keep the separations between the masses
fixed, but are unaffected if all the masses are displaced by the same distance/ In (5.35), the
constants always satisfy > C, as you see from (5.6).

The limit B = C' is especially interesting. This happens when there is no gravity (or
¢ — 00). The dispersion relation is then

w? = 2B(1 — cos ka) = 4B sin® k‘?a . (5.37)

Note that the mode witk = 0 now has zero frequency, because all the masses can be
displaced at once with no restoring fofce.

5.3 Waves

5.3.1 The Beaded String

-O—O—0O0—C0——C0—0-

Figure 5.4: The beaded string in equilibrium.

Another instructive system is the beaded string, undergoing transverse oscillations. The
oscillations are called “transverse” if the motion is perpendicular to the direction in which
the system is stretched. Consider a massless string with t@nsiornwhich identical beads

2See appendix|C.
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of massm are attached at regular intervais,A portion of such a system in its equilibrium
configuration is depicted in figure 5.4he beads cannot oscillate longitudinally, because
the string would brea¥. However, for small transverse oscillations, the stretching of the
string is negligible, and the tension and the horizontal component of the force from the string
are approximately constant. The horizontal component of the force on each block from the
string on its right is canceled by the horizontal component from the string on the left. The
total horizontal force on each block is zero (this must be, because the blocks do not move
horizontally). But the strings produces a transverse restoring force when neighboring beads
do not have the same transverse displacement, as illustrated in figufén&.tarce of the

string on bead 1 is shown, along with the transverse component. The dotted lines complete
similar triangles, so thdt/T = (2 — 11)/a. You can see from figure 5.5 that the restoring
force, F' in the figure, for small transverse oscillations is linear, and corresponds to a spring
constantl’/a.

o —

F~ %(% — 1)

Figure 5.5: Two neighboring beads on a beaded string.

Thus (5.37) is also the dispersion relation for the small transverse oscillations of the

beaded string with
T

B=—, (5.38)
ma
where T is the string tensionyn is the bead mass and is the separation between beads.
The dispersion relation for the beaded string can thus be written as
4T
w? = — sin? ka . (5.39)
ma 2
This dispersion relation, (5.39), has the interesting propertyuthat 0 ask — 0.
This is discussed from the point of view of symmetry in appendix C, where we discuss the

3More precisely, the string has a very large and nonlinear force constant for longitudinal stretching. The
longitudinal oscillations have a much higher frequency and are much more strongly damped than the transverse
oscillations, so we can ignore them in the frequency range of the transverse modes. See the discussion of the
“light” massive spring in chapter 7.
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connection of this dispersion relation with what are called “Goldstone bosons.” Here we
should discuss the special properties ofithe 0 mode with exactly zero angular frequency,

w = 0. This is different from all other angular frequencies because we do not get a different
time dependence by complex conjugating the irreducible complex exponeritial But we

need two solutions in order to describe the possible initial conditions of the system, because
we can specify both a displacement and a velocity for each bead. The resolution of this
dilemma is similar to that discussed for critical damping in chapter 2(2sE®)). If we
approachy = 0 from nonzerav, we can form two independent solutions as folléws:

—iwt iwt —iwt __ jiwt
im & €T g jim T (5.40)
w—0 2 w—0 — 21w
The first, fork = 0, describes a situation in which all the beads are sitting at some fixed
position. The second describes a situation in which all of the beads are moving together at
constant velocity in the transverse direction.
Precisely analogous things can be said about tlependence of the= 0 mode. Again,
approaching: = 0 from nonzerak, we can form two modes,
ikx —ikx ikx _ _—ikx
im ST m e, (5.41)
k—0 2 k—0 2ik
The second mode here describes a situation in which each subsequent bead is more displaced.
The transverse force on each bead from the string on the left is canceled by the force from
the string on the right.

5.3.2 Fixed Ends
052

Figure 5.6: A beaded string with fixed ends.

Now suppose that we look atfiaite beaded string with its ends fixedat= 0 and
x = L = (N + 1)a, as shown in figur®.€. The analysis of the normal modes of this
system is exactly the same as for the coupled pendulum problem at the beginning of the
chapter. Once again, we imagine that the finite system is part of an infinite system with space

“You can evaluate the limits easily, using the Taylor series™et 1 + z + - - -.
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translation invariance and look for linear combinations of modes such that the head$§ at
and z= L are fixed. Again this leads to (5.33he only differences are:

1. the frequencies of the modes are different because the dispersion relation is how given
by (5.39);

2. (5.33) describes thteansversedisplacements of the beads.

This is a very nice example of the standing wave normal m{&l&s,),because you can
see the shapes more easily than for longitudinal oscillations. For four Béads4), the
four independent normal modes are illustrated in fighres.10, where we have made the
coupling strings invisible for clarity. The fixed imaginary beads that play the role of the walls
are shown (dashed) at= 0 andz = L. Superimposed on the positions of the beads is the
continuous functionsin kz, for eachk value, represented by a dotted line. Note that this
function doeshot describe the positions of the coupling strings, which are stretched straight
between neighboring beads.

N N\
(07 (5
Figure 5.7n = 1.

(9/ <~-5/

Figure 5.8:n = 2.
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N y RN
= @ ® =
Figure 5.9 = 3.

(9/ ) ' (5/

Figure 5.10n = 4.

It is pictures like figure%.7:5.10that justify the word “wave” for these standing wave
solutions. They are, frankly, wavy, exhibiting the sinusoidal space dependence thsitis the
gua nonof wave phenomena.

The transverse oscillation of a beaded string with both ends fixed is illustrated in pro-
gram 5-2, where a general oscillation is shown along with the normal modes out of which
it is built. Note the different frequencies of the different normal modes, with the frequency
increasing as the modes get more wavy. We will often use the beaded string as an illustrative
example because the modes are so easy to visualize.

5.4 Free Ends

Let us work out an example of forced oscillation with a different kind of boundary condition.
Consider the transverse oscillations of a beaded string. For definiteness, we will take four
beads so that this is a system of four coupled oscillators. However, instead of coupling the
strings at the ends to fixed walls, we will attach them to massless rings that are free to slide
in the transverse direction on frictionless rods. The string then is said to have its ends free (at
least for transverse motion). Then the system looks like the diagram inHifilirerhere the
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oscillators move up and down in the plane of the paper: Let us find its normal modes.

()2 —(3)—+4)
N A A AN

Figure 5.11: A beaded string with free ends.

5.4.1 Normal Modes for Free Ends

0l5-3

As before, we imagine that this is part of an infinite system of beads with space translation
invariance. This is shown in figukelz.Here, the massless rings sliding on frictionless rods
have been replaced by the imaginary (dashed) beads, 0 and 5. The dispersion relation is just
the same as for any other infinite beaded st(®@9). The question is, then, what kind of
boundary condition on the infinite system corresponds to the physical boundary condition,
that the end beads are free on one side? The answer is that we must have the first imaginary
bead on either side move up and down with the last real bead, so that the coupling string from
bead 0 is horizontal and exerts no transverse restoring force on bead 1 and the coupling string
from bead 5 is horizontal and exerts no transverse restoring force on bead 4:

Ay = A, (5.42)
Ay = As; (5.43)

Figure 5.12: Satisfying the boundary conditions in the finite system.

We will work in the notation in which the beads are labeled by their equilibrium posi-
tions. The normal modes of the infinite system are ##éff. But we haven't yet had to
decide where we will put the origin How do we form a linear combination of the complex
exponential modeg*"** and choosé to be consistent with this boundary condition? Let
us begin with[(5.42)We can write the linear combination, whatever it is, in the form

cos(kx —0). (5.44)
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Any real linear combination @f-*** can be written in this way up to an overall multiplicative
constant (see (1.96)Now if

cos(kzg — 0) = cos(kxy —0), (5.45)
wherez; is the position of thgth block, then either
1. cos(kz — #) has a maximum or minimum &t%%, or
2. kxy — kxg is a multiple of2r.

Let us consider case 1. We will see that case 2 does not give any additional modes. We will
choose our coordinates so that the péﬁ% , midway betwgandx, isx = 0. We

don’t care about the overall normalization, so if the function has a minimum there, we will
multiply it by —1, to make it a maximum. Thus in case 1, the funatigiikz — 0) has a
maximum atr = 0, which implies that we can take= 0. Thus the function is simply

cos kxz. The system with this labeling is shown in figbt&3. The displacement of thgh

bead is then

Aj = coslka(j — 1/2)]. (5.46)

I | | |

r— X1 x2 €3 T4
a 3a 5a Ta

0 = — — 4
2 2 2 g

Figure 5.13: The same system of oscillators labeled more cleverly.

It should now be clear how to impose the boundary condifiod3),on the other end.
We want to have a maximum or minimum midway between bead 4 and bead 5, 4t.
We get a maximum or minimum every time the argument of the cosine is an integral multiple
of . The argument of the cosineaat= 4a is 4ka, wherek is the angular wave number.
Thus the boundary condition will be satisfied if the modetlkas= n for integern. Then

coslka(4 — 1/2)] = cos[ka(5 — 1/2)] = ka = %” . (5.47)

Thus the modes are

A; = coslka(j — 1/2)] with k = Zl forn=0t03. (5.48)
a
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Forn > 3, the modes just repeat, becakise = /a.

In (5.48),n = 0 is the trivial mode in which all the beads move up and down together.
This is possible because there is no restoring force at all when all the beads move together. As
discussed above (s¢&40))the beads can all move with a constant velocity becausd)
for this mode. Note that case 2, above, gives the same mode, and nothing else, because if
kx1 —kxo = 2nm, then(5.44)has the same value for all. The remaining modes are shown
in figures5.14:5.16. This system is illustrated in program 5-3 on the program disk.

Figure 5.14n =1, A; = cos[(j — 1/2)m/4].

Figure 5.15n = 2, A; = cos[(j — 1/2) 27 /4].

5.5 Forced Oscillations and Boundary Conditions

Forced oscillations can be analyzed using the methods of chapter 3. This always works, even
for a force that acts on each of the parts of the system independently. Very often, however, for
a space translation invariant system, we are interested in a different sort of forced oscillation
problem, one in which the external force acts only at one end (or both ends). In this case, we
can solve the problem in a much simpler way using boundary conditions. An example of this
sort is shown in figurg.17.
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Figure 5.16:n = 3, A; = cos[(j — 1/2) 37 /4].

10090097 095108 - 299,

>
Figure 5.17: A forced oscillation problem in a space translation invariant system.

This is the system gb.1), except that one wall has been removed and the end of the
spring is constrained by some external agency to move back and forth with a displacement

z coSwqt . (5.49)

As usual, in a forced oscillation problem, we first consider the driving term, in this case the
fixed displacement of th& + 1st block,(5.49),to be the real part of a complex exponential
driving term,

z e Wit (5.50)

Then we look for a steady state solution in which the entire system is oscillating with the
driving frequencyw,, with the irreducible time dependenegi«d?,

If there is damping from a frictional force, no matter how small, this will be the
steady state solution that survives after all the free oscillations have decayed away. We
can find such solutions by the same sort of trick that we used to find the modes of free
oscillation of the system. We look for modes of the infinite system and put them together
to satisfy boundary conditions.

This situation is different from the free oscillation problem. In a typical free oscillation
problem, the boundary conditions fix Then we determine from the dispersion relation.
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In this case, the boundary conditions determipéenstead. Now we must use the dispersion
relation, (5.35)fo find the wave numbe.
Solving (5.35)gives
1 2B — w3
k==cos ! ———4
a COS 20
We must combine the modes of the infinite systeff”, to satisfy the boundary conditions
atz = 0 andz = (N + 1)a = L. As for the systen5.1), the condition that the system be
stationary atr = 0 leads to a mode of the form

(5.51)

Y(z,t) =y sinkx e~ wdt (5.52)

for some amplitudg. But now the condition atz = L = (N + 1)a determines not the
wave number (that is already fixed by the dispersion relation), but the amplitudg.

(L, t) =y sinkL e~ ™t = gt (5.53)

Thus
z

sinkL
Notice that ifw, is a normal mode frequency of the sys{&x)with no damping, the(b.54)
doesn’t make sense becausek L vanishes. That is as it should be. It corresponds to the
infinite amplitude produced by a driving force on resonance with a normal frequency of a
frictionless system. In the presence of damping, however, as we will discuss in chapter 8,
the wave numbek is complex because the dispersion relation is complex. We will see later
that if £ is complexgsin kL cannot vanish. Even if the damping is very small, of course, we
do not get a real infinity in the amplitude as we go to the resonance. Eventually, nonlinear
effects take over. Whether it is nonlinearity or the damping that is more important near any
given resonance depends on the details of the physical system.

y= (5.54)

5.5.1 Forced Oscillations with a Free End

RQRQAQAQ,

—

Figure 5.18: Forced oscillation of a mass on a spring.

®Note also that, whesin kL is complex, the parts of the system do not all oscillate in phase, even though all
oscillate at the same frequency.
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As another example, we will now discuss again the forced longitudinal oscillations of the
simple system of a mass on a spring, shown in figLr&. The physics here is the same as
that of the system in figuz9, except that to begin with, we will ignore damping. The block
has massn. The spring has spring constdiitand equilibrium lengttu. To be specific,
imagine that this block sits on a nearly frictionless table, and that you are holding onto the
other end of the spring, moving it back and forth along the table, parallel to the direction of
the spring, with displacement

dy cos wgt . (5.55)

The question is, how does the block move? We already know how to solve this problem from
chapter 2. Now we will do it in a different way, using space translation invariance, local
interactions and boundary conditions. It may seem surprising that we can treat this problem
using the techniques we have developed to deal with space translation invariant systems,
because there is only one block. Nevertheless, that is what we are going to do. Certainly
nothing prevents us from extending this system to an infinite system by repeating the block-
spring combination. The infinite system then has the dispersion relation of the beaded string
(or of the coupled pendulum fér— oo):

w? = —sin 5 (5.56)

The relevant part of the infinite system is shown in figufi€. The point is that we can
impose boundary conditions on the infinite system, fi&ut®, that make it equivalent to
figure/5.18.

Figure 5.19: Part of the infinite system.

We begin by imagining that the displacement is complgx; 4, so that at the end, we
will take the real part to recover the real resuli of (5.58us, we take

Po(t) = dg e @it (5.57)

Then to ensure that there is no force on block 1 from the imaginary spring on the left, we
must take

Yo(t) = ¢1(t). (5.58)

To satisfy (5.58), we can argue as in fighrESthat

Y(x,t) = z(t) cos kx (5.59)
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Figure 5.20: A better definition of the zeroaof

wherez is defined as shown in figuge20.
Now since the equilibrium position of block 23i&/2, we substitute

3k
Pa(t) = z(t) cos TG (5.60)
into (5.57), to obtain
2(t) = d%;m e vt (5.61)
COS 5
Then the final result is
cos ' it
(t) = gz doe (5.62)
COS 5
or in real form
COS ka
Pi(t) = 7313(1 dy coswgt . (5.63)
COS 5

We can now use the dispersion relation. First use trigonometry,

cos 3y = cos® y — 3cosysin®y = cosy (1 — 4sin® y) (5.64)

to write )
1) = ————— dp coswgt 5.65
¢1( ) 1 —4.SiIl2 ka 0 d ( )

2
or substituting (5.56),

w2

P1(t) = % dy coswgt , (5.66)
wo — Wy

wherewy is the free oscillation frequency of the system,

K
wi=—. (5.67)

m

This is exactly the same resonance formula that we got in chapter 2.
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5.5.2 Generalization

The real advantage of the procedure we used to solve this problem is that it is easy to gener
alize it. For example, suppose we look at the system shown infidiire

QQQQAQQY 1RQQQQQ,

—

Figure 5.21: A system with two blocks.

Here we can go to the same infinite system and argue that the solution is proportional to
cos kxz wherez is defined as shown in figuse2Z. Then the same argument leads to the result
for the displacements of blocks 1 and 2:

ka 3ka
COS &~ COS —5—

¢1 (t) = 751211 do COS wdt y 1/)2 (t) = 75]%(1 do COS wdt . (568)
COos —5— Cos 5=

You should be able to generalize this to arbitrary numbers of blocks.

101900900 11900000 2(20000Q 3 -
| | | | |
_ a 3 5
r=0 3 5 5

Figure 5.22: The infinite system.

5.6 Coupled LC Circuits

We saw in chapter 1 the analogy between/tbecircuit in figurel.10and a corresponding
system of a mass and springs in figlirEl. In this section, we discuss what happens when
we putLC circuits together into a space translation invariant system.

For example, consider an infinite space translation invariant circuit, a piece of which is
shown in figures.23. One might guess, on the basis of the discussion in chapter 1, that
the circuit in figure5.23is analogous to the combination of springs and masses shown in
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Figure 5.23: A an infinite system of couplBd’ circuits.

figure5.24,with the correspondence between the two systems being:

m < L
K « 1/C (5.69)
r; < Q

wherez; is the displacement of thih block to the right an@; is the charge that has been
“displaced” through thgth inductor from the equilibrium situation with the capacitors un-
charged. In fact, this is right, and we could (&€9)to write down the dispersion relation

for the figures.23. However, with our powerful tools of linearity and space translation invari-
ance, we can solve the problem from scratch without too much effort. The strategy will be
to write down what we know the solution has to look like, from space translation invariance,
and then work backwards to find the dispersion relation.

K K K K
QQQmQQQm QQQImIQQQ -

[~—a—]

Figure 5.24: A mechanical system analogous to figLizé.

The starting point should be familiar by noBecause the system is linear and space
translation invariant, the modes of the infinite system are proportional te***. There-
fore all physical quantities in a mode, voltages, charges, currents, whatever, must also
be proportional to =%, In this case the variable, is really just a label. The electrical
properties of the circuit do not depend very much on the disposition of the elements £ space.

®This is not exactly true, however. Relativity imposes constraints. See chapter 11.
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The dispersion relation will depend only ba, wherea is the separation between the iden-
tical parts of the system (s¢&35)). However, it is easier to think about the system if it is
physically laid out into a space translation invariant configuration, as shown in5igGre

~1 0 1
0 —— | ——

QPRI

L
T

Figure 5.25: A labeling for the infinite system of couple&d circuits.

In particular, let us label the inductors and capacitors as shown in/5@&rerhen the
charge displaced through tligh inductor in the mode with angular wave numbeis

Q;(t) = qe'hag=iwt (5.70)

for some constant chargg, Note that we could just as well take the time dependence to be
coswt, sinwt, ore™?, It does not matter for the argument below. What matters is that when
we differentiate); (¢) twice with respect to time, we geto?Q;(¢). The current through the

jth inductor is

d - ijka —i
I; = %Qj(t) = —jwqekagTivt (5.71)

The charge on thgth capacitor, which we will call;, is also proportional tei/*ee =it
but in fact, we can also compute it directly. The chaygeds just

7 = Q5 — Qjn (5.72)

because the charge displaced throughtihhénductor must either flow onto thigh capacitor
or be displaced through the 1st inductor, so tha®; = ¢; + Q;+1. Now we can compute
the voltage);, of each capacitor,

1 q ika iyka  —iw
ijé(Qj—QjH):é(l_ek)ejke t’ (®.73)
and then compute the voltage drop across the inductors,
dl;
Lt =V =V, (5.74)

inserting(5.71)and(5.73)into (5.74),and dividing both sides by the common factatl e*/*%e~?,
we get the dispersion relation,

w? = e (1 — eika) (e*ik“ — 1) = —sin® —. (5.75)
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This corresponds t(5.37)with B = 1/LC. This is just what we expect fro(B.69). We
will call (5.75) the dispersion relation for coupled.C circuits.

5.6.1 An Example of CoupledLC Circuits

L L
Iwéﬁljé

T
CT °T T

Sl

L
T

Figure 5.26: A circuit with three inductors.

Let us use the results of this section to study a finite example, with boundary conditions.
Consider the circuit shown in figufe2€. This circuit in figure5.26 is analogous to the
combination of springs and masses shown in fiGL2&.

K K K K
m]QQ Q[ m Qo m

Figure 5.27: A mechanical system analogous to figLizé.

We already know that this is true for the middle. It remains only to understand the bound-
ary conditions at the ends. If we label the inductors as shown in BRfiethen we can
imagine that this system is part of the infinite system shown in faAgewith the charges
constrained to satisfy

Qo=Q4=0. (5.76)

This must be right. No charge can be displaced through inductors 0 and 4, because in
figurel5.26,they do not exist. This is just what we expect from the analogy to the system in
(5.27),where the displacement of the 0 and 4 blocks must vanish, because they are taking the
place of the fixed walls.

Now we can immediately write down the solution for the normal modes, in analogy with
(5.21)and (5.22),

Q;  sin % (5.77)
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1 2 3
L L L%
T 1 1

Figure 5.28: A labeling of the inductors in figlEr26.

forn =1to 3.
5.6.2 A Forced Oscillation Problem for Coupled LC Circuits

L L L
r(wc)‘ 45)%;‘ 4”%% T O
1 T T T

Figure 5.29: A forced oscillation with three inductors.

One more somewhat more practical example may be instructive. Consider the circuit
shown in figure5.29. The® in figure5.29 stands for a source of harmonically varying
voltage. We will assume that the voltage at this point in the circuit is fixed by the §ource,
to be

V coswt . (5.78)

We would like to find the voltages at the other nodes of the system, as shown ib.Bure
with
Vs =V coswt. (5.79)

We could solve this problem using the displaced charges, however, it is a little easier to
use the fact thatll the physical quantities in the infinite system in figu&8are proportional
to *** in a mode with angular wave numberBecause this is a forced oscillation problem
(and because, as usual, we are ignoring possible free oscillations of the system and looking
for the steady state solutiok)is determined frorw, by the dispersion relation for the infinite
system of coupled.C circuits, (5.75).

The other thing we need is that

V=0, (5.80)
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Vo Vi Vo %
F,Q_QQ I QQQ I QQQ #@
+ N N N

Figure 5.30: The voltages in the system of figu@.

because the circuit is shorted out at the end. Thus we must combine the two modes of the
infinite systeme®**  intosin kz, and the solution has the form

Vj o sin jka. (5.81)

We can satisfy the boundary condition at the other end by taking

v
V= n3ka sin jka cos wt . (5.82)

This is the solution.

Chapter Checklist
You should now be able to:

1. Recognize a finite system as part of a space translation invariant infinite system;

2. Find the normal modes of the finite system as linear combinations of normal modes
of the space translation invariant infinite system, consistent with the physics of the
boundaries, by imposing boundary conditions;

3. Describe the normal modes of a space translation invariant system in terms of an an-
gular wave number;;

4. Find the dispersion relation that relates the angular frequenty,the angular wave
numberk;

5. Solve forced oscillation problems using boundary conditions;

6. Analyze space translation invariant systems of coupléircuits.
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Problems

51 Consider the small longitudinal oscillations of the system shown below:

In the picture above, each bob has massach pendulum has lengtheach spring has
spring constant, and the equilibrium separation between bolas is

a. Find theM —! K matrix for this system in the basis in which the displacements of the
blocks from equilibrium are all measured to the right and arranged into vector in the obvious
way,

1(t)
2(t)
X(t) =
®) z3(t)
4(t)
b. Classify as TRUE or FALSE each of the following questions about the normal modes

of this system. If possible, explain your answers qualitatively, that is, in words, rather than
by plugging into a formula, and discuss the generality of your results.

i. In the normal mode with the lowest frequency, all the blocks move in the same direction
when they are moving at all.

ii. Inthe normal mode with the second lowest frequency, the 1st and 2nd blocks have the
same displacement.

iii. Inthe normal mode with the highest frequency, neighboring blocks move in opposite
directions when they are moving at all.
C. Find the angular frequencies of each of the normal mddies. You may want to

use the dispersion relation for coupled pendulums,

w? =2B — 2C cos ka
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where

52

In the system shown above, all the blocks have maessd they are constrained to move
only horizontally. The long springs with six loops have spring congtaniThe shorter
springs, with three loops, have spring cons2dnt The shortest springs, with two loops, have
spring constan3 KA. As you will see in chapter 7, this is what we expect if the springs are
all made out of the same material (see figufg. Find the normal modes of the system and
the corresponding frequencies. Make sure that you justify any assumptions you make about
the normal modesHint: Try to find an infinite system with space translation invariance
that contains this in such a way that you can put in the physics of the walls as a boundary
condition. Another Hint: This works simply only if the three loop springs have exactly
twice the spring constant of the long springs. Your answer should explain why.

5.3 In the beaded string shown below, the interval between neighboring beads is
and the distance from the end beads to the wallg2isAll the beads have mass and are
constrained to move only vertically, in the plane of the paper.

ﬁ%a E
@ @ € @ @h

Show that the physics of the left-hand wall can be incorporated by going to an infinite
system and requiring the boundary condition= —A;.

a. Easy. Find the analogous boundary condition for the right-hand wall.

b. Find the normal modes and the corresponding frequencies.
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5.4 Consider the following circuit:

Ve Vs Vi V3 Va Vi Vo
*MWTMTMW

l l l l l l

All the capacitors have the same capacitantey 0.00667,F, and all the inductors have
the same inductancé, ~ 150pH and no resistance. The center wire is grounded. This
circuit is an electrical analog of the space translation invariant systems of coupled mechanical
oscillators that we have discussed in this chapter.

When you apply a harmonically oscillating signal from a signal generator through a coax-
ial cable toVg, different oscillating voltages will be induced along the line. That is if

Vs(t) = V coswt,

then V/(¢) has the form
Vj(t) = Ajcoswt + Bjsinwt .

Find A; andB;.
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Chapter 6

Continuum Limit and Fourier Series

“Continuous” is in the eye of the beholder. Most systems that we think of as continuous are
actually made up of discrete pieces. In this chapter, we show that a discrete system can look
continuous at distance scales much larger than the separation between the parts. We will also
explore the physics and mathematics of Fourier series.

Preview

In this chapter, we discuss the wave equation, the starting point for some other treatments of
waves. We will get it as natural result of our general principles of space translation invariance
and local interactions applied to continuous systems.

i. We will study the discrete space translation invariant systems discussed in the previous
chapter in the limit that the separation between parts goes to zero. We will argue that
the generic result is a continuous system obeying the wave equation.

ii. The continuum limit of the beaded string is a continuous string with transverse oscil-
lations. We will discuss its normal modes for a variety of boundary conditions. We
will see that the normal modes of a continuous space translation invariant system are
the same as those of a finite system. The only difference is that there are an infinite
number of them. The sum over the infinite number of normal modes required to solve
the initial value problem for such a continuous system is called a Fourier series.

6.1 The Continuum Limit

Consider a discrete space translation invariant system in which the separation between neigh-
boring masses is. If a is very small, the discrete system looks continuou$o understand

139
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this statement, consider the action of fife’' K matrix, (5.8), in the notation of the last
chapter in which the degrees of freedom are labeled by their equilibrium positions. The ma-
trix M 1K acts on a vector to produce another vector. We have replaced our vectors by
functions ofz, soM ~! K is something that acts on a functidiz) to give another function.

Let's call it M 'K A(x). It is easiest to see what is happening for the beaded string, for
which B = C = T'/ma. Then

MK A(z) = <£a> (24(x) — Az +a) — A(x —a)) . (6.1)

So far, [(6.1) is correct for any large or small.

Whenever you say that a dimensional quantity, like the lemgih large or small, you
must specify a quantity for comparison. You must say large or small compared t5 mhat?
this case, the other dimensional quantity in the problem with the dimensions of length is the
wavelength of the mode that we are interested in. Now here is whereentdls. If we are
interested only in modes with a wavelength- 27 /k that is very large compared épthen
ka is a very small dimensionless number at{d + ) is very close tod(x). We can expand
it in a Taylor series that is rapidly convergent. Expanding (6.1) in a Taylor series gives

_Ta 0?A(x)
Ox?

where the - - represent higher derivative terms that are smaller by powers of the small number
ka than the first term in_(6.2)In the limit in which we take: to be really tiny (always
compared to the wavelengths we want to study) we can replgaeby the linear mass
densitypr, or mass per unit length of the now almost continuous string and ignore the higher
order terms. In this limit, we can replace fie ' K matrix by the combination of derivatives

that appear in the first surviving term of the Taylor series, (6.2),

MK A(z) = (6.2)

2
MK — —5; % . (6.3)
Then the equation of motion fory)(x,t) becomes the wave equation
g;@D(x,t) = i aa;w(z, t). (6.4)
The dispersion relation is
W L2 (6.5)
PL

A dimensionless quantity does not require this step. A dimensionless number is large if it is much greater
than one and small if it is much smaller than one.
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This can be seen directly by plugging the normal mgte into (6.4), or by taking the
limit of (5.37)-6.38) asa — 0. Equation (6.5) is the dispersion relation for the ideal
continuous string. The quantity,\/7'/pr,, has the dimensions of velocity. It is called the
“phase velocity”p,,. As we will discuss in much more detail in chapter 8 and following, this
is the speed with which traveling waves move on the string.

We will call the approximation of replacing a discrete system with a continuous system
that looks approximately the same fors> 1/a the continuum approximation. Really, all
of the mechanical systems that we will consider are discrete, at least on the atomic level.
However, if we are concerned only about waves with macroscopic wavelengths, the contin-
uum approximation is a very good one.

6.1.1 Philosophy and Speculation

Our treatment of the wave equation(@4)is a little unusual. In many treatments of wave
phenomena, the wave equation is given a place of honor. In fact, the wave equation is only a
restatement of the dispersion relati(®5), which is usually just an approximation to what

is really going on. Almost all of the systems that we usually treat with the wave equation are
actually discrete at very small distances. We cannot really get all the way to the continuum
limit that gives(6.5). Light waves, which we will study in the chapters to come, for all we
know, may be an exception to this rule, and be completely continuous. However, we don’t
really have the right to assume even that. It could be that at very short distances, far below
anything we can look at today, the nature of light and even of space and time changes in
some way so that space and time themselves have some tiny characteristic length scale
The analysis above shows that this doesn’t matteAs long as we can only look at space

and time at distances much larger thathey look continuous to us. Then because we are
scientists, concerned about how the world looks in our experiments, and not how it behaves
in some ideal regime far beyond what we can probe experimentally, we might as well treat
them as continuous.

6.2 Fourier series
6.2.1 The String with Fixed Ends

061
If we stretch our continuous string between fixed walls sout@t = ¢ (¢) = 0, the modes
are given by5.33)and(5.34),just as for the discrete system. The only difference is that now
n runs from 1 toxo, or at least to such largethat the wavelengthr /k = 2¢/n is so small
that the continuum approximation breaks down. This follows f®28),which becausé
is real here becomes
T T
a a

: (6.6)
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As a — 0 the allowed range df increases to infinity.

These standing wave modes are animated in program 6-1 on the program disk, assuming
the dispersion relatior, (6.5).

We can now discuss the physical basis of the Fourier seri€8.7li)in chapter 3, we
showed that the normal modes for a discrete system are linearly independent and complete.
That means that any displacement of the discrete system can be written as a unigue linear
combination of the normal modes. Physically, this must be so to allow us to solve the initial
value problem. Our picture of the continuous string is a limit of the beaded string in which
the number of bead®/, goes to infinity and the beads get infinitely close together. For each
N, the most general displacement of the system can be expanded as a linear combination of
the N normal modes. If the limilv — oo is reasonably well behaved, we might expect that
the most general displacement of the limiting continuous string could be expanded in terms
of the infinite number of normal modes of the continuous system. This expansion is a Fourier
series. The displacement of the continuous system is described by a function of the position
along the string. If the function is not too discontinuous, the expansion in normal modes
works fine.

Consider the continuous string, stretched between fixed watls=ah andx = ¢. The
transverse displacement of this system at any time is described by a continuous function of
x, P(x) with

$(0) = ¥(0) =0. (6.7)
Thus we expect from the argument above that we can express any function that is not too
discontinuous and satisfies (6a8 a sum of the normal modes given|by (5.33) land!(5.34),

P(x) = Z Cn SiDL,Z:C. (6.8)

n=1
The constants;,, are called the “Fourier coefficients.” They can be found using the following
identity:

¢ / 0/2if n =n'
/ de sin L sin T / (6.9)
0 ¢ ¢ 0if n #n’
so that ,
Cn = 2/ de sin 2% P(x). (6.10)
¢ Jo 14

This is just the method of normal coordinates adapted to the continuous situation.

6.2.2 Free Ends

be-2
Equation(6.8) is called the Fourier series for a function satisfy6d). Other boundary
conditions yield different series. For example, consider a string with thé end fixed at
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frictionless rod—

massless rinK

fixed end “free” end

oY
©

=0 x=1/
Figure 6.1: A continuous string with one end free to oscillate in the transverse direction.

z = 0. Suppose that the other endgat ¢ is attached to a massless ring that is free to slide
along a frictionless rod in the direction, as shown in figure 6.1Ve say that this system
has one “free end” because the end at / is free to slide in the transverse direction, even
though it is fixed in the direction.

Because the rod is frictionless, the force on the ring due to the rod must have no com-
ponent in ther direction. But because the ring is massless, the total force on the ring must
vanish. Therefore, the force on the ring due to the string must have no component in the
direction. That implies that the string is horizontakat ¢. But the shape of the string at
any given time is given by the graph of the transverse displacesr{ent) versusz.? Thus
the slope of)(x, t) atz = ¢ must vanish. Therefore, the appropriate boundary conditions for
the displacement is

v0,.0=0, et =0. (6.11)
This implies that the normal modes also satisfy similar boundary conditions:

A (0)=0, A (0)=0. (6.12)
The first condition implies that the solution must have the form
Ap(x) o sin kpx (6.13)

for somek,. The second condition determines the possible valués.olt implies that
sin k,x must have a maximum or minimumaat= ¢ which, in turn, implies that
s

knl = 5 + nmw (6.14)

2This is why transverse oscillations are easier to visualize than longitudinal oscillations — compare|with (7.5).
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wheren is a nonnegative integer (nonnegative because we can choose fg)l the) in
(6.13)— negative values just change the sig/dgfz) and do not lead to new solutions).
The solutions have the form

sin ((Zn—iz-gl)mc) for n = 0 to oco. (6.15)

These normal modes are animated in program 6-2. With these normal modes, we can de-
scribe an arbitrary function;(x), satisfying the boundary conditions for this systégrlL1).

$(0)=0, ¥'(6)=0. (6.16)

Thus for such a function, we can write

e . ((2n+ D)mx
Y(x) = p sin | ———— (6.17)
(x) nZ::l Cp S ( 57 )
where o e 2n +1)
Cn = Z/o dx sin <2£> P(x). (6.18)

6.2.3 Examples of Fourier Series

be-3
Let us find the Fourier coefficients for the following function, defined in the interval [0,1]:

x for z <w,

i) = (6.19)
w(l —z)

for z>w.
1—w

For definiteness, we will take = 0.75, so the function)(x) has the form shown in fig-
urel6.2.

We compute the Fourier coefficients us{fgl0). Because = 1, this has the following
form (see problem (6.2)):

1
Cn :/ dz sinnmwz(x)
0

w 1
= / dx xsinnrx + 1L/ dz (1 — z)sinnnrz (6.20)
0 — W Jw

sin nrw
(1 —w)n2n2’
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0

0 D 1
Figure 6.2: The functiog(x) for w = 0.75.

1

0

0 D 1
Figure 6.3: The first term in the Fourier seriesifor). The dotted line ig(z).

We can reconstruct the functiaf(z), as a sum over the normal modes of the string. Let
us look at the first few terms in the series to get a feeling for how this works. The first term
in the sum, forw = 0.75, is shown in figur®.3. This is a lousy approximation, necessarily,
because the function is not symmetrical about 1/2, while the first term in the sum is
symmetrical. The first two terms are shown in fighude This looks much better.

The first six terms are shown in figues. This is now a pretty good approximation
except where the function has a kink.

What is going on here is that if we include terms in the Fourier series onlyhup 1,
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0 * : \
0 .0 1

Figure 6.4: The sum of the first two terms in the Fourier serieg(for. The dotted line is

().

0 . \
0 .5 1

Figure 6.5: The sum of the first six terms in the Fourier serieg(for. The dotted line is

().

the truncated Fourier series N
P(x) = Z Cp Sinnwx (6.21)
n=1

does not include any modes with very small wavelengths. The smallest wavelength that
appears (for the highest angular wave numbex) s (no dimensions here because we took

a = 1). Thus while the Fourier series can describe any features of the shape of the function
that are larger tha2y N, there is no way that it can pick up features that are much smaller. In
this example, because the function has an infinitely sharp kink, the Fourier series never gets
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very good neat = w. However, eventually the discrepancy is squeezed into such a small
region around the kink that the result will look OK to the naked eye.

1

Figure 6.6: The first two terms in the

Fourier series/fiar) and their sum.

You can see how this works in more detail by studying fi§u€e The curve of long

dashes is the first term in the Fourier series.
dotted triangle), for large and greater than(z)
second term in the Fourier series, the curve

Evidently, it is less than the fup¢tipiithe
for smallz. The sign and magnitude of the
of short dashes ingi@uikechosen to make

up for this discrepancy, so that the sum (the solid curve) is much closer to the actual function.

The same process is repeated over and ove
Fourier series.

r again as you go to higher order in the truncated

You can play with the truncated Fourier series for the funetian in program 6-3. This
program allows you to vary the parameterand also the number of terms in the Fourier
series. You should look at what happens neaf 1. You might think that this would cause
problems for the Fourier series because thew) in the denominator 6.20)goes to zero.
However, the limit is actually well behaved becasisenmw also goes to zero as — 0.

Nevertheless, the Fourier series has to work

hara ferl to reproduce a function that does

not go to zero for = 1 as a sum of sine functions, each of which do vanish=atl. This

difficulty is reflected in the wiggles near= 1
Fourier series.

for any reasonable number of terms in the
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6.2.4 Plucking a String

L16-4
Let us now use this mathematics to solve a physics problem. We will solve the initial value
problem for the string with fixed end for a particular initial shape. The initial value problem
here is almost exactly like that discussed in chapt¢8.98)-(3.10), for a system with a
finite number of degrees of freedom. The only difference is that now, because the number of
degrees of freedom is infinite, the sum over modes runs to infinity. You shouldn’t worry about
the fact that the number of modes is infinite. What that “infinity” really means is “larger than
any number we are going to care about.” In practice, as we saw in the examples above, the
higher modes eventually don’t make much difference. They are associated with smaller and
smaller features of the shape. When we say that the system is continuous and that it has an
infinite number of degrees of freedom, we are actually assuming that the smallest features
that we care about in the waves are still much larger than the distance between pieces of the
system, so that we can truncate our Fourier series far below the limit and still have a good
approximate description of the motion.

Suppose we pluck the string. Specifically, suppose that the string has linear mass density
pL, tensionl’, and fixed ends at = 0 and/. Suppose further that at time= 0 the string is
at rest, but pulled out of its equilibrium position into the shagpe), given by(6.19). If the
string is then released @at= 0, we can find the subsequent motion by summing over all the
normal modes with fixed coefficients multiplied &y w,,t and/orsin w,t, wherew,, is the
frequency of the modén “7* with k£ = “F (the frequency is given by (6.5))

wn:,/zknz Lo (6.22)
PL pr 4

In this case, only theos w,t terms appear, because the velocity is zero=atd). Thus we
can write

o0
P(z,t) = nz::l Cn, sin? coswpt . (6.23)
This satisfies the boundary conditiong at 0, by virtue of the Fourier serie6.8). The
disadvantage of6.23)is that we are left with an infinite sum. For the simple dispersion
relation,(6.5), there are other ways to solve this problem that we will discuss later when we
learn about traveling waves. However, the advantage of the sal6i%)is that it does not
depend on the dispersion relation.

We can solve the problem approximately ug6@3) by adding up only the first few
terms of the series. The computer can do this quickly. In program 6-4, the first twenty terms
of the series are shown for = 1/2 (and the dispersion relation still given {8.5)). The
result is amazingly simple. Check it out! Program 6-5 is the same idea, but allows you to
vary w and the number of terms in the Fourier series. Tryuott 0.75 and compare with
figures6.3:6.5
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Chapter Checklist
You should now be able to:

i. Take the limit of a space translation invariant discrete system as the distance between
the parts goes to zero, interpret the physics of the resulting continuous system, and find
its dispersion relation;

ii. Use the Fourier series to set up and solve the initial value problem for a massive string
with various boundary conditions.

Problems

6.1 Consider the continuous string 0f (6.7)-(6.10) as the continuum limit of a beaded
string with¥ beads a8V’ — co. Write the analog of (6.8) and (6.10) for finit& Show that

the limit asiW — oo yields (6.10).Hint: This is an exercise in the definition of an integral
as the limit of a sum. But to do the first part, you will either need to use normal coordinates,

or prove the identity
ﬁ": sin nkm sin nkn
= W +1 W+1

b if n=n"#0
0 if n#n" andn,n >0

for a constank and find b.

6.2 Do the integrals in (6.20Hint: Use integration by parts and watch for miraculous
cancellations.

6.3 Find the normal modes of the string with two free ends, shown in figure 6.7.

6.4 Fun with Fourier Series and Fractals
In this problem you will explore the Fourier series for an interesting set of functions.
Consider a function of the following form, defined on the interval [0,1]:

flt) = i B g(frac(27t)).

=0
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<~——  frictionless rods ———

massless rings
/ \
\ “free” ends /

o

N,
Dy

oY
©

z=0 z=/

Figure 6.7: A continuous string with both ends free to oscillate in the transverse direction.

where
lfor0<t<w

g(t) =% Oforw<t<l—w
lforl—w<t<1

andfrac(z) denotes the fractional parg. frac(4.39) = 0.39. f(t) thus depends on the two
parameterd andw, where0 < h < 1 and0 < w < 1/2. For example, foh = 1/2 and
w = 1/4, the # term is shown in figuré.g.

0
0 t— 1

Figure 6.8: The iterm in f(t) for h = 1/2 and w= 1/4.

If we add in theh! term we get the picture in figufegS.

Adding theh? term gives the picture in figuf10, and so on.

The final result is a very bumpy function, called a “fractal.” You cannot compute this
function exactly, but you can include enough terms to get to any desired accuracy. Because


http:frac(4.39
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0 1
0 t— 1

Figure 6.9: The first two terms jf(¢) for h = 1/2 andw = 1/4.

0

0 t— 1

Figure 6.10: The first three termsfi¢) for h = 1/2 and w= 1/4.

the function is symmetric abotit= 1/2, it is really only necessary to plot it from 01¢2.
Also because of the symmetry, it can be expressed in terms of a Fourier series of cosines,

f(t) = Z by, cos 27kt .
k=0

Show that the Fourier coefficients are given by

2 g(k) ) )
b, = — (2h) sin(2mkw/27)
k o
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for k # 0, and

2w
D=1
where the function(k) is the number of times 2 appears as a factdr. oThusé(0) =
§(1) = €(3) = 0,¢(2) =1, £(4) = 2, etc.
Write a program to display and print the fractal for some set of parametansl w.
Also, display the truncated Fourier series,

m—1

fm(t) = Z by cos 2wkt
k=0

with m terms, form = 5, 10, and 20 (or more if you have a fast computer).



Chapter 7

Longitudinal Oscillations and Sound

Transverse oscillations of a continuous system are easy to visualize because you can see
directly the function that describes the displacement. The mathematics of longitudinal os-
cillations of a continuous linear space translation invariant system is the same. It must be,
because it is completely determined by the space translation invariance. But the physics is
different.

Preview

In this chapter, we introduce two physical systems with longitudinal oscillations: massive
springs and organ pipes.

i. We describe the massive spring as the continuum limit of a system of masses connected
by massless springs and study its normal modes for various boundary conditions.

ii. We discuss in some detail the system of a mass at the end of a massive spring. When
the spring is “light,” this is an important example of physics with two different “scales.”

iii. We discuss the physics of sound waves in a tube, by analogy with the oscillations of
the massive spring. We also introduce the “Helmholtz” approximation for the lowest
mode of a bottle.

7.1 Longitudinal Modes in a Massive Spring

So far, in our extensive discussions of waves in systems of springs and blocks, we have

assumed that the only degrees of freedom are those associated with the motion of the blocks.
This is a reasonable assumption at low frequencies, when the blocks are very heavy compared
to the springs, because the blocks move so slowly that the springs have time to readjust and are

153
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always nearly uniforrd. In this case, the dispersion relation for the longitudinal oscillations
of the blocks is just the dispersion relation for coupled pendulums, (5.35), in the limit in
which we ignore gravity, and keep only the coupling between the masses produced by the
spring constantil. In other words, we take the limit 0f (5/35)@€ — 0. The result can be
written as

w? = 4Kq sin? ka (7.0

m 2

whereK, is the spring constant of the springsthe mass of the blocks, andhe equilib-
rium separation. We have put a subscdijin K, because we will want to vary the spring
constant as we vary the separation between the blocks in the discussion below.

Now what happens when the blocks are absent, but the spring is massive? We can find
this out by considering the limit of (7.1) as— 0. In this limit, the massive blocks and the
massless spring melt into one another, so that the result looks like a uniform, massive spring.
In order to take the limit, however, we must understand what variables describe the massive
spring, and have a finite limit as— 0. One such variable is the linear mass density,

pr = lim m . (7.2)
a—0 @
We must take the masses of the blocks to zewo-ad) in order to keepy, finite.

To understand what happenskQ asa — 0, consider what happens when you cut a
spring in half. When a spring is stretched, each half contributes half the displacement. But
the tension is uniform throughout the stretched spring. Thus the spring constant of half a
spring is twice as great as that of the full spring, because half the displacement gives the
same force. This relation is illustrated in figure 7.1. The spring in the center is unstretched.
The spring on top is stretched byo the right. The bottom shows th@mestretched spring,
still stretched by, but now symmetrically. Comparing top and bottom, you can see that the
return force from stretching the spring bys the same as from stretching half the spring by
x/2.

The diagram in figure 7.1 is an example of the following result. In general, the spring
constant,K,, depends not just on what the spring is made of, it depends on how long the
spring is. But the quantiti,a, wherea is the length of the spring, is actually independent
of a, for a spring made of uniform material. Thus we should take thedimit 0 holding
K,a fixed.

This implies that the dispersion relation for the massive spring is

2 _ Kaa
PL

k2, (7.3)

w

where we have used the Taylor series expansieimaf (1.58), and kept only the first term.

We will say this much more formally below.
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Figure 7.1: Half a spring has twice the spring constant.

According to the discussion above, we can rewrite this as

w? = Kt k> (7.4)
PL
where/ is the length of the spring ard is the spring constant of the spring as a whole.
Note that in longitudinal oscillations in a continuous material incttigection, the equi-

librium position, z, doesn't actually describe theposition of the material. Because the
displacement is longitudinal, the actugbosition of the point on the spring with equilibrium
positionz is

x4+ P(z,t), (7.5)

wherey is the displacement. You will need this to do problem (7.1).

7.1.1 Fixed Ends

0l7-1
Suppose that we have a massive spring with lefigtid its ends fixed at = 0 andz = /.
Then the displacement,z, t) must vanish at the ends,

¥(0,t) =0, Y(,t)=0. (7.6)

The modes of the system are the same as for any other space translation invariant system.
The linear combinations of the complex exponential modes of the infinite system that satisfy
(7.6)are

nnmx

Ap = si )
(z) = sin 7

(7.7)
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with angular wave number
nm

2
and frequency (from the dispersion relation,|(7.4))

K K
wn:,/lknz Kl nm (7.9)
PL pr. 4

However, because the oscillations are longitudinal, the modksvery different from the
transverse modes of the string that we studied in the previous chapter. The position of the
point on the string whose equilibrium positionrisin thenth normal mode, has the general
form (from (7.5))

ke = (7.8)

T + esin ? cos(wnt + @) (7.10)

wheree and ¢are the amplitude and phase of the oscillation.

The lowest 9 modes {7.10)are animated in program 7-1. Compare these with the modes
animated in program 6-1. The mathematics is the same, but the physics is very different
because o(7.5). Stare at these two animations until you can visualize the relation between
the two. Then you will have understood (7.5).

7.1.2 Free Ends

17-2

Now let us look at the situation in which the end of the springa0 is fixed, but the end at

x = (s free. The boundary conditions in this case are analogous to the normal modes of the
string with one fixed end. The displacement at 0 must vanish because the end is fixed.
Also, the derivative of the displacementrat ¢ must vanish. You can see this by looking at

the continuous spring as the limit of discrete masses coupled by springs. As w¢sd4)jn

the last real mass must have the same displacement as the first “imaginary” mass,

Y(l,t) =Yl +a,t). (7.112)
Therefore, for the finite system with a free end, ate have the relation

P, t) — (L +a,t)

a

= 0 for all a. (7.12)

In the limit that the distance between masses goes to zero, this becomes the condition that the
derivative of the displacement, with respect ta: vanishes at = /,

0
97 Y(z,t)|,_,=0. (7.13)
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Thus the boundary conditions on the displacement are the same as|in (6.11) for the transverse
oscillation of a continuous string with= 0 fixed and 2= /¢ free,

0
$(0,) =0, o= ()|, =0. (7.14)
This, in turn, implies that the normal modes are the same as for the transversely oscillating
string, (6.15),

Ay (z) = sin <(2n—12—€1)7m;> forn=0tooo. (7.15)

However, again because of (7.5), these modes look very different from those of the string.
The first nine are animated in program 7-2 (compare with program 6-2).

7.2 A Mass on a Light Spring

Let us return to the system that we studied at the very beginning of the book, the harmonic
oscillator constructed by putting a mass at the end of a light spring. We are now in a position
to understand precisely what “light” means for this system, because we can now allow the
spring to have a nonzero linear mass dengjtyand find the normal modes of this system.
We will then be able to see what happeng@as- 0.

To be specific, consider a spring with equilibrium lerfggind spring constardt, fixed at
x = 0 and constrained to oscillate only in théirection (that is longitudinally). Now attach
a massyn, to the free end (with equilibrium position=x¢). The spring, fob < x < ¢, can
be regarded as part of a space translation invariant system. To find the normal modes for this
system, we look for linear combination of the modes of the infinite spring (for awgitbat
reproduces the physicsat= 0 andxz = ¢. The fixed end at = 0 is easy. This fixes the
form of the modes to be proportional to

sin knx (7.16)
with frequency
Wy = Kt kny, . (7.17)
PL

As always,k, andw, are related by the dispersion relaticn, |(7.Kpw to determine the
possible values of,, we require that' = ma be satisfied for the mass. Suppose, for
example, that the amplitude of the oscillatiomiga length). Then the displacement of the
point on the spring with equilibrium positianis

Y(x,t) = Asinkyz coswpt (7.18)
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and the displacement of the mass is determined by the displacement of the end of the spring,

x(t) = (L,t) = Asink,l coswpt . (7.19)
The acceleration is o2
a(t) = @w(ﬁ,t) = —w2 Asink,l cos wyt (7.20)
equilibrium

"'0""'

| |
{—a /

stretched

1#(5—@,@ w(gvt)

Figure 7.2: The stretching of the last spring{g,t) — (¢ — a,t).

To find the force on the mass, consider the massive spring as the continuum limit as
a — 0 of masses connected by massless springs of equilibrium lengshat the beginning
of the chapter. Then the force on the mass at the end is determined by the stretching of the last
spring in the series. This, in turn, is the difference between the displacement of the system at
x = fandx = ¢ — qa, as illustrated in figur@.2. Thus the force is

F=-K, [¢(£> t) - ¢(£ —-aq, t)] : (721)
In order to take the limip — 0, rewrite this as

a w(f’t) - ¢(5 - avt) ]

F=-K, (7.22)
a
Now in the continuum limitK',a is K¢, and the last factor goes to a derivat&ew(x, )] g
The final result for the force is therefére
d
F= —KE% Y(x,t)],_y = —KLlky Acoskpl coswyt . (7.23)

2Note that we can use this to give an alternate derivation of the boundary condition for a fiee énd, (7.14).
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Note that the units worki/ is a force.%dz is dimensionless.
Putting (7.20) and (7.23) intbt = ma and canceling a factor 6f A cosw,t on both
sides gives,
K/k, coskpt = mwi sin k0 . (7.24)

Using the dispersion relation to eliminatg, we obtain

knltan k,l = prt . (7.25)
m
We have multiplied both sides of (7.25) byn order to deal with the dimensionless
variablesk,, ¢ (which is27 times the number of wavelengths that fit onto the spring) and the
dimensionless number

¢
e=PLY (7.26)

m
(which is the ratio of the mass of the spripg/¢, to the massy). The spring is light it is
much smaller than one.
The important point is that (7.25) has only one solutio féithat goes to zero as— 0.
Becausean k¢ ~ k¢ for smallk/, it is

kol ~ /e . (7.27)

For all the other solutions, the smallness of the left-hand side of (7.25) must come because
tan k£ is very small,
knf ~nm forn=1t0c0. (7.28)

But (7.28) implies
z(t) =¢(l,t) = Asink,lcoswpt =0 forn=1tocc. (7.29)

In other words, in all the solutions excépt the mass is hardly moving at all, and the spring
is doing almost all the oscillating, looking very much like a system with two fixed ends.
Furthermore, the frequencies of all the modes excepithede are large,

K
wp ~nmy|— form=1t0c0, (7.30)
prt

while the frequency of they mode is

wp ~ K . (7.31)
m
For smalle (large mass), they mode is associated primarily with the oscillation of the mass,
and has about the frequency we found for the case of the massless spring. The other modes
are in an entirely different range of frequencies. They are associated with the oscillations of
the spring. This is an important example of the way in which a single system can behave in

very different ways in different regimes of frequency.
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7.3 The Speed of Sound

z=0
Figure 7.3: An organ pipe.

The physics of sound waves is obviously a three-dimensional problem. However, we can
learn a lot about sound by considering motion of air in only one-dimension. Consider, for
example, standing waves in the air in a long narrow tube like an organ pipe, shown in cartoon
form in figure 7.3. Here, we will ignore the motion of the air perpendicular to the length of
the pipe, and consider only the one-dimensional motion along the pipe. As we will see later,
when we can deal with three-dimensional problems, this is a sensible thing to do for low
frequencies, at which the transverse modes of oscillation cannot be excited. If we consider
only one-dimensional motion, we can draw an analogy between the oscillations of the air in
the pipe and the longitudinal waves in a massive spring.

It is clear what the analog pf, is. The linear mass density of the air in the tube is

pL = pA (7.32)

whereA is the cross-sectional area of the tube. The question then is whéfads a tube of
air?

Consider putting a piston at the top of the tube, as shown inifigure 7.4. With the piston at
the top of the tube, there is no force on the piston, because the pressure of the air in the tube
is the same as the pressure of the air in the room outside. However, if the piston is moved in
a distancelz, as shown figure 7.5, the volume of the air in the tube is decreased by

—dV = Adz. (7.33)
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z=0

Figure 7.4: The organ pipe with a piston at the top. The air in the tube acts like a spring.

i ]

z=0
Figure 7.5: Pushing in the piston changes the volume of the air in the tube.

If the piston were moved in slowly enough for the temperature of the gas to stay constant,



162 CHAPTER 7. LONGITUDINAL OSCILLATIONS AND SOUND

then the pressure would simply be inversely proportional to the volume. However, in a sound
wave, the motion of the air is so rapid that almost no heat has a chance to flow in or out of
the system. Such a change in the volume is called “adiabatic.” When the volume is decreased
adiabatically, the temperature goes up (because the force on the piston is doing work) and the
pressure increases faster thai, like

pox V77 (7.34)

wherey is a positive constant that depends on the thermodynamic properties of the gas. More
precisely;y is the ratio of the specific heat at constant pressure to the specific heat at constant
volume?

Cp/Cy (7.35)
In air, at standard temperature and pressure
Vair ~ 1.40 (7.36)
Now we can write from (7.34),
dp av
= =y 7.37
) TV (7.37)
of av A
Y4 Po TPo
dp = —yp— ~ dz=—d 7.38
p =P o = dz (7.38)
wherepy is the equilibrium (room) pressure. Then the force on the piston is
A? A
dF = Adp = 22 P0 g, - T2P0 ), (7.39)
Vv 14
so that JF 4
Y A Po
K=—= 7.40
dz J4 ( )
and K/ is
Kl=~Apg. (7.41)
Thus we expect the dispersion relation to be
K
ez gt K TP0 s (7.42)
PL p

where we have defined the “speed of soung),.q, as

V2 TPo (7.43)

sound —

p

3See, for example, Halliday and Resnick.
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For air at standard temperature and pressure,
Vsound & 332 — . (7.44)
S

As we will see in the next chapter, this is actually the speed at which sound waves travel. For
now, it is just a parameter in our calculation of the normal modes.

In the pipe shown in (7.3), the displacement of the air, which we will/gallt), must
vanish atz = 0, because the bottom of the tube is closed and there is nowhere for the gas to
go.

The z derivative ofy) must vanish at = ¢, because the excess pressure is proportional
to —%w. The pressure is proportional to the force in our analogy with longitudinal waves in
the massive spring. Using (7.41) and (7.23), we expect the longitudinal force to be

0
£y Apog (7.45)

or the excess pressure to be
0
P—Po=—7Poy V. (7.46)
z

We want the negative sign because %w > 0, the air is spreading out and has lower
pressure.
Thus for a standing wave in the pipe, (7.3), we expect the boundary conditions

P0.0=0, L9z =0, (7.47)

for which the solution is
Y(z,t) =sinkz coswt (7.48)
k_m;m”, w= vk, (7.49)

wherev = vgound, fOr NnonNnegative integer. In particular, the lowest frequency mode of the
tube corresponds to = 0,

b e (7.50)

7.3.1 The Helmholtz Approximation

Let's consider a slightly different problem. What is the lowest frequency mode of a one-liter
soda bottle, shown in figure 7.6? A typical set of parameters is given below:

A~ 285cm? : area of neck
¢~5.7cm : length of neck
(7.51)
L=~25cm : length of bottle

Vo ~1000cm : volume of body
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Vo

Figure 7.6: A one liter soda bottle.

Putting the length[., of the bottle into/ (7.50) gives ~ 332hertz. In American standard
pitch (see table 7.1), this is @&habove middle”'.

This is obviously wrong. If you have ever blown into your soda bottle, you know that
the frequency of the lowest mode is much lower than that. The problem, of course, is that
the soda bottle is not shaped anything like the tube. To determine the modes is a complicated
three-dimensional problem. It turns out, however, that we can find the lowest mode to a
decent approximation rather easily.

The idea is that in the lowest mode, the air in the neck of the bottle is moving rapidly, but
in the body of the bottle, the air quickly spreads out so that it is not moving much at all. The
idea of the Helmholtz approximation to try is to treat the air in the neck as a single chunk
with mass

pAL, (7.52)

and to treat the body as a spring, that contributes restoring force but no inertia (because the
air is not moving much). Then all we must do is to computd<he the “spring.” That is
easy, using (7.38). In this case,

dVv = Adz, (7.53)

SO
Adz Adz

% ~ —7Po Vo

dp = —p (7.54)
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Table 7.1: American standard pitch440) — frequencies are in Hertz.

Equal-temperament Chromatic Scale
note v note v note v
A 80 A 440 A 220
Gt 831 Gt 415 Gf 208
G G G

784 392 196
Ff 740 Ft 370 F4 185
F 698 F 349 F 175

E 659 E 330 FE 165
Eb 622 E» 311 Eb 156
D 587 D 294 D 147
Ct 554 Cf 217 Ci 139
C 523 C 262 C 131
B 494 B 247 B 123
Bb 466 B> 233 Bb 117

and e
dz
~— 7.55
Po v ( )
or I
K" = —. 7.56
Po (7.56)
Then using.? = K/m, we expect
vA2po/ Vo A
SRy M LAY 7.57
“ \/ oAt~ "\ (7.57)
For the soda bottle, (7.6), this gives
v = 118hertz (7.58)

or roughly aBb below lowC'. This is just about right (see problem 7.5).

7.3.2 Corrections to Helmholtz

There are many possible corrections to (7.57) that might be considered. One is to include the
so-called “end effect.” The point is that the velocity of the air in the lowest mode does not
drop to zero immediately when you go past the ends of the neck. Thus the actual mass is
somewhat larger thgmA/. The lore is that you can do better by replacing

0 0+067 (7.59)
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wherer is the radius of the neck.

Here we will discuss another correction that can be dealt with systematically using the
methods of space translation invariance and local interactions. If the bottle has a long neck,
it is probably not a good idea to treat the air in the neck as a solid mass. Furthermore, there
is a simple alternative. A better analogy for the neck is a massive springdvith~y A pg.

Because the neck is a space translation invariant, essentially one-dimensional system, we

expect a displacement of the form
wz

y cos — (7.60)
v

in the neck, where = 0 is the open end anglis the displacement of the air at=20. Thus,
where the neck attaches to the body, the displacement is

y cos %ﬁ : (7.61)

The force at this point from the compression of the air in the neck is (from (7.45))
oY  NApw . wl
—_— = Yysin — .

Freck = —'YAPD Oz (762)
This must be the negative of the force from the air in the body, from (7.39),
A2
— Foody = 72 Po ycoswl /v, (7.63)
Vo
or " )
PO tan P = 1. (7.64)
Av v

You will explore the consequences of this in problem 7.5.

This analysis does not distinguish between the area of the top and bottom of the neck.
Perhaps the area at the bottom is more appropriate. What matters is the area at the bottom
that determines the force per unit area where the wave in the neck matches onto the body.

Chapter Checklist

You should now be able to:

i. Find the motion of a point on a continuous spring oscillating longitudinally in one of
its normal modes for various boundary conditions;

ii. Solve for the normal modes of a system of a mass attached to a massive spring;

iii. Be able to derive the dispersion relation for sound waves and find the normal modes
for oscillations of air in a tube;

iv. Be able to use the Helmholtz approximation to estimate the frequency of the lowest
mode of bottle.
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Problems
7.1 Derive (7.45) directly by considering the volume of the chunk of air in the tube
betweer: and z+ dz, and using (7.38).

7.2 Use an analogy witfi7.16)-(7.3) to find (approximately!) the normal modes and
corresponding frequencies of the system shown in figdréut with a massive ring of mass
m sliding on the frictionless rod.

Figure 7.7: A hanging spring.

!
1 z(t) = L+ ecoswt
1 2(t) =7

Figure 7.8: Problem 7.3.

7.3 A massive continuous spring with masslengthZ and spring constait hanging
vertically. The system is shovat rest in its equilibrium configuration in figure7.7. The

spring constant is large, satisfyihgl > mg, S0 gravity plays no important role here except

to keep the spring vertical. Now suppose that the supporting hanger is driven up and down so
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that the top of the spring moves vertically with displacement wt, as shown in figure 7.8.
Find thez position of the bottom of the spring as a function of time. Ignore damping.

z2=0

Figure 7.9: Problem 7.4.

7.4. A system analogous to that in problem 7.3 is a tube of air with a piston at the top
and the bottom open, as shown in figure 7.9: If the cross sectional area of thedtuybas

is the analog in this system of the spring constintin problem 7.3? Make sure that your
answer has units of force per unit distance.

7.5 PERSONAL EXPERIMENT — Show that when//v is small, (7.64) reduces to
the Helmholtz approximatior, (7.57), while fidgy ~ 0, when the bottle is all neck, it reduces
to the result for the modes of a uniform tube with one open and one closed end, (7.50).

Do the experiment! Find a selection of at least four bottles, at least one of which has a
very long neck. Measure the frequency of the lowest mode of each, and describe how you
did it. For each bottle, tabulate the following (in cgs units):

i. A description (ie. soda bottle, 2000 ml)
ii. A (the area of the top of the neck)
iii. Ap (the area of the bottom of the neck)
iv. r (the radius of the neck)
v. [ (the length of the neck)
Vi. Vioay (the volume of the body)
vii. v (the frequency of the lowest mode)
viii. w (the angular frequency of the lowest mode)
iX. w?Vyl/av? (=1 in the Helmholtz approximation)
X. (wVp/Av) tan(wl/v) (=1 in the approximation (7.54))

See whether you can see the end effect, (7.59), or distinguish the area of the top of the
neck from the bottom — that is, see which works better in|(7.57). Comment, as quantitatively
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as you can, on the errors in your experiment, and on the relative merits of the approximate
expressions that you have tested.
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Chapter 8

Traveling Waves

In this chapter, we show how the same physics that leads to standing wave oscillations also
gives rise to waves that move in space as well as time. We then go on to introduce the
important physical example of light waves.

Preview

In an infinite translation invariant system, traveling waves arise naturally from the complex
exponential behavior of the solutions in space and time.

Vi.

We begin by showing the connection between standing waves and traveling waves in
infinite systems. A traveling wave in a linear system is a pair of standing waves put

together with a special phase relation. We show how traveling waves can be produced
in finite systems by appropriate forced oscillations.

We then go on to discuss the force and power required to produce a traveling wave on
a string, and introduce the useful idea of “impedance.”

We introduce and discuss the most important classical example of wave phenomena,
electromagnetic waves and light.

We reexamine the translation invariant systems of couptéctircuits discussed in
chapter 5 and show how they are related to electromagnetic waves.

We discuss the effects of damping in translation invariant systems, giving a simple
physical interpretation of the effect of traveling waves.

We discuss traveling waves in systems with damping and in systems with high and/or
low frequency cut-offs.

171
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8.1 Standing and Traveling Waves
8.1.1 What is It That is Moving?

ls-1
We have seen that an infinite system with translation invariance has complex solutions of the
form

e:l:ikxe:tiwt ’ (81)
wherek andw are related by the dispersion relation characteristic of the system. So far, we
have considered standing wave solutions in which the space and time dependent factors are
separately real, i.e.

sin kx - coswt oc (eR® — e7he) . (giwt | o=ty (8.2)
But we can put the same solutions together in a different way,
Y(z,t) = cos(kx — wt) o (ekTe~Wt 4 gmthz ity (8.3)

This is called dtraveling wave.” The underlying system that supports the wave is not
actually traveling. Instead, what is moving is the wave itself. If we follow the point
for which ¢)(z,t) has some constant value, the point moves in the positdiesction at

a constant velocity, called tHghase velocity,”

vy = w(k)/k. (8.4)

In (8.3), for example(z,t) is equal to one for = t = 0, because the argument of the
cosine is zero (it is also equal to one for 2n7/k for any integem, but we will focus
on just the single point; = 0). Ast increases, this point moves in the positiveirection
because the argument of the coske;-wt, vanishes for = wt/k = vyt. Thisis illustrated
in program 8-1.

We will continue to define all the real modes to be real parts of complex modes propor
tional toe~*. Thus[(8.3) is

cos(kx — wt) = Re [eF%e 1] (8.5)
In this notation a wave traveling to the left is
cos(kx + wt) = Re [e"F@e ™0 (8.6)

while a standing wave is

1 . . . .
cos kx cos wt = 3 Re [eth@e~ Wt 4 gikzgmivt]

(8.7)
= 1 [cos(kz — wt) + cos(kz + wt)] .



8.1. STANDING AND TRAVELING WAVES 173

A standing wave is a combination of traveling waves going in opposite directions! Likewise,
a traveling wave is a combination of standing waves. For example,

cos(kx — wt) = cos kx cos wt + sin kz sin wt . (8.8)

These relations are important because they showthibaklation betweenk and w, the
dispersion relation, is just the same for traveling waves as for standing waveA!lwave
is a wave, whether traveling or standing. Indeed, we can go back and fort{8g)rasnd
(8.8). The dispersion relation that relatesk and w is a property of the system in which
the waves exist, not of the particular wave.

The other side of this coin is that traveling waves exist for systems with any dispersion
relation. Knowing the phase veloci{.4),for all £ is equivalent to knowing the dispersion
relation, because you must kna\k). In particular, it is only for simple, continuous systems
like the stretched string (s€&.5)) thatw(k) is proportional tdk and the phase velocity is a
constant, independent bf

8.1.2 Boundary Conditions

B8-2

Traveling waves can be produced in finite systems by forced oscillation with an appropriate
phase for the oscillations at the two ends. A simple example involves a stretched string with
tensionT and linear mass density Given boundary conditions on the system so that

¥(0,t) = Acoswt, ¥P(L,t) = Asinwt, (8.9)
wherelL is the length of the string, the angular frequendy chosen so that

_Sm_ P _w (8.10)

k= — =
2L T vy

As usual in a forced oscillation problem, we are interested in the steady state solution in
which the system moves with the angular frequescyf the forcing terms. We can solve
this problem easily by breaking it up into two problems.

First consider the boundary condition:

1/)1(0,t) = 0, ¢1 (L,t) = Asinwt. (811)

This is easily solved by the methods of chapter 5. From the condition=afl, we know
that the solution fot) (x, t) is proportional tein kz. Then the boundary conditionat= L
gives the standing wave solution:

1(x,t) = Asinkz sinwt . (8.12)
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Next consider the boundary condition
P2(0,t) = Acoswt, 2(L,t) =0. (8.13)
Analogous arguments (startingzat= L) show that the solution is the standing wave
o(x,t) = Acoskx coswt . (8.14)
Now we can obtain the solution for the boundary condition (8.9) simply by adding these:

@ZJ(:L‘,t) = wl(l'at) + 1/12($7t)

= Acoskx coswt + Asin krsinwt = A cos(kx — wt),

(8.15)

which is a wave traveling fromm = 0 to z = L. The crucial point is that the two standing
waves out of which the traveling wave is built 868 out of phase with one another both

in time and in space. They get large at different points in space and also at different times
and the interplay between the two produces the traveling wave. This is illustrated in figures
8.18.4for wt = 0, w/4, /2 and3x /4. In each of these figures, the top curve is the traveling
wave. The middle curve is (8.14)he lower curve is (8.12).

Figure 8.1t = 0.

This system is animated in program 8-2. This animation is important. It is worth staring
at it for a while to get a better feeling for h(8v15)works than you can from the still pictures
in figures8.1:8.4. If you concentrate on a particular point on the string, you will see that the
traveling wave gets large either when one of the standing waves is a maximum with the other
near zero, or (depending on where you looking) when both standing waves are positive.
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Figure 8.3:t = /2.

8.2 Force, Power and Impedance

Whatever is enforcing the boundary conditions in the examg&$fmust exert a force on

the string. Of course, a horizontal force is required to keep the string stretched, but for small
oscillations, this force is nearly constant and approximately equal to the string t@nsion,
Furthermore, there is no motion in thelirection so no work is done by this component of
the force. The vertical component of the force is the negative of the force which the tension

on the string produces. At= 0, this is

Fo = ~Tab(a, )] (8.16)

This is illustrated in figure 8.5.
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Figure 8.4:t = 37 /4.

tension
force

Fy=—-Tsinf ~ -1’

driving
force

Figure 8.5: The force due to a string pulling in thedirection.

At z = L, because the string is coming in from the direction, it is
0
Fr=T— t)z=1 8.17
L =Ty d(z, Na=r (8.17)

as illustrated in the figui@.6.
In the forced oscillation, the end of the string is moving only in the transverse direction.
Thus the power supplied by the external force at0, which isF' - v'is

0 ¥(0,t) (8.18)

0
Pt) =T 0w, 5

ox
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driving
force

F, = Tsinf ~ T

tension
force

Figure 8.6: The force due to a string pulling in thedirection.

where as in (2.26))(z, t) is thereal displacement from equilibrium for the piece of string
at horizontal positiorr. We must take the real part first because the powenamlmear
function of the displacement.

For a standing wave on the string (or any system with no frictional forces), the force and
the velocity are 90out of phase. For example, if the displacement is proportiosal i,
then the transverse force at each end is also proportiosialdé. The velocity, however, is
proportional tacos wt. Thus the power expended by the external force is

1
x sinwt coswt = 3 sin 2wt . (8.19)

This averages to zero over a half-cycle. On the average, no power is required to keep the
standing wave going (in the absence of damping).

In a traveling wave, on the other hand, the force and the velocity are proportional. From
(8.15), you can see that

0 k O
- - _r = . 8.20
() = —= () (8.20)
Thus 9 5
Fy=7— Fr = —Z—y(L 21
0 atw(()?t)a L 8tw( at)v (8 )
where the constaii,
7 = T—k =T, (8.22)

w
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is called thé'impedance” of the string system. It measures the power required to produce
the traveling wave. The power requiredrat 0 is

2
Ph=7 <§t¢(0,t)> =7 A%? sin®wt. (8.23)
The average power expended is thus
(Py) = Z A%W?)2. (8.24)

The power expended at= 0 to produce the traveling wave is given up by the string at
x = L, because the power required.at

ot

If the boundary conditions were such that the traveling waves were going in the opposite
direction, the force in the above derivations would have the opposite sigr from (8.20). Thus
the positive power is always required to produce the wave and the negative power is required
to absorb it. It may seem odd that the power fed into the wave in (8.23) and the power given
up by the wave in (8.25) are not exactly equal and opposite. The sum vanishes on the average,
but oscillates with time. The reason is that the length of the system is not an integral number
of wavelengths. This allows the energy stored on the system, the sum of kinetic and potential,
to oscillate as a function of time.

Note that the force required to absorb a traveling wave, in (8.21), is negative and propor
tional to the velocity. This is a typical frictional force. Thus a traveling wave can be absorbed
completely by a frictional force (or a resistance) with exactly the right ratio of force to ve-
locity. If the impedance of thlashpot” (as such a resistance is called) is not exactly the
same as that of the string, there will be some reflection. We will come back to this in the next
chapter.

2
P,=—-Z <8¢(L,t)> = —7 A%W? cos® wt . (8.25)

8.2.1 * Complex Impedance

For the stretched string, a system for which the dispersion relation is equivalent to the wave
equation,(6.4), the force on the system and the displacement veggtpi,tﬁre proportional

for any traveling wavé.In general, this is not true. For example, consider the beaded string
of figure' 5.4 stretched from = 0 to some large:. Suppose further that there is a traveling
wave in the system of the form,

Y(x,t) = Acos(kx — wt) , (8.26)

illustrated in figuré 8)2.The dotted line is the equilibrium position of the string.

We will see this in detail in chapter 10.
2For an animation of a traveling wave in a similar system, see program 8-6. The system shown in this program
has the beads on springs, as well as on a string. However, the form of the traveling wave is the same. Only the
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Figure 8.7: A snapshot of a traveling wave in a beaded string.

So long as andw are related by the dispersion relati(®39),then(8.26)is a solution
to the equation of motion. The external transverse forae-at0 required to produce the
traveling wave is related to the difference between the displacement of the first block and the
displacement of the end at= 0 (see figuréb.5). It is

TA
Fy = — (cos(wt — ka) — coswt) . (8.27)
a

This is approximately proportional to the veloaiyly if ka is very small, so that the right-
hand side o{8.27)can be expanded in a Taylor series. Thus in this case, and in general for a
discrete system, we cannot define the impedance simply as in (8.21).

However, suppose that instead of the real traveling wi&e%i),we consider a complex
harmonic traveling wave witinreducible time and space of the form

Y(x,t) = AeWimk) (8.28)

Then because of the irreducibleicandz (that comes from translation invariance), we know
immediately that the both the force and thierivative ofy) are proportional ta). For an
irreducible solution, everything is proportionaktd(“*=**) Thus they are also proportional
to each other, and we can define the impedance,

9
ot

For example, for the beaded string, if we replace the real sol(®@), with the irre-
ducible complex solution, (8.28he force becomes

FO _ % (e—i(wt—ka) - e—iwt) _ % (eika o 1) e—iwt ) (830)

F =—Z(k)=v(z,t) = iwA Z(k) e "«@t=k2) (8.29)

Thus from[(8.29), the impedancé(k), is

2y = L1 _ 2T opsin’y
wa 1 a w

(8.31)

dispersion relation is different.
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Using the dispersion relation, (5.39), we can write this as

Z(k) = e'ka/? ,/mTT . (8.32)

The impedanceZ(k), defined by[(8.29) is, in general, complex, &ndependent. Never
theless, we can find the average power required to produce the wave. Because the power is
a nonlinear function of the displacement, we must first take the real parts of the complex
velocity and complex force before computing the power, as inl(2.26). For arbitrary complex

A =|Ale",

v = w|A|sin(wt — kx — ¢),
F = (Im Z(k)) w|A| cos(wt — kx — ¢) + (Re Z(k)) w|A| sin(wt — kx — ¢),

(8.33)

where we have put the phasedinto thecos andsin functions (see (1.96)-(1.98)) to make
it clear that only the absolute value Afmatters for the average powémen, as in[(2.26),
only thesin? term contributes to the time-averaged power, which is

%(Re Z) W2 A% (8.34)
8.3 Light

Light waves, like the sound waves that we discussed in the previous chapter, are inherently
three-dimensional things. However, as with sound, we can say a lot about light that is more
or less independent of the three-dimensional details.

8.3.1 Plane Waves

There is a simple way of concentrating on only one dimension. That is to look for solutions
in which the other two dimensions do not enter at all. Consider Maxwell's equations in free
space, in terms of the vector fieldsand Bdescribing the electric and magnetic fields.

0E, OE, 0B,
or oy ot
oB. OF, 0B,

(8.35)

0 0z ot
8E1'/$ B oE, _aBy
0z or ot
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0B, 0B OE.
554 Moeoaaé

- 0B, OB 8.36
P 0z M0y, (8.36)
0B, OB. oE,

+ 0

Ox * oy + 0z
whereeq and o are two constants called the permittivity and permeability of empty Space.

Let us look for solutions to these partial differential equations that involve only functions of
z andt. In this case, things simplify to:

0B, 0E, 0B, OE, 0B,

=% " @ 8 o (8.38)
B OF, 0B, OF, 0B, 0E,
0= MOGOW , —W = MOGOW ) @ = MOEOW ) (8.39)
OF, 0B,
= =0. 8.40
0z 0, 0z 0 ( )

These equations imply that, and B, are independent afandt. Since we have already
assumed that they depend onlyzoendt, this means that they are constants. We will ignore
them because we are interested in the solutions with nontrieiatl¢ dependence. That
leaves ther and ycomponents, satisfying (8.38) and (8.39).

Then, because (8.38) ard (8.39) are invariant under translatiananid¢, we expect
complex exponential solutions, in which all components are proportional to

el(Eh=mwt) (8.41)
Eu(z,t) = eZel@ERe=wt) - B (2,1) = 6yiei(ikz_“’t) ) (8.42)
By(z,t) = Be'®=0 B (2,1) = Gl Ehen) (8.43)
Direct substitution of (8.42) and (8.43) into (€.38) and (8.39) gives
Fhep =wfBy, +kef =wpy, (8.44)
F kB = —mocowey . £k = —poeowe,, - (8.45)

As usual, we have written the wave with the irreducible time dependeri¢é, To get
the real electric and magnetic fields, we take the real part of (8.42) and (8.43). This works

3See, for example, Purcell, chapter 9.
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because Maxwell's equations are linear in the electric and magnetic fields. The amplitudes,
e+, etc, can be complex.

From (8.44) and (8.45), you see thitis related to3F and=7 is related tg3;". For each
relation, there are two homogeneous simultaneous linear equations in the two unknowns.
They are consistent only if the ratio of the coefficients is the same, which implies a relation
betweert and

k% = poeow? . (8.46)
This is a dispersion relation,
1
w? =2k = k2. (8.47)
Ho€o

The phase velocity, is the speed of light in vacuum (we will have more to say about this in
chapters 10 and 11!).
Once [(8.47) is satisfied, we can solve forgHein terms of the™:

1 1
BE = j:ge;t, BE = :ng;t. (8.48)

These solutions to Maxwell’s equations in free space are electromagnetic waves, or light
waves. These simple solutions, depending only amdt are an example of plane wave
solutions. The name is appropriate because the electric and magnetic fields in the wave have
the same value everywhere on each plane of constéort any fixed time¢. These planes
propagate in the-z direction at the phase velocity,

In general, electromagnetic waves can propagate in any direction in three-dimensional
space. However, the electric and magnetic fields that make up the wave are always perpen-
dicular to the direction in which the wave is traveling and perpendicular to each other.

The treatment of plane wave electromagnetic waves traveling indinection is analo-
gous to our treatment of sound in chapter 7. There, also, the wave depended:oipwn
ever, the electromagnetic waves are a little more complicated because the wave phenomenon
depends omoth the electric and magnetic fields. The reason that we have postponed until
now the discussion of electromagnetic waves, even though they are one of the most important
examples of wave phenomena, is that the relations, (8.48), between the electric and magnetic
fields depend on the direction in which the wave is travelingHtegn!). It is much easier
to write down the solutions for the traveling waves than for the standing waves. Even for the
simple traveling plane waves we have described that depend oahamaht, this relation
between Fand B and the direction of the wave depends on the three-dimensional properties
of Maxwell's equations. We will discuss these issues in much more detail in chapters 11 and
12.

8.3.2 Interferometers

One of the wonderful features of light waves is that it is relatively easy to split them up
and reassemble them. This feature is used in many optical devices, one of the simplest of
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Figure 8.8: A schematic diagram of a Michelson interferometer.

which is arf'interferometer,” one version of which (the Michelson interferometer) is shown
in schematic form in figure €.8A source produces a plane wave (as we will discuss in
chapter 13, it cannot be quite a plane wave, but never mind that for now). The partially
silvered mirror serves as a “beam splitter” by allowing some of the light to pass through,
while reflecting the rest. Then the mirrors at the top and the right reflect the beams back.
Then the patrtially silvered mirror serves as a “beam reassembler,” combining the beams from
the top and the right into a single beam that travels on to the detector screen where the beam
intensity (proportional to the square of the electric field) is measured. The important thing
is that the light wave reaching the detector screen is the sum of two components that are
coherent and yet have traveled different paths. What “coherent” means in this context is not
only that the frequency is the same, but that the phase of the waves is correlated. In this case,
that happens simply because the two components reaching the screen arise from the same
incoming plane wave.

Now the intensity of the light reaching the screen depends on the relative length of the
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two paths. Different path lengths will produce different phases. If the two components are
in phase, the amplitudes will add and the screen will be bright. This is called “constructive
interference”. If the two components d&9° out of phase, the amplitudes will subtract and
the screen will be dark. There will be what is called “destructive interference.”

This sounds rather trivial, and indeed it is (at least for classical electromagnetic waves),
but it is also extremely useful, because it provides a very sensitive meashaagésof the
length of the paths. In particular, if one of the mirrors is moved a distiafitcmight be part
of an experimental setup designed to detect small motions, for example), the relative phase of
the two components reaching the screen chang2kdoywherek is the angular wave number
of the plane wave, because the path length of the reflected wave has chapded iys
each timed changes by a quarter of the wavelength of the light, the screen goes from bright
to dark, or vice versa.

This is a very useful way of measuring small distance changes. In practice, the incoming
beam is not exactly a plane wave (that, as we will see in detail later, would require an infinite
experiment!), so the intensity of the light is not uniform over the screen. Instead there are
light areas and dark areas known as “fringes.” As the mirror is moved, the fringes move, and
one can count the fringes that go past a given spot to keep track of the number of changes
from bright to dark.

8.3.3 Quantum Interference

There is another wave of thinking about the interferometer that makes it seem much less
trivial. As we will discuss several times in this book, and you will learn more about when you
study quantum mechanics, light is not only a wave.dtsemade up of individual particles

of light called photons. You don't notice this unless you turn the intensity of the light wave
way down. But in fact, you can turn the intensity down so much that you can detect individual
photons hitting the screen. Now it is not so clear what is happening. An individual photon
cannot split into two parts at the beam splitter and beam reassembler. As we will see later,
the energy of the photon is determined by the frequency of the light. It cannot be divided.
You might think, therefore, that the individual photon would have to go one way or the other.
But then how can one get an interference between the two paths? There is no answer to
this question that makes “sense” in the classical physics of particles. Nevertheless, when the
experiment is done, the number of photons reaching the screen depends on the difference in
lengths between the two paths in just the way you expect from the wave description! The
probability that a photon will hit a given spot on the screen is proportional to the intensity
of the corresponding classical wave. If the path lengths produce destructive interference, no
photons get through. Not only that, but similar experiments can be done with other particles,
such as neutrons! Maybe interference is not so trivial after all.
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8.4 Transmission Lines

We have seen that a translation invariant system of inductors and capacitors can carry waves.
Let us ask what happens when we take the continuum limit of such a system. This will give
an interesting insight into electromagnetic waves. The dispersion relation for the system of
figure 5.23 is given by (5.75),

2= LjCa sin? % . (8.49)
whereL, andC,, are the inductance and capacitance of the inductors and capacitors for the
system with separatiombetween neighboring parts. To take the continuum limit, we must
replace the inductance and capacitafigeandC,, by quantities that we expect to have finite
limits asa — 0. We expect from the analogy, (5.69), betwdgn circuits and systems of
springs and masses, and the discussion at the beginning of chapter 7 about the continuum
limit of the system of masses and springs that the relevant quantities will be:

w

L, . .
pr, — —  inductance per unit length
a (8.50)

K, ¢ 1
a® = ¢, Capacitance per unitlength
These two quantities can be computed directly from the inductance and capacitance of a finite
length, /¢, of the system that contains many individual units. The inductances are connected
in series so the individual inductances add to give the total inductance. Thus if the Iength
na SO that if the finite system containsnductors, the total inductancelis= nL,. Then
L L,

Z=== (8.51)

The capacitances work the same way because they are connected in parallel, and parallel
capacitances add. Thus

C_C (8.52)
l a
Therefore, in taking the limit as— 0 of (8.49), we can write
L C
La == CL? y Ca == CL? . (853)
This gives the following dispersion relation:
-2 ka
0?2 4sin? B /2
2 _ v 2 b g2
W= e Lck . (8.54)

A continuous system like this with fixed inductance and capacitance per unit length is
called a transmission lineWe will call (8.54) the dispersion relation for a resistanceless
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transmission line. A transmission line can be used to send electrical waves, just as a continu-
ous string transmits mechanical waves. In the continuous system, the displacement variable,
the displaced charge, becomes a function of position along the transmission line. If the trans-
mission line is stretched in thedirection, we can describe the charges on the transmission
line by a functionQ(z, ¢) that is the charge that has been displaced through thezpomt
the transmission line at time The time derivative af)(z, ¢) is the current at the poiatand
time ¢:

9Q(z, t)

I(z,t) = == (8.55)

8.4.1 Parallel Plate Transmission Line

It is worth working out a particular example of a transmission line. The example we will use
is of two long parallel conducting strips. Imagine an infinite system in which the strips are
stretched parallel to one another in planes of congtagaing to infinity in thez direction.
Suppose that the strips are sufficiently thin that we can neglect their thickness. Suppose
further that the width of stripsy, is much larger than the separatien A cross section of

this transmission line in the — y plane is shown in figur.C. In the figure, the direction

is out of the plane of the paper, toward you. We will keep track of the motion of the charges
in the upper conductor and assume that the lower conductor is grounded (with voltage fixed
at V' =0).

Figure 8.9: Cross section of a transmission line incthey plane.

We will find the dispersion relation of the transmission line by computing the capacitance
and inductance of a part of the line of lengthit will be useful to do this using energy
considerations. Suppose that there is a ch&geniformly spread over the upper plate of
the capacitor, and a curreiit,flowing evenly out of the — y plane in the; direction along
the upper conductor (and back into the plane along the lower conductor). The energy stored
in the length/, of the transmission line is then

1 1
%Qz + 5LIQ, (8.56)

whereC and Lare the capacitance and inductafce.

4See Haliday and Resnick, part 2.
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The energy is actually stored in the electric and magnetic fields produced by the charge
and current. In this configuration, the electric and magnetic fields are almost entirely between
the two plates of the piece of the transmission ling) #nd/ are positive, the electric and
magnetic fields are as shown in figure 8.10 and figure 8.11. Infigure 8.10, the dotted line is
a cross section of a box-shaped region that can be used to compute the electric field, using
Gauss’s law. In figure 8.11, the dotted path can be used to compute the magnetic field,
using Ampere’s law. The electric and magnetic fields are approximately constant between
the strips, but quickly fall off to near zero outside.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 8.11: The magnetic field due to the current on the transmission line.

The charge density on the upper plate is approximately uniform and given by the total
charge divided by the area/,

o= @ . (8.57)
wl
Then we can apply Gauss'’s law to a small box-shaped region, a cross section of which is
shown in figuré 8.10 and conclude that the electric field inside is given by

Q
E, ~ — 8.58
Y eqwl ( )

The density of energy stored in the electric field between the plates is therefore
_ 02 Q?

The total energy stored in the electric field is then obtained by multiplyirmy the volume

between the plates, yielding
1 s 9

- 8.60
2 60w€ ( )
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thus (comparing with (8.56))

o= vt (8.61)
S

We can calculate the inductance in a similar way. Ampere’s law, applied to a path enclos-
ing the upper conductor (as shown in figure 8.11) gives

I
B, ~ M (8.62)
w

The density of energy stored in the magnetic field between the plates is therefore

! Bzz'uolg

Uup

The total energy stored in the magnetic field is then obtained by multiplgibyg the volume
between the plates, yielding

1 post 1 (8.64)
2 w
thus (comparing with (8.56))
L= Fost (8.65)
w

We can now put (8.61) and (8.65) into (8.54) to get the dispersion relation for this trans-
mission line:

k? = 2k?, (8.66)

wherec is the speed of light!

8.4.2 Waves in the Transmission Line

The dispersion relatiori, (8.66), looks suspiciously like the dispersion relation for electromag-
netic waves. In fact, the electric and magnetic fibketsveenthe strips of the transmission

line have exactly the form of an electromagnetic wave. To see this explicitly, let us look at a
traveling wave on the transmission line, and consider the ch@fget), displaced through

z, with the irreducible complex exponentiadndt dependence,

Q(z,t) = qei(kz_‘”t) ) (8.67)

This wave is traveling in the positizadirection, out toward you in the diagram of figure 8.9.
At any fixed time¢ and positionz, the electric and magnetic fields inside the transmis-
sion line look as shown in figure 8/10 and figure 8.11 (or both may point in the opposite
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direction). We can find the magnetic field just as we did above, because the current at any
point along the line is given by (8/55), so

By(z,t) ~ MOII(UM = Z?gt (z,t) = —i% elhz=wt) (8.68)
To find the electric field as a functionofind¢, we need the density of charge along the

line. Once we have that, we can find the electric field using Gauss’s law, as above. A nonzero

charge density results if the amount of charge displabadgesas a function of. It is

easiest to find the charge density by returning to the discrete system discussed in chapter 5,

and to|(5.72). In the language in which we label the parts of the system by their positions, the

chargeg;, in the discrete system becomgs, t) wherez = ja. Asa — 0, this corresponds

to a linear charge density along the transmission line of

ooty = L0 (8.69)

a

In this language| (5.72) becomes

Q(Z7t) = Q(Z,t) - Q(Z +a, t) ) (870)

whereQ(z, t) is the charge displaced through the inductor a positetrtimet. Combining
(8.69)and (8.70) gives
Q(z,t) — Q(z +a,t)

p(z,t) = , : (8.71)

Taking the limit as: — 0 gives

a . WRZ—W
p(z,t) = —aQ(z,t) = —ikqe'Fz=wt) (8.72)

This linear charge density is spread out over the width of the upper strip in the transmission
line, giving a surface charge density of

o(z,t) = p(i)’ 2 = —i% elhz=wt) (8.73)

Now the electric field from Gauss’s law is

E, = _o(zt) _ iﬂ eilkz—wt) (8.74)
€0 cow
Comparingl(8.68) with (8.74), you can see that (8.45) is satisfied, so that this pair of electric
and magnetic fields form a part of a traveling electromagnetic plane wave.
What is happening here is that the role of the charges and currents in the strips of the
transmission line is toonfinethe electromagnetic waves. Without the conductors it would
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impossible to produce@eceof a plane wave, as we will see in much more detail in chapter
13.

Meanwhile, note that the mode with= 0 andk = 0 must be treated with care, as
with thew = k£ = 0 mode of the beaded string discussed in chapter 5. The mode in which
the displaced charge is proportionakttsee (5.41)) describes a situation in which the entire
infinite transmission line is charged. This is not very interesting in the finite case. However,
the mode that is independentgfbut increasing with time, proportional s important.

This describes the situation in which a constant current is flowing through the conductors.
Inside the transmission line, in this case, is a constant magnetic field.

8.5 Damping

It is instructive, at this point, to consider waves in systems with frictional forces. We have
postponed this until now because it will be easier to understand what is happening in systems
with damping now that we have discussed traveling waves.

The key observation is that in a translation invariant system, even in the presence of
damping, the normal modes of the infinite system are exactly the same as they were without
damping, because they are still determined by translation invariance. The normal modes
are still of the formg****, characterized by the angular wave nunibe®nly the dispersion
relation is different. To see how this goes in detail, let us recapitulate the arguments of chapter
5.

The dispersion relation for a system without damping is determined by the solution to the
eigenvalue equation

[—wQ + M K| AF =0, (8.75)

whereA¥ is the normal mode with wave number
Al o elihe (8.76)

with time dependence > We already know that* is a normal mode, because of trans-
lation invariance. This implies that it is an eigenvectof©f! K. The eigenvalue is some
function ofk. We will call itw3 (k), so that

MK AR = WE (k) A (8.77)

This functionw3 (k) determinesthe dispersion relation for the system without damping,
because the eigenvalue equation, (8.75) now implies

w? = wj (k). (8.78)

_ ®In the presence of damping, the sign afiatters. The relations below would look different if we had used
!, and we could not uses wt or sinwt.
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We can now modify the discussion above to include damping in the infinite translation
invariant system. In the presence of damping, the equation of motion looks like

1Lyt = L) — v (8.79)
dt? a dt ’ '

where M T is the matrix that describes the velocity dependent damping. Then for a normal
mode,

Y(t) = AF et (8.80)
the eigenvalue equation now looks like
[—w2 —iTw + M—lK} AF = 0. (8.81)

Now, just as in/(8.77) above, because of translation invariance, we knawftisaan eigen-
vector of bothV/ ~! K and T,

MUK AR = W2(k) AF, T AF = (k) AF. (8.82)
Then, as above, the eigenvalue equation becomes the dispersion relation
w? =W (k) —iv(k)w. (8.83)

For allk, v(k) > 0, because as we will see in (€.84) below, the force is a frictional force.
If v(k) were negative for any, then the “frictional” force would be feeding energy into the
system instead of damping it. Note also thdt i v, thenv(k) = ~, independent of.
However, in general, the damping will dependcoModes with different may get damped
differently.

In (8.83), we see the new feature of translation invariant systems with darfipengnly
difference is that the dispersion relation becomes compleBoth w3 (k) and~(k) are real
for realk. Because of the explicitin (8.83), eitherw or & (or both) must be complex to
satisfy the equation of motion.

8.5.1 Free Oscillations

For free oscillations, the angular wave numbérsof the allowed modes are determined
by the boundary conditions. Typically, the allowedalues are real and?(k) is positive
(corresponding to a stable equilibrium in the absence of damping). Then the modes of free
oscillation are analogous to the free oscillations of a damped oscillator discussed in chapter
2. In fact, if we substituter — —iw andI" — ~(k) in (2.5), we get precisely (8.83). Thus
we can take over the solution from (2.6),

, (k)

— = — +

w B 4
This describes a solution that dies out exponentially in time. Whether it oscillates or dies out
smoothly depends on the ratiogf) to wy(k), as discussed in chapter 2.

— w2 (k). (8.84)
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8.5.2 Forced Oscillation

L[18-3-8-5

Now consider a forced oscillation, in which we drive one end of a translation invariant system
with angular frequency. After the free oscillations have died away, we are left with oscil-
lation at the single, real angular frequencyAs always, in forced oscillation problems, we
think of the real displacement of the end of the system as the real part of a complex displace-
ment, proportional te~**. Then the dispersion relatio(.83),applies. Now the dispersion
relation determinek, and kmust be complex.

You may have noticed that none of the dispersion relations that we have studied so far
depend on theign of k. This is not an accident. The reason is that all the systems that we
have studied have the property of reflection symmetry. We could change-x without
affecting the physics. In fact, a translation invariant system that did not have this symmetry
would be a little peculiar. As long as the system is invariant under reflections,—z,
the dispersion relation cannot depend on the sign dafhe reason is that when— —z,
the modee’** goes toe~***, If + — —x is a symmetry, these two modes with angular
wave numberg and —k must be physically equivalent, and therefore must have the same
frequency. Thus the two solutions for fixeanust have the form:

k= +(ky + ik;) (8.85)

Because of the- sign, we can choosg > 0 in (8.85).
In systems with frictional forces, we always find

ki >0fork. >0. (8.86)

The reason for this is easy to see if you consider the traveling waves, which have the form

o=t pEilkrtiki)o (8.87)

or
ei(ikra:fwt) €$kiz ) (888)

From (8.88),it should be obvious what is going on. When thé +, the wave is going in
the +x direction, so the sign of the real exponential is such that the amplitude of the wave
decreases asincreases. The wave peters out as it travels! This is what must happen with a
frictional force. The other sign would require a source of energy in the medium, so that the
wave amplitude would grow exponentially as the wave travels. A part of an infinite damped
traveling wave is animated in program 8-3.

The form,(8.88) has some interesting consequences for forced oscillation problems in
the presence of damping. In dampdifcrete systems, even in a normal mode, the parts
of the system do not all oscillate in phase. In dampeudtinuous systems, the distinction
between traveling and standing waves gets blurred.
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Consider a forced oscillation problem for the transverse oscillation of a string with one
end, atr = 0 fixed, and the other end,= L driven at frequency. It will not matter until
the end of our analysis whether the string is continuous, or has beads with sepaation
thatna = L for integern. The boundary conditions are

Y(L,t) = Acoswt, (0,t)=0. (8.89)

As usual, we regard(z, t) as the real part of a complex displacemeiii;, t), satisfying

O(L,t) = Ae™™ | 1)(0,t) = 0. (8.90)

If k&, for the given angular frequenay is given by(8.85),then the relevant modes of the
infinite system are those {8.87),and we must find a linear combination of these two that
satisfies[(8.89)The answer is

_ eilkrtiki)x _ o—i(kr+iki)z it
P(x,t) = A [(ei(kr—i-ik,;)L _ e—i(kr—&-iki)L) € ] : (8.91)
The factor in parentheses is constructed to vanish=a0 and to equal 1 at = L.
For a continuous string, the solutig8.91),is animated in program 8-4. The interest-
ing thing to notice about this is that near the- L end, the solution looks like a traveling
wave. The reason is that here, the real exponential fact@9i)enhance the left-moving
wave and suppress the right-moving wave, so that the solution is very nearly a traveling wave
moving to the left. On the other hand, neat 0, the real exponential factors are compara-
ble, and the solution is very nearly a standing wave. We will discuss the more complicated
behavior in the middle in the next chapter.
The same solution works for a beaded string (although the dispersion relation will be

different). An example is shown in the animation in program 8-5. Here you can see very
clearly that the parts of the system are not all in phase.

8.6 High and Low Frequency Cut-Offs
8.6.1 More on Coupled Pendulums

Ds-6

In the previous section, we saw how the angular wave nurhbean become complex in
a system with friction. There is another important way in whidan become complex.
Consider the dispersion relation for the system of coupled pendufu3&),which we can

rewrite as follows:

k
w? = W} + w?sin® ?a . (8.92)
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Herea is interblock distanceyy is the frequency of a single uncoupled pendulum ugnig
a frequency associated with the coupling between neighboring blocks.
2 _ 4K

c

(8.93)

W,
m

wherem is the mass of a block ard is the spring constant of the coupling springs.

Traveling waves in a system with a dispersion relation like (8.92) are animated in pro-
gram 8-6. To make the physics easier to see, this system is a beaded string with transverse
oscillations. However, to produce th¢ term in {8.92), we have also attached each bead by
a spring to an equilibrium position along the dotted line. In this case, the coupling between
beads comes from the string, so the analog 0f/(8.93) is

AT
w? = — (8.94)

" ma’
The parameters in the system are chosen so that in terms of a reference freguency,
wi =25w2, w?=24uw?. (8.95)

The properties of waves in this system differ dramatically as a function@fe way to
see this is to go backwards and note that forkebbcausein? k—; must be between 0 and

1, wis constrained,
wr Sw < \Jw?+ w2 =wy. (8.96)

For & in this “allowed” region,
sin® — = (8.97)

is between 0 and 1, as is )

ska wi-w

COS 9 = wg
The two frequencies,, andwy,, are called low and high frequency cut-offs. The system of
coupled pendulums supports traveling waves only for frequef®@tween the high and low
frequency cut-offs. It is only in this region that the dispersion relation can be satisfied for
realw andk. Forw < wy orw > wy, the system oscillates, but there is nothing quite like
a traveling wave. You can see this in program 8-6 by changing the frequency up and down
with the arrow keys.

For anyw, we can always solve the dispersion relation. However, in some regions of
frequency, the result will be complex, aslin (8.85). We expeet 0 in the allowed region
(8.96). The solution of((8.92) fok, andk; as functions ofuv are shown in the graphs in
figure 8.12. Here, k, and k; are plotted against for the dispersion relation, (8.92), with
wp = bwg andwy, = Twy. k; is the dotted line. Note the very rapid dependendg néar the
high and low frequency cut-offs.

(8.98)
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3/a 1

2/a +

}

1/a ¢

0

0

Figure 8.12%,a andk;a versusv.

As w decreases, in the allowed regi¢8,96), sin ’“—2" decreases. At the low frequency
cut-off, w = wy, sin %a and thereforé: goes to zero. This means that as the frequency de-
creases, the wavelength of the traveling waves gets longer and longer, until at the cut-off
frequency, it becomes infinite. At the low frequency cut-off, every pendulum in the infinite
chain is oscillating in phase. The springs that couple them are then irrelevant because they
always maintain their equilibrium lengths. This is possible precisely becauséhe oscil-
lation frequency of the uncoupled pendulum, so that no coupling is required for an individual
pendulum to swing at frequency.

If wis below the low frequency cut-offy, sin? ’“2—“ must become negative to satisfy the
dispersion relation, (8.92T.hereforesin % must be a pure imaginary number

k = +ik; . (8.99)
The general solution for the wave is then
Y(x,t) = Ae kit g7l 4 B hiv gmivt (8.100)

In a finite system of coupled pendulums, both terms may be present. In a semi-infinite sys-
tem that is driven at = 0 and extends ta — oo, the constanB must vanish to avoid
exponential growth of the wave at infinity. Thus the wave falls off exponentially atdarge
Furthermore, the solution is a product of a real functianasid a complex exponential func-
tion of t. This is a standing wave. There is no traveling wave. You can see this in program
8-6 at low frequencies.

The physics of this oscillation below the low frequency cut-off is particularly clear in the
extreme limitw — 0. At zero frequency, there is no motion. The analog of a forced oscilla-
tion problem is just to displace one pendulum from equilibrium and look to see what happens
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to the rest. Clearly, what happens is that the displacement of the first pendulum causes a force
on the next one because of the coupling spring that pulls it away from equilibrium, but not as
far as the first. Its displacement is smaller than that of the first by some:factor*:¢. Then
the second pendulum pulls the third, but again the displacement is smaller by the same factor.
And so on! In an infinite system, this gives rise to the exponentially falling displacement in
(8.100)or B = 0. As the frequency is increased, the effect of inertia (more precisehyathe
term in F' = ma) increases the displacement of second (and each subsequent) block, until
above the low frequency cut-off, the effect of inertia is large enough to compete on an equal
footing with the effect of the restoring force, and a real traveling wave can be produced.

The low frequency cut-off is not peculiar to the discrete system. It occurs any time there
is a restoring force fok = 0 in the infinite system. Later, in chapter 11, we will see that a
similar phenomena can occur in two- and three-dimensional systems even when there is no
restoring force at = 0.

The high frequency cut-off, on the other hand, depends on the finite separation between
blocks. Asw increases, in the allowed region, (8.9@);% increasesk increases, and
thereforecos ¢ decreases. At the high frequency cut-off= wy, sin & = 1 andcos ¢ =

0. But .
sind — 1= k=" (8.101)
2 a

which, in turn means ‘ ‘
etha = g=ika — _q, (8.102)

Thus the displacement of the blocks simply alternates, because
¥ =P(ja,t) oc 9™ = (—1). (8.103)

This is as wavy as the discrete system can get. In a discrete system with interblock separation,
a, the maximum possible real partiofs ~ (becausé: can be redefined by a multiple§$
without changing the displacements of any of the blockse-(5.28)). This bound is the
origin of the high frequency cut-off.

You can see this in program 8-6. The frequency starts duiyatAt this point,k,.a is
quite small (and:; = 0) and the wave looks smooth. As the frequency is increased toward
wp, the wave gets more and more jagged looking, until at wy, neighboring beads are
moving in opposite directions.

Forw > wy, sin & is greater than 1, ands £ is negative. This implies thathas the
form .

k= - + ik, . (8.104)

Then the general solution for the displacement is

w(:c,t) — Ae iz eimv/a oWt + B kit eiﬂ'x/a et (8.105)
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As in (8.100), there is an exponentially falling term and an exponentially growing one. Here
however, there is also a phase faatti¥/¢, that looks as if it might lead to a traveling wave.
But in fact, this is not really a phase. It simply produces the alternation of the displacement
from one block to the next. We see this if we look only at the displacements of the blocks (as
in (8.103),

W = b(ja,t) = A(=1)7 e k¥ =t 1 B (—1)J ehi® gm0t (8.106)

As for (8.100), in a semi-infinite system that extends te oo, we must havé3 = 0, and
there is no travelling wave.

One of the striking things about program 8-6 is the very rapid switch from a traveling
wave solution in the allowed region to a standing wave solution with a rapid exponential de-
cay of the amplitude in the high and low frequencies regions. You see this also in figure 8.12
in the rapid change df; near the cut-offs. The reason for this is thdtas a square-root
dependence on the frequency near the cut-offs.

In the infinite system, the solution outside the allowed region is a pure standing wave.
In the absence of damping, the work done by the force that produces the wave averages to
zero over time. In a finite system, however, it is possible to transfer energy from one end
of a system to the other, even if you are below the low frequency cut-off or above the high-
frequency cutoff. The reason is that in a finite system, botii thed B terms in [(8.100)

(or (8.106)) can be nonzerdf A and B are both real (or relatively real — that is if they

have the same phase), then there is no energy transfer. The solution is the product of a real
function ofx (or j) and an oscillating exponential functiontofThus it looks like a standing

wave. However ifA and B have different phases, then the oscillation looks something like

a traveling wave and energy can be transferred. This process becomes exponentially less
efficient as the length of the system increases. We will discuss this in more detail in chapter
11.

Chapter Checklist
You should now be able to:

i. Construct traveling wave modes of an infinite system with translation invariance;

ii. Decompose a traveling wave into a pair of standing waves, and a standing wave into a
pair of traveling waves “moving” in opposite directions;

iii. Solve forced oscillation problems with traveling wave solutions and compute the forces
acting on the system.

iv. Compute the power and average power required to produce a wave, and define and
calculate the impedance;
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v. Analyze translation invariant systems with damping;

vi. Understand the physical origins of high and low frequency cut-offs and be able to
analyze the behavior of systems driven above and below the cut-off frequencies.

Problems

8.1 An infinite string with tensiorl” and linear mass densityis stretched along the
x axis. A force is applied in thg direction atz = 0 so as to cause the stringaat= 0 to
oscillate in they direction with displacement

A(t) = D coswt .
This produces two traveling waves moving away from 0 in the +zdirections.
a. Find the force applied at= 0.
b. Find the average power supplied by the force.

8.2 For air at standard temperature and pressure, the pres$uire ¥s10° dyne/cnd,

the density is.29 x 103 gr/cn?. Use these to find the displacement amplitude for sound
waves with a frequency of 440 cycles/sec (Hertz) carrying a power per unit aréa’of
watts/cn?.

8.3 Consider the following circuit:
Vs

V5 V4 V3 V2 Vl VO

l l l l l l

All the capacitors have the same capacitafce, 0.00667 . F', and all the inductors have the
same inductancd, ~ 150pH and the same resistande ~ 152 (this is the same problem

as (5.4), but with nonzero resistance). The wire at the bottom is grounded Bp that

This circuit is an electrical analog of the translation invariant systems of coupled mechanical
oscillators that we have discussed in this chapter.

a. Show that the dispersion relation for this system is

R 2
2 W — = —— —
w —|—zwL LC(l coska) .
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When you apply a harmonically oscillating signal from a signal generator through a coax-
ial cable toVg, different oscillating voltages will be induced along the line. That is if

Vs(t) = Vcoswt ,

then V/(¢) has the form
Vj(t) = Ajcoswt 4+ Bjsinwt .

b. Find A; and B; and|A; + ¢B;| and graph each of them versudrom w = 0

to 2/v/LC. Never mind simplifying complicated expressions, so long as you can graph
them. How many of the resonances can you identify in each of the greptis?Use the
trigonometric identity of problem (1.2e),

sin6x = sinx (32 cos® z — 32 cos® x + 6 cos 3:)

to expressd; + iB; in terms ofcos ka. Note that this identity is true everufis a complex
number. Then use the dispersion relation to expreds: in terms ofv. Find A; andB; by
taking the real and imaginary parts4f + iB;. Finally, program a computer to construct
the graphs.

C. Find the positions of the resonances directly using the arguments of chapter 5, and
show that they are where you expect them.

5This hint dates from the days before Mathematica was generally available. You may choose to to the problem
differently, and that is OK as long as you explain clearly what you are doing and understand it!
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Chapter 9

The Boundary at Infinity

Although the wave phenomena we can see in the laboratory live in finite regions of space,
it is often convenient to analyze them as if the traveling waves come in from and go out
to infinity. We have described traveling waves in infinite translation invariant systems. But
traveling waves are more complicated and more interesting in systems in which there are
boundaries that break the translation symmetry.

Preview

In this chapter, we introduce a new kind of “boundary condition” in systems that lack a bound-
ary! It will enable us to discuss reflection and transmission, and in general, the phenomenon
of scattering.

i. We discuss forced oscillation problems in semi-infinite systems, that extend to infinity
in one direction. We show that we can impose a “boundary condition” even though
there is no boundary, by specifying the amplitude of a wave traveling in one direction.
We then discuss scattering problems in infinite systems, describing the amplitudes for
transmission and reflection. We study the motion of a general wave with definite fre-
quency.

ii. We discuss electromagnetic plane waves in a dielectric.

iii. We discuss reflection and transmission by a mass on a string and two masses on a
string, showing how to use a “transfer matrix” to simplify the solution to the scatter
ing problem. We analyze reflection from a boundary between regions with different
wave number and show how to eliminate the reflection with a suitable “nonreflective
coating.”

201
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9.1 Reflection and Transmission

9.1.1 Forced Oscillation

Consider the forced oscillation problem in a semiinfinite stretched string that runs fdin
to x = oo. Suppose that
¥(0,t) = Acoswt. (9.2)

Then what ig)(z,t)? This is not a well-posed problem, because we only have a boundary
condition on one side. Furthermorg(oo,t) does not have a definite value. We can only
talk about the value of a function at infinity if the function goes to a constant value. Here, we
expecty(z,t) to continue to oscillate as — oo, so we cannot specify it. Instead, we can
specify either the incoming (traveling toward the boundany -at0 in the —z direction) or

the outgoing (traveling away from= 0 in the+x direction) traveling waves in the system.
This is called &boundary condition at co.”

For example, we could take our boundary condition at infinity to be that no incoming
traveling waves appear on the string. Physically, this corresponds to the situtation in which
the motion of the string at = 0 is producing the waves. In general, we can write a solution
with angular frequency as a sum of four real traveling waves

P(z,t) = acos(kx — wt) + bsin(kz — wt)

(9.2)
+ccos(kx + wt) + dsin(kx + wt) .
Then (9.1) implies
at+c=A, b—d=0, (9.3)
and the boundary condition @&t implies
c=d=0. (9.4)
Thus
P(x,t) = Acos(kx — wt). (9.5)

9.1.2 Infinite Systems

Now consider two semi-infinite strings with the same tension but different densities that are
tied together at = 0, as shown in figure 9.1. Suppose that inath€ 0 region (Regior/),

there is an incoming traveling wave with amplitulend angular frequencay, and in the

x > 0 region (Region/I), there is no incoming traveling wave. This describes a physical
situation in which the incoming wave Iris scattered by the boundary so that the other waves
are a transmitted wave T and a reflected wave i) both outgoing.
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Region/ Regionl [

incoming wave— z=0 transmitted wave—

«— reflected wave

Figure 9.1: Two semi-infinite strings tied together. at 0.

The key to this problem is to think of it as a forced oscillation problem. The incoming
traveling wave in regior is what is “causing” all the oscillations. We have put the word in
quotes, because the harmonic forni?, for the oscillation implies that it has been going
on forever, so that a philosopher might question this use of cause and effect. Nevertheless,
it will help us to think of it this way. If the reflected and transmitted waves are produced by
the incoming wave, their amplitudes will also be proportionalte’. As in a conventional
forced oscillation problem, we could add on any free oscillations of the system. However, if
there is any friction at all, these will die away with time, and we will be left only with the
oscillation produced by the incoming traveling wave, proportionatte’. The important
thing is that the frequency is the same in both regions, because as in a forced oscillation
problem, the frequency is imposed on the system by an external agency, in this case, whatever
produced the incoming traveling wave.

In our complex exponential notation in which everything has the irreducible time depen-
denceg~*. Right moving waves are e’** ¢~ and left moving waves are e "% ¢ ~iwt,

In this case, the boundary conditionstab require that

P(x,t) = e Ae™! 4+ R AeT e (9.6)

for x < 0in RegionI, and ‘ ’
Y(x,t) =71 Aeth'® giwt (9.7)

for x > 0in Region/I. The kandk’ are

k=wy\/p1/T, K =w\/pi/T, (9.8)

and R andr are (in general) complex numbers that determine the reflected and transmitted
waves. They are sometimes called the “reflection coefficient” and “transmission coefficient,”
or the “amplitudes” for transmission and reflection. Notice that we have defined the reflection
and transmission coefficients by taking out a factor of the amplitddef the incoming
wave. The amplituded, then drops out of all the boundary conditions, and the dimensionless
coefficientsk andr are independent od. This must be so because of the linearity of the
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system. We know that once we have found the solutian,t), for an incoming amplitude,
A, we can find the solution for an incoming amplituée,by multiplying our solution by
B/A. We will keep the parametedt, in our expressions faf(x, t), mostly in order to keep
the units right. A has units of length in this example, but in general, the amplitude of the
incoming wave will have units of generalized displacement (as in (1.107) and (1.108)).

To determineR and 7, we need a boundary conditionzat= 0 where [(9.6) and (9.7)
meet. Clearly)(x,t) must be continuous at= 0, thus

1+R=r. (9.9)

We have canceled the common factordef ! from both sides. The derivative must also
be continuous (for a massless knot) because the vertical forces on the knot must balance, thus

ik(l1 — R) = ik'T. (9.10)
Solving for R and rgives
2 1-K/k
L =y R R ©-11)

9.1.3 Impedance Matching

Note that we could replace the string in Regldrby a dashpot with the same impedance,
Zrr. This must be true because of the local nature of the interactions. The only thing that the
string forz < 0 knows about the string far > 0 is that it exerts a force at= 0 equal to

0
- Zn (%7#(0775)- (9.12)

Thus we also learned what happens when an incoming wave encounters a dashpot with the
wrong impedance. The amplitude of the reflected wave is givéhiby9.11).

The reflected wave in (9.11) vanisheg i ¥'. If K = £/, thenp; = p;; (from (9.8)),
and the impedance in regidns the same as the impedance in redidn This is a simple
example of the important principle of “impedance matching.” There is no reflection if the
impedance of the system in regibhis the same as the impedance of the system in région
The argument is the same as for the dashpot in the previous paragraph. What matters in the
computation of the reflection coefficient are the forces that act on the string @t Those
forces are determined by the impedances in the two regions. Nothing else matters. Consider,
for example, the system shown in figure 9.2 of two semi-infinite strings conneated @t
to a massless ring which is free to slide in the vertical direction on a frictionless rod. The
rod can exert a horizontal force on the ring, so the tensions in the two strings need not be the
same. In such a system, we can change both the density and the tension in the string from
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regionl to region/I. There will be no reflection so long as the product of the linear mass
density and the tension (and thus the impedance, from (8.22)) is the same in both regions,

Zr =piTr = /piTi = Zir - (9.13)

Region/ =0 Regioni [

incoming wave— transmitted wave-

«— reflected wave

Figure 9.2: A system in which impedances can be matched.

It is instructive to solve the scattering problem completely for the more general case
shown in figure 9/2This will give us a feeling for the meaning of impedance. The form of
the solution,[(9.6) and (9.7) is unchanged, but now the angular wave numbers satisfy

k=wy\/pt/Tr, ¥ =w\/p11/Tir. (9.14)

The boundary condition at = 0 arising from the continuity of the string, (9.9), remains
unchanged. However, (9.10) arose from the fact that the forces on the massless knot must
sum to zero so the acceleration is not infinite. In this case, from (8.21), the contribution of
each component of the wave to the total force is proportional to plus or minus the impedance
in the relevant region depending on whether it is moving ia-ther the—z direction. Thus

the boundary condition is

Zi(1—=R) = Zr. (9.15)
Then the reflection and transmission coefficients are
271 ARSIAS;
_ 7 e 9.16
’ Zr+ Zgg Zr+ Zi1 ( )

We have already discussed the case where the impedances match and the reflection coef-
ficient vanishes. It is also interesting to look at the limits in wiiick +1. First consider
the limit in which the impedance in regidi goes to infinity,

lim R=—1. (9.17)

This is situation in which it takes an infinite force to produce a wave in régionhus the
string in region/ I does not move at all, and in particular, the poiat 0 might as well be a
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fixed end. The solutior{9.17)ensures that the string does not move at 0, and therefore
that the solution in regioh is ¢ (z,t) « sin kz. This solution is an infinite standing wave
with a fixed end boundary condition.
In the opposite limit, in which the impedance in regidnrs zero, we get
lim R=1. (9.18)
Zrr—0

This time, it takes no force at all to produce a wave in regioriThus the end of regioh
atz = 0 feels no transverse force. It acts like a free end. The sol@@di&) ensures that
Y(x,t) o cos kx in regionl, so the slope of the string vanishes at 0. This solution is an
infinite standing wave with a free end boundary condition.

9.1.4 Looking at Reflected Waves

Oo1
In this section, we discuss what the displacement in Rédawoks like. We will find a useful
diagnostic for the presence of reflection. We will also conclude that standing waves are very
special.

Look at a wave of the form

Acos(kr — wt) + R Acos(kx + wt) . (9.19)

This describes an incoming traveling wave with some reflected wave of amgiitGde
could put in an arbitrary phase for the reflected wave but it would complicate the algebra
without changing the physics).

For R = +1, this is a standing wave. F& = 0, it is a traveling wave. To see how
the system interpolates between these two extremes, consider the motion of the crest of the
wave, a maximum of (9.19).

To find the maximum, we differentiate with respect tand set the result to zero. Elimi-
nating the irrelevant factor of, we get

sin(kz — wt) + Rsin(kx + wt) =0, (9.20)
or
(14 R)sinkz coswt = (1 — R) cos kx sinwt , (9.21)
or
tan ko = — i tan wt (9.22)
1+R ' '

(9.22)describes (implicitly — we could solve foras a function of if we felt like it) the
motion of the maximum as a function of time. We can differentiate it to get the velocity:
or 1—-R w

E(1+tan’ky) — = — " —— 9.23
( +tan x) ot 1+ R cos? wt ( )
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We have left(1 + tan? kz) in (9.23) so that we can eliminate it by using (9.22). Thus

Oz 1-Rw 1
ot 1+ Rk (1+tan?kz) cos? wt
_1-Rw 1
T1Y Rk (9.24)

2
1+ (%) tan? wt | cos? wt

) (1+R)(1 - R)
(1+ R)2cos?wt + (1 — R)?sin® wt

wherev = w/k is the phase velocity. Wheim wt vanishes, the speed of the maximum is
smaller than the phase velocity by a factor of

1-R

— 9.25
1+ R’ (9.25)
while whencos wt vanishes, the speed is larger thanthy the inverse factor,
1+ R
) 2
T R (9.26)

The wave thus appears to move in fits and starts. You can easily see this effect if you stare at
a system with a lot of reflection. The effect is illustrated in program 9-1.

We can draw a more general moral from this discussion. The general case of wave motion
is much more like a traveling wave than like a standing wave. Generically, excéptfor
+1, the wave crests move with time. As we approBck +1, one of the two velocities
in (9.25 and (9.26) goes to zero and the other goes to infinity. What happens when you are
close toR = +1 is then that the wave stays nearly still most of the time, and then moves
very quickly to the next nearly stationary position. A standing wave is thus a degenerate
special case of a traveling wave in which this motion is unobservable because, in a sense, it
is infinitely fast.

9.1.5 Power and Reflection

It is instructive to consider the power required to produce a traveling wave that is partially
reflected. That is, we consider the power required by a transverse force aatirg(ato
produce a wave in the regian> 0 that is a linear combination of an outgoing wave moving

in the +x direction and an incoming wave moving in the direction, such as might be
produced by a reflection at some large value.ofLet us imagine the most general one-
dimensional case, in a medium with impedafice

) =TRe (A i(kx—wt) + A i(—kz—wt)
b 1) =Re (Ase ¢ ) 0.27)
= Ry cos(kx — wt + ¢4) + R cos(—kx — wt + ¢_)
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whereR and ¢y are the absolute value and phase of the amplitudeThe velocity is

%@b(x, t) = wRysin(kxr —wt + ¢4) + wR_sin(—kx —wt + ¢_). (9.28)
Now because (9.27) involves waves traveling both initheand in the—z direction, we
cannot find the force required to produce the wave at thegpbinsimply multiplying [(9.28)
by the impedance/. However, we can use linearity. We can wiiter, t) = 4 (z,t) +
Y_(z,t), wherey (x,t) is the wave moving in thex direction. Then from (8.21), the force

required to producé, is
Fit) = Z 9 (0.1) (9.29)
while the force required to produge is
F_(t)= —Z%w,(o,t). (9.30)
Then the total force required to produtces

F(t) = F(t) + F_(t)

(9.31)
= ZwRy sin(—wt + ¢4) — ZwR_sin(—wt + ¢_).
Thus the power required is
0
P(t) = F(t) 24(.1)
=0 (9.32)
= Zw?R% sin®(—wt + ¢4) — Zw?R? sin®(—wt + ¢_).
The average power is then given by
1 1
Paverage = §ZM2(R3 - R%) = §ZM2 (’A+’2 - ’A—|2> : (933)

The result,[(9.32), has an obvious and important physical interpretation. Positive power is
required to produce the outgoing traveling wave, while the incoming wave gives energy back
to the system, and thus requires negative polies.power required to produce a general
traveling wave is thus proportional to the difference of the squares of the absolute values
of the amplitudes of the outgoing and incoming waves.

Note also that we can apply this discussion to the example of reflection at a boundary,
discussed above. We can check that energy is conserved in this scattering. The average power
required to produce the wave in regibis, from (9.33)

Ziw? — Zw? R?. (9.34)
The average power required to produce the wave in rddia)
Zrwir?. (9.35)

Using (9.16), you can check that these are equal.
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9.1.6 Mass on a String

bo-2

1— T —

— R

Figure 9.3: A mass on a string.

Consider the transmission and reflection of waves from a masg,z = 0 on a string
with linear mass density and tensiorl’, stretched fromx = —oo to x = oo, shown in
figure9.3. Before we calculate the coefficients for reflection and transmission, let us guess
the result in two extreme limits.

m small — Here we expect that the reflection to be small and the transmission close to one,
because in the limit
m—0=7—1landR — 0. (9.36)

m large — Here we expect the transmission to be small and the reflection clede be-
cause in the limit
m—oo=7—0andR — —1. (9.37)

“Large or small compared to what?” you ask! That we can answer by dimensional analysis.
The relevant dimensional parameters @arew, k, p andT. However, one of these is not
independent, because of the dispersion rela{@B). If we use(6.5)to eliminatel’, thenw

cannot be relevant to the question, because it is the only thing left that involves the unit of
time. The only dimensionless quantity we can build is

mk  muw?
€= — =

p kT

(9.38)

Now that we have guessed, we can do the calculation. It follows from translation invari-
ance and the boundary conditionrat oo that

Y(x,t) = AehT 7t L R Aem T o7l for 1 < 0 (9.39)

Y(z,t) = 7 Aet*® et for 2 > 0 (9.40)

where, as usualR and r are “amplitudes” for the reflected and transmitted waves. The
boundary conditions are
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continuity — The fact that the string doesn’t break implies that it is continuous, so that
¥(0,t) can be computed with either (9.39) lor (9.40). This implies

1+R=r1. (9.41)

F'=ma— The horizontal component of the tension in the string must be equal on the two
sides. Both are about equalTofor small displacements. However, if there is a kink
in the string, the vertical components do not match, as shown in [figure 9.4 (see also
(8.16)-(8.1%). The force on the mass is then the tension times the slopeXof
minus the tension times the slope fox 0, thus F'= ma becomes

o 0
T <6m P(x,t)] ot — 9z ¢($at)xo)

5?2 (942)
= m = (0, t
or
ikT (R—147) = —mw’T. (9.43)
Thus
l1+R=7, 1-R=(1—1ieT, (9.44)
so that 5 ]
i€
— = . 4
TT 9 e i 2 — e (9:49)

Clearly, this is in accord with our guess.

A

Figure 9.4: The force on the mass.

Note that these amplitudes, unlike those in (9.11), are complex numbers. The transmitted
and reflected waves do not have the same phase as the incoming wave at the boundary. The
phase difference between the transmitted (or reflected) wave is called a “phase shift.” One
interesting feature of the solution, (9.45), that we did not guess is that fo,ldngesmall
transmitted wave i80° out of phase with the incoming wave.
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This scattering is animated in program 9-2. The solution is also decomposed into incom-
ing, transmitted and reflected waves. Stare at the mass and see if you can understand how the
kink in the string is related to its acceleration. You can also make the mass larger and smaller
to approach the limits (9.36) and (S.37).

9.2 Index of Refraction

Matter is composed of electric charges. This is something of a miracle. We cannot understand
it without quantum mechanics. In a purely classical world, there would be no stable atoms or
molecules. Because of quantum mechanics, the world does not collapse and we can build sta-
ble chunks of matter composed of equal numbers of positive and negative charges. In a chunk
of matter in equilibrium, the charge and current are very close to zero when averaged over any
large smooth region. However, in the presence of external electric and magnetic fields, such
as those produced by an electromagnetic wave, the charges out of which the matter is built
can move. This gives rise to what are called “bound” charges and currents, distinguishable
from the “free” charges that are not part of the matter itself. These bound charges-and cur
rents affect the relation between electric and magnetic fields. In a homogeneous and isotropic
material, which is a fancy way of describing a material that does not have any preferred axis,
the effects of the matter (averaged over large regions) can be incorporated by replacing the
constantsg andyg by the permittivity and permeability,andu. Then Maxwell's equations

for electromagnetic waves, (8/35)-(8.37), are modifiéd to

0E, OE, 0B, 0E. 0E, OB,

Ox oy ot 0 0z ot ’
" om, “om. " o8, (9.46)
0z oxr ot
0B, 0B, 0F, 0B, 0By OFE,
- = HE ) - = HE ’
Oz ay ot 83/ 0z ot (9.47)

OB, 0B, _ €8Ey
0z or Mot
OE, OE, OF. 0B, 0B, OB.
6$+6y+02 0, 3x+8y+02 0 (9.48)

Now (8.41)-(8.4Y are satisfied with the appropriate substitutions,

€0 — €, Ho— [L- (9.49)
In particular, the dispersion relation, (8.47), becomes

1
W= = 2 = OO 242 (9.50)
e L€

'See Purcell, chapter 10.
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so electromagnetic waves propagate with velocity

w Ho€o

V= —=2¢ 5 (951)
k €
and (8.43) becomes
By =*Vheer , By =F ey . (9.52)
The factor
n= |t (9.53)
Ho€o

is called the index of refraction of the materiafn is the ratio of the speed of light in the
material to the speed of light in vacuum. In terms,ofve can write (9.52) as

n mn
By = izaf, G = $Z€;t. (9.54)

Note also that we can rewrite (9.50) in the following useful form:

k=n". (9.55)
C
For fixed frequency, the wave number is proportional to the index of refraction. For most
transparent materialg, is very close to 1, and can be ignored. Buan be very different
from 1, and is often quite important. For example, the index of refraction of ordinary glass
is about 1.5 (it varies slightly with frequency, but we will discuss the interesting and familiar
consequences of this later, when we treat waves in three dimensions).

9.2.1 Reflection from a Dielectric Boundary

Let us now consider a plane wave in the direction in a universe that is filled with a
dielectric material with index of refraction = +/¢/¢g, for z < 0 and filled with another
dielectric material with index of refractiorf = /€/¢q, for z > 0. The boundary between
the two dielectrics, the plane= 0, is analogous to the boundary between two regions of the
rope in figure 9.1. We would, therefore, expect some reflection from this surface.

Because the electric field in a plane electromagnetic wave is perpendicular to its direction
of motion, we know that in this case that it is in the plane. It doesn't matter in what
direction the electric field of our incoming plane wave is pointing incteplane. That is
clear by symmetry. The system looks the same if we rotate it around#ie thus we can
always rotate until our; vector is pointing in some convenient direction, sayctbgection.

It is then pretty obvious that the reflected and transmitted waves will also have their electric
fields in thetx direction. Actually, we can turn this into a symmetry argument too. If we
reflect the system in thez plane, both the incoming wave and the dielectric are unchanged,
but anyy component of the transmitted or reflected waves would change sign. Thus these
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components must vanish, by symmetry. Magnetic fields work the other way, because of the
cross product of vectors in their definition. Thus we can write

E.(z,t) = Aeikz—wt) 4 p goi(—kz—wt)
n n forz <0, (9.56)
By(z,t) = — Aeilkz—wt) ' p g i(—kz—wt)

c c

and
Ey(z,t) = 7 Acilk=—0)

n forz >0, (9.57)
By(zvt) = ?7’ Aei(kz_""t)

where we have continued our convention of calling the amplitude of the incomingdwave
Here, A has units of electric field. 1n (9.56) and (9.57), we have used (9.54) to dgefitid
from theF field.

To computeR andr, we need the boundary conditionsat 0. For this we go back to
Maxwell. The only way to get a discontinuity in the electric field is to have a sheet of charge.
In a dielectric, charge builds up on the boundary only if there is a polarization perpendicular
to the boundary. In this case, the electric fields, and therefore the polarizations, are parallel to
the boundary, and thus tl&field is continuous at = 0. The only way to get a discontinuity
of the magnetic fieldB, is to have a sheet of current.ulfvere not equal to 1 in one of the
materials, then we would have a nonzero magnetization, and we would have to worry about
current sheets at the boundary. However, because these are only dielectrics; dnith
both, there is no magnetization and fdield is continuous at = 0 as well. Thus we can
immediately read off the boundary conditions:

1+R=7, n(l—-R)=n'T. (9.58)
Because of (9.55), the boundary condition (9.58) is equivalent to
1+R=7, k(1-R)=Fkr, (9.59)
which looks exactly like (919) and (9/10). We can simply take over the results of (9.11),
2 1-K/k
- = /- 9.60
T Kk 1+ k' /k (9.60)

9.3 * Transfer Matrices

9.3.1 Two Masses on a String

Next consider the reflection and transmission from two masses on a string, as in figure 9.5.
Now translation invariance and the boundary conditian-atoo imply that

Y(x,t) = AeFT 7t L R Aem T o7l for 1 < 0, (9.61)
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z=0 =1L
1— Tr — T —

— R — R;

Figure 9.5: Two masses on a string.

Y(x,t) =1Tr AT et L R Aem el for0 <z < L, (9.62)
Y(x,t) =71 A e @forz > L. (9.63)
x=/
T — Tip —
.
— Ry — Rys

Figure 9.6: The general scattering problem from a mass on a string.

We could solve this problem in the same way, simply imposing boundary conditions
twice, atz = 0 and atx = L, but there is a systematic way of doing this that is very useful.
Consider first the general scattering problem from a single mass &t with both incoming
and outgoing waves on both sides, as shown in figure 9.6. This is the most general possible
thing that can happen in scattering from a single mass, and we will be able to use the result
to do much more complicated problems without any additional work. The general solution
has the form

Y(x,t) = Ty Aetk® 7 4 Ry Ae™ k% o=t for oo < ¢ (9.64)

w(x, t) =Tyg Aethr o=t L R Ae” T e~ for > 4 (9.65)

The boundary conditions are continuity —

TI eik:@ + RI e—i/{:€ _ TII eikf + RII 6—ik€ (966)
and F'= ma — 5 5
T (5 vt — 5 V@0l )
z 52 x (9.67)
=Mos p(L,t)
or
ikT ((Tyr — T7) e + (R; — Ryp) e ™
(( 1 —17) (Rr 1) ) (9.68)

= —mw? (Trr e + Ry e_”“g) )
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Solving forT; and Ry gives
1 ,
T[ = 5 [(2 — ie) T]] — 1€ R[[ 6_2”%} y

1
2

(9.69)

Ry = o [(2+i€) Ryy +ie Ty ¥ .

The important point is that because of linearity, the result/(9.69) can be written in matrix

form: T o
<RI) = () (RII> (3.70)

2 —ie) —iee 2kt
dil) = - (. ; .

() 2 < ie et (2 + i) >
The matrix,d(¢), is a “transfer matrix.” It allows us to get from the amplitudes in one
region to those in the next by just doing a matrix multiplication. We can use this to solve the
two mass problem without any further calculation except a matrix multiplication. Comparing

the general result, (9.70), with the two mass problem, figure 9.5, we see immediately that

where the matrixi(¢)
(9.71)

@) — d(0) (?,) , 9.72)

and
(g) = d(L) (g) . (9.73)

Thus
@) — d(0) d(L) (g) | (9.74)

Doing the matrix multiplication,

1
a0)d(z) = ;

(9.75)

(2 — i€)? + e2e2ikL —je ((2 —ie)e kL 4 (2 4 ie))
i€ ((2 —ie) + (2 + ie)e%kL) (2 4 i€)? + 22k )
So
. 4
T (2 — i€)? 4 2ekL (9.76)

R =ie((2—ie) + (2 + ie)e?) % .
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Note that the reflection and transmission shows interesting resonance structure. For ex-
ample, the reflection vanishes for

4 2 — 1€
eszL —

) 9.77
2+ 1€ ( )

In figure9.7, |71 and|R| are plotted versusfor kL = 0.5.

1

Figure 9.7:|7| and |R plotted versus for two masses on a string.

9.3.2 k Changes

Region/ Regionl [
T — r=1{ T —
— Ryy — Ry

Figure 9.8: The general scattering problem for a change of

Let us return to the simple example at the beginning of the chapter of a boundary between
two regions of string with different values fof This is a very important example because its
general features are characteristic of many important physical systems. For example, when a
light-wave encounters a transparent mediumktredue changes. That situation is somewhat
more complicated because of the three-dimensional nature of light waves and because of
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polarization. However the analogy between (9.59) and (9.9) and (9.10) means that we can
take over the discussion of of the string directly to electromagnetic waves reflecting from
a dielectric boundary perpendicular to the direction of the wave. In this section, we apply
the general method of transfer matrices discussed in the previous section to this important
example. Thus we consider the situation shown in figure 9.8. where the waves have the form

W(z,t) = et (TI e | R, e—“ﬂx) in T, (9.78)

Y(x,t) = Ae™ ™! (TH e™2® L Ryp e—i’m) inIT. (9.79)

Then as in (9/9) and (9.10), the boundary conditions arestisatontinuous at = ¢, which
implies ‘ ' ' ‘

Tr 6lk1€ + R; G_Zkle =Tir 6”624 + Ryr 6’_2]@K , (980)

and that the slopéy/Jx is continuous at = ¢, which implies
ikl (T[ €ik1£ — R] €_ik1£) = ikz (T][ €ik2£ — R[] €_ik2£) . (981)

Solving the simultaneous linear equations, (9.80) and|(9.81); fand R; and express-
ing the result in matrix form, we find

7\ Tty
(3) - s (B2).
where
1 (1+@) pikal—ikit (1_ @) o—ikat—ikil
dlk ke, 0) =5 | 0 o i , o e | - (983)
(1-%) e (1+8) e

(9.82)is a very general result becaugek, and/ can be anything. Note that the relation

is symmetrical:
Ty ) < Ty )
= d(kg, k1, . 9.84
(RH (ks 1, ) Ry (9.84)

In matrix language, that implies that
d(ka, k1,€) d(k1, k2, 0) = 1. (9.85)

It is also useful to use the properties of matrix multiplication to rewrite [(9.83) in the
following form:
d(ky, k2, €) = b(ky, )" 7(ka, ko) b(ka, ) , (9.86)

where A
ezkﬁ 0
k0 = () e ) (9.87)
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and

k1, k) = d(ky, ko, 0) = = ( (L) (1-8) ) . (9.88)

\(-8) ()

You will see the utility of this in the computer problem, (9.6).

9.3.3 Reflection from a Thin Film

Region/ Region/I Region/I1
1— z=0 T — =1L T —
— R — Ry

Figure 9.9: Reflection from a thin film.

Consider the situation shown in figure/9v8here the wave numbers arefor x < 0,
ko for 0 < z < L andks for x > L. As usual, translation invariance plus the boundary
condition at infinity (that the incoming wave irhas amplitude4, and that there is only an
outgoing wave in /1) implies
Y(x,t) = Ae™ ™! (eiklx + Re*ik”’”) forz <0,
Y(x,t) = Ae~wt (TH 2T 4 Ry e*ik”) forO0<z<L, (9.89)
Y(x,t) = 7 Ae Wttt for [ < .

Then we know from the results of the previous section that

(;) = d(ky, k2, 0) (gf;]) (9.90)

e (gyj) = d(ks, k3, L) (8) (9.91)
and therefore

(11%) — Ak, ks, 0) d(ks, ks, L) <g> . (9.92)

d(klv k27 O) d(k27 k37 L)

(9.93)
= b(k1,0) " 7(ky, ko) b(ko, 0) b(ka, L)™' 7(ka, k3) b(ks, L)
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Often we are interested in the situatign= &1, that describes a film (in one-dimension,
a film is just a region i) in an otherwise homogeneous medium. This is then a one-
dimensional analog of the reflection of light from a soap bubble. Then the transfer matrix

looks like
1((1+’£i) (1—’23)) ()
4 _ ke k2 0 etk
(1-%) (1+8) (9.94)
((HZ;) (1—22)) ()
k k —ik1 L
(k) (eg)) N0 o™
Thus ) ,
1= (cos kol — 1 kéljka sin k2L> el (9.95)
1h2
and
R=-— zk%_kg sinkoL | 1 7 (9.96)
k1 ko 2 '
or .
k2 + k2 a )
T = <cos koL — i 21 ]jk 2 gin k2L> e ikl (9.97)
1h2
and .
K-k K2+ k3 -
= — L L — L . .
R (z STy sin ko cos ko ) STy sin ko (9.98)

Here we see the phenomenonegonant transmission The wave does not get reflected at
all if the thickness of the film is an integral or half-integral number of wavelengths. Note,
also, that whelk, — k1, 7 — 1 andR — 0 as they should, because in this limit there is no
boundary.

The reflection in[(9.98) varies rapidly with, as shown figure 9.10, where we plot the
intensity of the reflected wave vergysfor fixed ratiok; /ke2 = 3. It is this rapid variation of
the intensity of reflected light as a function of wavelength that is responsible for the familiar
color patterns on thin films like soap bubbles and oil slicks.

9.3.4 Nonreflective Coating

We will not work out the general case laf # k3, simply because the algebra is a mess.
However, one important special case is worth noting. Suppose that you have a boundary
between media in which the wave number of your traveling wave,aadks. Normally,

you find reflection at the boundary. The question is, can you add an intermediate film layer
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0.5 7

|RJ?

0 10/L
ko —

Figure 9.10: Graph df?|? versusk, for ki /ks = 3.

with wave numbeks, that eliminates all reflection? The answer is yes. First you must adjust
the wave number in the film to be the geometric mean ahdks, so that

k k
kf = I?z (9.99)
Then the transfer matrix becomes
(08 foB)) ()
4 _ ko k 0 eik2L
(1-%) (1+8) (9.100)

k
((”’fi?) ( —’éi)) ()
k k —iksL .
(k) (k)N 0 ™
It is easy to check that the reflection vanishes when there are a half-odd-integral number of
wavelengths in the intermediate region,
koL = (2n + 1)% . (9.101)

In qualitative terms, the reflection vanishes because of a destructive interference between the
reflected waves from the two boundaries. This has practical applications to nonreflective
coatings for optical components.

Chapter Checklist

You should now be able to:
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i. Analyze scattering problems by imposing boundary conditions and computing reflec-
tion and transmission coefficients;

ii. ldentify a wave with some reflection, and differentiate it from a pure traveling or stand-
ing wave;

iii. Check energy conservation in scattering problems;

iv. Analyze electromagnetic plane waves in a dielectric, and the reflection from a dielectric
boundary;

v. * Use transfer matrices to simplify the analysis of scattering from more than one bound-
ary.
Problems

9.1

K K K K K K K
QQOIm QQQm QQQImIQQOMIQQAMIQQAMIQQQ

L -

Region | =0 r=a Region I

Shown above is the boundary between two semi-infinite systems. To the left, there are identi-
cal blocks of mass:. To the right, there are identical blocks of m&ssThey are connected

as shown by identical massless springs with spring constasiuch that the equilibrium sep-
aration between neighboring blockszisConsider the reflection of a traveling longitudinal
wave from the boundary between these two regions. That is, assume that in region | there is
an incident wave of amplitudé traveling to the right and a reflected wave traveling to the
left. In a complex notation, the displacement of the mass with equilibrium paosison

QIZ)({L',t) = Ae_i(Wt_kr) + RAe—i(wt—i-k:L')

for z < a. What is the relation betweenandk?
In region I, there is only a transmitted wave:

Y(x,t) = T Aei(wt=H'z)
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for z > 0. What is the relation betweenand%’? Find the appropriate boundary conditions
that allow you to relate(x, t) in the two regions and solve f& (do not bother to simplify
the complex number). Check your result by taking the limit,of» and M going to zero
with m/a and M /a fixed and comparing with an appropriate continuous system.

9.2 An infinite line of coupled pendulums supports traveling waves, but it has no stand-
ing wave normal modes in which the displacement of the pendulums goes to zero at infinity.
Consider, however, the system shown below:

-31QQQ-210QQ-11QQQ 01QQQ11QQQ 21009 3

Here blocko is free to slide longitudinally with no gravitational restoring force, only the
coupling due to the springs. If the blocks have messthe springs’ spring constaf,

the separation between neighboring blocks, iand the pendulums have lendtHfind the
frequency of the standing wave normal mode of the system in which the displacements are
Ae " for x > 0 and A e"* for x < 0. Hint: Consider the subsystema < = < q, as

part of an infinite system with appropriate boundary conditions. Then you can get the answer
directly from the dispersion relation.

9.3

z=0

Consider a string with linear mass dengitgplit into two pieces. The two halves are attached
to a massless ring which slides vertically without friction on a rad-at0. One of the two
halves is stretched in the negativelirection with tensiori’. The other is stretched in the
positive z direction with tensior?”. Note that the vertical rod is necessary to balance the
horizontal forces on the massless ring from the two strings with different tensions.

Suppose that a traveling wave comes in from the negatiirection. Then the displace-
ment of the strings in the two regions is

Yz, t) = AeF® e= ™t 4 R Ae™ T =" for 1 < 0

Wz, t) =7 AeF T e or 2 > 0.
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a. Findk, ¥/, J/, ¥/ andw” in terms ofw, T, T" and p.Hint — this is easy!
b. Write down the two boundary conditionsmat 0 and findR andr.
9.4 Consider traveling waves in an infinite system, part of which is shown below, for

longitudinal (horizontal) motion of the blocks.

QOI-31QQ-21Q9 -11QQ 0100 11QQ 290 31QQ

All the blocks have mass, except for block @vhich is masslessThe springs are massless
and have spring constafit. The separation between neighboring blocks i$o the left of
block 0, which we will take to be at= 0, there is an incoming and a reflected wave, so that
the longitudinal displacement of the blocks oK 0 has the form

Aezkr—zwt + RAe—zkx—zwt )

To the right of the massless block, there is a transmitted wave, so that the longitudinal dis-
placement of the blocks far > 0 has the form

T Aeikw—iwt

w andk are related by the dispersion relation

a. Explain the physics of the boundary conditions at 0.
b. Find Rand T

9.5 Consider a semi-infinite system of two kinds of massive string with different densi-
ties, shown below:

! region/ ! regionl/
x=—L z=0

The density of the string in regidnis pand in region/ I is p’. The tension in both strings is
T. Suppose that the endmat — L is oscillated in the transverse direction with displacement
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x sinwt. This produces an outgoing wave (moving to the right) in refiovith no incoming

wave. Suppose that = %\/? Find the displacement at the paint= 0 as a function of
time.

9.6. If you are doing a reflection and transmission problem involving several different
regions, and thus requiring several boundary conditions, the transfer matrix is very helpful.
You saw this in the analysis of scattering from a thin film.

Your computer assignment is to extend this analysis to incorpdraseich boundary
conditions wheren is some large integer. In particular, consider a continuous string with
wave numbeks for L < x < 2L,3L <z < 4L, ---,and (2—1)L < x < 2nL, andk,

elsewhere.
1 '\/\/\ o

0 1 2 3
Figure 9.11:n = 3.

Takek; = k andk, = 2k. Compute the amplitude for transmission of an incoming
wave in this system as a functionloby doing the appropriate multiplication f matrices.

To do this, you must program your computer to multiply complex matrices. Organize your
program in an iterative way, so that you can changasily. This will allow you to start out
with smalln and go to largen only when you are sure that the program is working.

If possible, you should present the results in the form of a graph of the absolute value of
the transmission coefficient versus, for0 < L < 7 /2k. As you go to higher, something
interesting happens. The transmission coefficient drops nearly to zero in a regialuds.

Even if you cannot produce a graph, you should be able to find the rahderofhich the
transmission goes to zeromagets large.

Hint: Forn = 3, the result should look like the graph in figQré&1.



Chapter 10

Signals and Fourier Analysis

Traveling waves with a definite frequency carry energy but no information. They are just
there, always have been and always will be. To send information, we must send a nonhar
monic signal.

Preview

In this chapter, we will see how this works in the context of a forced oscillation problem. In
the process, we will find a subtlety in the notion of the speed with which a traveling wave
moves. The phase velocity may not be the same as the velocity of signal propagation.

i. We begin by studying the propagation of a transverse pulse on a stretched string. We
solve the problem in two ways: with a trick that works in this special case; and with
the more powerful technique of Fourier transformation. We introduce the concept of
“group velocity,” the speed at which signals can actually be sent in a real system.

ii. We discuss, by example and then in general, the counterpoint between a function and
its Fourier transform. We make the connection to the physical concepts of bandwidth
and fidelity in signal transmission and to Heisenberg'’s uncertainty relation in quantum
mechanics.

iii. We work out in some detail an example of the scattering of a wave packet.

iv. We discuss the dispersion relation for electromagnetic waves in more detail and explore
the question of whether light actually travels at the speed of light!

225
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10.1 Signals in Forced Oscillation
10.1.1 A Pulse on a String

101

We begin with the following illustrative problem: the transverse oscillations of a semiinfinite
string stretched from = 0 to oo, driven atr = 0 with some arbitrary transverse sigifét),

and with a boundary condition at infinity that there are no incoming traveling waves. This
simple system is shown in figuié.1.

Figure 10.1: A semiinfinite string.

There is a slick way to get the answer to this problem that vemiligSfor a system with
the simple dispersion relation,
w2 =02k?. (10.1)

The trick is to note that the dispersion relati(i.1),implies that the system satisfies the

wave equation| (6.4), or
2

9 0’

It is a mathematical fact (we will discuss the physics of it below) that the general solution to
the one-dimensional wave equati¢b0.2),is a sum of right-moving and left-moving waves
with arbitrary shapes,

Y(z,t) = g(x — vt) + h(z + vt), (10.3)
whereg andh are arbitrary functions. You can check, using the chain rule(libat)satisfies
(10.2),

0? 0?
a5 (9(z —vt) + h(z +0t)) = UQ—Q(Q(:E —vt) + h(z + vt))
ot Ox (10.4)

=2 (¢ (x —vt) + B (z + vt)).

Given this mathematical fact, we can find the functigremd / that solve our particular
problem by imposing boundary conditions. The boundary condition at infinity implies

h=0, (10.5)
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because tha function describes a wave moving in the direction. The boundary condition
at z= 0 implies

g(—vt) = f(t), (10.6)
which gives

P(x,t) = f(t—x/v). (10.7)

This describes the signgl(t), propagating down the string at the phase velacitth no
change in shape.
For the simple function

1—1t| forjt| <1
f() = (10.8)
0 for [t| > 1

the shape of the string at a sequence of times is shown in/fi@wzrand animated in pro-
gram 10-1.

t="L/v
t=10/2v
t=
t=—4/2v
t=—l/v

0 ¢ 20 3¢ 40 B¢

Figure 10.2: A triangular pulse propagating on a stretched string.

10.1.2 Fourier integrals

Let us think about this problem in a more physical way. In the process, we will understand
the physics of the general solutiqi0.3). This may seem like a strange thing to say in
a section entitled, “Fourier integrals.” Nevertheless, we will see that the mathematics of
Fourier integrals has a direct and simple physical interpretation.

The idea is to use linearity in a clever way to solve this problem. We can(talapdrt
into its component angular frequencies. We already know how to solve the forced oscillation
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problem for each angular frequency. We can then take the individual solutions and add them
back up again to reconstruct the solution to the full problem. The advantage of this procedure
is that it works for any dispersion relation, not just for (10.1).

Because there may be a continuous distribution of frequencies in an arbitrary signal, we
cannot just writef (¢) as a sum over components, we need a Fourier integral,

1) = / T dw Cw) et (10.9)

—0o0

The physics of (10.9) is just linearity and time translation invariance. We know that we can
choose the normal modes of the free system to have irreducible exponential time dependence,
because of time translation invariance. Since the normal modes describe all the possible
motions of the system, we know that by taking a suitable linear combination of normal modes,
we can find a solution in which the motion of the end of the system is described by the
function, f(¢). The only subtlety in (10.9) is that we have assumed that the valuethaif
appear in the integral are all real. This is appropriate because a nonzero imaginary part for
w in e~™* describes a function that goes exponentially to infinity as +co. Physically,
we are never interested in such things. In fact, we are really interested in functions that go to
zero ag — *oo. These are well-described by the integral overwel0.9).

Note that iff(¢) is real in(10.9), then

£(t) = / O:o du C(w) e~

> R 00 10.10
— f(t) = Lw dw C(w)* 6t = [m o O ) e (10.10)

thus
C(—w)" =C(w). (10.11)
It is actually easier to work with the complex Fourier integral, (10.9), with the irreducible
complex exponential time dependence, than with real expansions in texmswofand
sinwt. But you may also see the real forms in other books. You can always translate from

(10.9)by using the Euler identity
¥ = cosf +isinf. (10.12)

82

For each value of, we can write down the solution to the forced oscillation problem,
incorporating the boundary conditioncat Each frequency component of the force produces
a wave traveling in the-z direction.

67iwt N efiwt+ikx7 (1013)

then we can use linearity to construct the solution by adding up the individual traveling waves
from (10.13) with the coefficientS(w) from (10.9). Thus

Y(x,t) = / - dw C(w) e~ wiTike, (10.14)

—00
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wherew andk are related by the dispersion relation.

Equation(10.14)is true quite generally for any one-dimensional systemany dis-
persion relation, but the result is particularly simple for a nondispersive system such as the
continuous string with a dispersion relation of the f¢tf.1). We can us€10.1)in (10.14)
by replacing

k—w/v. (10.15)

Note that whilek? is determined by the dispersion relation, the sigh,dbr a givenw, is
determined by the boundary condition at infinityandw must have the same sign, as in
(10.15), to describe a wave traveling in the direction. Putting/(10.15) intd (10.1djves

Y(x,t) = / T dw C(w) e~ Wttiwa/v — / - dw C(w) e~ wlt=2/v) (10.16)

Comparing this with (10.9) give40.7).

Let us try to understand what is happening in words. The Fourier int€dd&), ex-
presses the signal as a linear combination of harmonic traveling waves. The r@@tid),
which follows from the dispersion relatio(10.1),and the boundary condition at, implies
that each of the infinite harmonic traveling waves moves at the same phase velocity. There-
fore, the waves stay in exactly the same relationship to one another as they move, and the
signal is never distorted. It just moves with the waves.

The nonharmonic signal is called a “wave packet.” As we have seen, it can be taken apart
into harmonic waves, by means of the Fourier inte¢tal9).

10.2 Dispersive Media and Group Velocity

For any other dispersion relation, the signal changes shape as it propagates, because the
various harmonic components travel at different velocities. Eventually, the various pieces of
the signal get out of phase and the signal is dispersed. That is why such a medium is called
“dispersive.” This is the origin of the name “dispersion relation.”

10.2.1 Group Velocity

0] 10-2
If you are clever, you can send signals in a dispersive medium. The trick is to send the signal
not directly as the functiory,(¢), but as a modulation of a harmonic signal, of the form

f(t) = fs(t) coswot, (10.17)

where f4(t) is the signal. Very often, you want to do this anyway, because the important
frequencies in your signal may not match the frequencies of the waves with which you want
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to send the signal. An example is AM radio transmission, in which the signal is derived from
sound with a typical frequency of a few hundred cycles per second (Hz), but it is carried as
a modulation of the amplitude of an electromagnetic radio wave, with a frequency of a few
million cycles per secorid.

You can get a sense of what is going to happen in this case by considering the sum of two
traveling waves with different frequencies and wave numbers,

cos(kyx — wyt) + cos(k_x — w_t) (10.18)
where
ki = k[) + k?s N W+ = W + Ws (1019)
for
ks < ko, ws<wp. (10.20)

The sum can be written as a product of cosines, as
2 cos(ksx — wst) - cos(koxr — wot) . (10.21)

Because 0{10.20),the first factor varies slowly in andt compared to the second. The result
can be thought of as a harmonic wave with frequencwith a slowly varying amplitude
proportional to the first factor. The space dependen¢&0o2l)is shown in figurél0.3.

/

Figure 10.3: The function (10.2fgr ¢ = 0 andky/ks = 10.

You should think of the first factor if10.21)as the signal. The second factor is called the
“carrier wave.” Then (10.21describes a signal that moves with velocity
Wg Wy —wW—
Vg = — =

=+ 10.22
P (10.22)

while the smaller waves associated with the second factor move with velocity

wo

= —. 10.2
v =0 (10.23)

1See(10.71), below.
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These two velocities will not be the same, in general. If (10.20) is satisfied, then (as we will
show in more detail below), will be roughly the phase velocity. In the limit,/as — k_ =
2ks becomes very small, (10/22) becomes a derivative

Wi —Ww_ ow

e i il I 10.24
hy — k- Ok lpep (10.24)

Us

This is called the “group velocity.” It measures the speed at which the signal can actually be
sent.

The time dependence of (10.21) is animated in program 1Qe2e the way that the
carrier waves move through the signal. In this animation, the group velocity is smaller than
the phase velocity, so the carrier waves appear at the back of each pulse of the signal and
move through to the front.

Let us see how this works in general for interesting sigiiéd$, Suppose that for some
range of frequencies near some frequengythe dispersion relation is slowly varying. Then
we can take it to be approximately linear by expandifig in a Taylor series about and
keeping only the first two terms. That is

Ow

w:w(k):w()%—(k—ko)%kk—i----, (10.25)
=ko

wo = w(ko), (10.26)

and the higher order terms are negligible for a range of frequencies
wo —Aw < w < wp + Aw. (20.27)

whereAw is a constant that dependsw@nand the details on the higher order terms. Then
you can send a signal of the form A
f(t) - et (10.28)

(a complex form of (10.17), above) whefig) satisfies/(10.9) with
C(w) =0 for |w—wp|>Aw. (10.29)

This describes a signal that has a carrier wave with frequenoyodulated by the interesting
part of the signalf(t), that acts like a time-varying amplitude for the carrier wavé:°t.
The strategy of sending a signal as a varying amplitude on a carrier wave is called amplitude
modulation.
Usually, the higher order terms in (10.25) are negligible om\uif< wq. If we neglect
them, we can write (10.25) as

w=vk+a, k=w/v+b, (10.30)
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wherea and bare constants we can determine from (10.25),

a = wy — vk, b=ko—wo/v (10.312)
and vis the group velocity
v = g—z . (10.32)
For the signal (10.28)
¥(0,t) = /_ T dw C(w) e wtwo)t — /_ T dw Clw — wp) et (10.33)
Thus (10.14) becomes
P(x,t) = /fo dw C(w — wp) et etk (10.34)
but then(10.29) gives
P(x,t) = /jo dw C(w — wy) e~ WHHilw/vtb)z
_ /OO de C(w — wp) e~ @(t=/v)viba
oo (10.35)

= /00 dw C(w) e~ Hwtwo)(t—z/v)+ibx
= f(t — x/v) e—iwo(t—m/v)+ibx .

The modulatiory (¢) travels without change of shape at the group veledifyen by (10.32),
as long as we can ignore the higher order term in the dispersion relation. The phase velocity

w

v =1 (10.36)

has nothing to do with the transmission of information, but notice that because of the extra
e in (10.35), the carrier wave travels at the phase velocity.

You can see the difference between phase velocity and group velocity in your pool or
bathtub by making a wave packet consisting of several shorter waves.

10.3 Bandwidth, Fidelity, and Uncertainty

The relation'(10.9) can be inverted to givév) in terms off (¢) as follows

Clw) = % /_ O:O dt F(t) et (10.37)
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This is the “inverse Fourier transform.” It is very important because it allows us to go back
and forth between the signal and the distribution of frequencies that it contains. We will get
this result in two ways: first, with a fancy argument that we will use again and explain in
more detail in chapter 13; next, by going back to the Fourier series, discussed in chapter 6 for
waves on a finite string, and taking the limit as the length of the string goes to infinity.

The fancy argument goes like this. It is very reasonable that the integral in (10.37) is
proportional toC(w) because if we insert (10.9) and rearrange the order of integration, we
get

/ du' C(w / dt e'@—)t (10.38)

Thet integral averages to zero unless= w’. Thus theJ’ integral is simply proportional to
C(w) times a constant factor. The factorlg2z can be obtained by doing some integrals
explicitly. For example, if

f(t) =e T, (10.39)

for I > 0 then, as we will show explicitly in (10.49)-(10.56), (10.37) yields
210 (w) = 2T/ (T2 4 w?), (10.40)

which can, in turn, be put back in (10.9) to give (10.39).tFer0, the integral can be done
by the trigonometric substitutian — I" tan 6:

1=f(0)=¢e" —/ dw C(w) e ™0

L/~ dw——— W/Z dd =1
_;/700 F2+w2 _)W/TI'/Z o

To get the inverse Fourier transform, (10.37), as the limit of a Fourier series, it is con-
venient to use a slightly different boundary condition from those we discussed in chapter 6,
fixed ends and free ends. Instead, let us consider a string stretched-frem{ to x = n/,
in which we assume that the displacement of the string from equilibrium=atr¢ is the
same as the displacementrat —l)2

(10.41)

(=l t) = P(nl,t). (10.42)

The requirement/ (10.42), is called “periodic boundary conditions,” because it implies that
the functiomy that describes the displacement of the string is periodionith period27/.
The normal modes of the infinite system that satisfy (10.42) are

e/l (10.43)

2A example of a physical system with this kind of boundary condition would be a string stretched around
a frictionless cylinder with radiué and (therefore) circumferen@er¢. Then (10.42) would be true because
x = —m/ describes the same point on the string as 4.
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for integern, because changingby 27/ in (10.43) just changes the phase of the exponential
by 27r. Thus ify)(x) is an arbitrary function satisfying(—=¢) = ¢ (n¢), we should be able
to expand it in the normal modes of (10.43),

bz)= Y epe (10.44)
Likewise, for a functionf(t), satisfyingf(—=T) = f(«T) for some large tim&’, we
expect to be able to expand it as follows

foy= > epe™/T, (10.45)
where we have changed the sign in the exponential to agree with (10.9). We will show that
asT — oo, this becomes equivalent to (10.9).
Equation((10.44) is the analog of (6.8) for the boundary condition, (10.42). The sum runs
from —oo to oo rather than 0 teo because the modes in (10.43) are differentfand—n.
For this Fourier series, the inverse is

1 ﬂ imt /T
m = —— e f 104
c 5 /_7r dte (t) (10.46)
where we have used the identity

1 7T , , 1form=mn,
T / dt T e=int/T — (10.47)
Tt JenT 0 form #n.

Now suppose that(¢) goes to O for largg| (note that this is consistent with the periodic
boundary condition (10.42)) fast enough so that the integral in (10.46) is well defined as
T — oo for all m. Then because of the factor IofT" in (10.47), the:, all go to zero like
1/T. Thus we should multiply,, by T to get something finite in the limit. Comparing
(10.45) with (10.9), we see that we should take be n/T

Thus the relation/ (10.45), is an analog of the Fourier integral, (10.9) where the corre-
spondence is

T — oo
n

oW (10.48)

el — Clw).
In the limit, 7" — oo, the sum becomes an integral over

Multiplying both sides of( (10.46) b¥’, and making the substitution of (10.48) gives
(10.37).
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10.3.1 A Solvable Example

For practice in dealing with integration of complex functions, we will do the integration that
leads t0/(10.40) in gory detail, with all the steps.

1 o0 -
Clw)=— / dt e VIt gt (10.49)
21 J_oo
First we get rid of the absolute value —
Lo Tt i I Tt iwt
:—/ dte~ tem+—/ dt et i (10.50)
21 Jo 21 J_so
and write the second integral as an integral fromd te-
Lo vt iwt , L[ It —iwt
:—/ dte " e —|——/ dte ‘e ™ (10.51)
21 Jo 21 Jo
1 o , .
:2—/ dt e 't ™t 4 complex conjugate, (10.52)
7 Jo

but we know how to differentiate even complex exponentials (see the discussion of (3.108)),
SO we can write

8 —I't dwt) __ . —I't iwt

5 (e e ) =(-T+iw)e """ (10.53)

Thus - . - 9
dt —I't dwt — / di — —I't iwt 10.54
/0 ©° T1iw o Yot (e e) (10.54)

or, using the fundamental theorem of integral calculus,

1 —Tt iwt) > 1

- v = . 10.55
T+ iw (e ¢ )t:O T —iw (10.55)

This function ofw is called a “pole.” While the function is perfectly well behaved foragal
it blows up forw = —iI", which is called the position of the pole in the complex plane. Now
we just have to add the complex conjugate to get

Clw) = % (F—liw + F—iiw)

1 (T+iw D—iw\ 1 2r (10.56)

T on <F2—|—w2 +I‘2+w2 T o 2 + W2
which is (10.40). We already checked, in (10.41), that the factof2af makes sense.

The pair(10.39)-(10.40) illustrates a very general fact about signals and their associated

frequency spectra. In figure 10.4 we pfdt) for I' = 0.5 andI" = 2 and in figure 10.5,
we plotC'(w) for the same values d@f. Notice that ad” increases, the signal becomes
more sharply peaked nefar= 0 but the frequency spectrum spreads out. And conversely if
I is small so tha€’(w) is sharply peaked near = 0, thenf(¢) is spread out in time. This
complementary behavior is general. To resolve short times, you need a broad spectrum of
frequencies.




236

CHAPTER 10. SIGNALS AND FOURIER ANALYSIS

Figure 10.4:f(t) = e Tl for I = 0.5 andI" = 2.

0.5 7

I'=2.5

Figure 10.5:C'(w) for the same values of.

10.3.2 Broad Generalities

We can state this fact very generally using a precise mathematical definition of the spread of
the signal in time and the spread of the spectrum in frequency.

We will define the intensity of the signal to be proportionalft@)|?>. Then, we can
define the average value of any functign) weighted with the signal’s intensity as follows

{9(t)) =

Joo dtg(t) [f(1)?
[, dt|f(t)]2 (10.57)

This weightsy(¢) most when the signal is most intense.

/\

Q) erf;w; tht
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For examplet) is the average time
most intense. Then @

hat is the time value around which the signal is

(10.58)

measures the mean-square devi e average time, so it is a measure of the spread
of the signal.

We can define the average value of a functiow of an analogous way by integrating
over the intensity of the frequency spectrum. But here is the trick. Because of (10.9) and
(10.37), we can go back and forth betwgén) and C'(w) at will. They carry the same
information. We ought to be able to calculate averages of functiandyfising an integral

overt. And sure enough, we can. Consider the integral
—twt __ —wt _
/ﬂo dwwC(w)e =iy /ﬂo dwC(w)e 5 f(t). (10.59)

This shows that multiplying'(w) by w is equivalent to differentiating the correspondjiig)
and multiplying byi.
Thus we can calculatev) as

25 dtf()*if f(t)

w) = — , 10.60

O 0L (1060
and )
2 | (i — @) 1)

Aw? = ([w — (W)]?) = —= 10.61

o = (o= IF) I, IO (1061

Aw is a measure of the spread of the frequency spectrum, or the “bandwidth.”
Now we can state and prove the following result:
(10.62)

Ve | -

V5

One important consequence of tht 1S that for a given bandvidtithe spread in
time of the signal cannot be arbitrarily small, but is bounded by

1
> —
At_2Aw

The smaller the minimum possible value/sf you can send, the higher the “fidelity” you
can achieve. Smallekt means that you can send signals with sharper details._But/(10.63)
means that the smaller the bandwidth, the larger the minitayyrand the lower the fidelity.

To prove [(10.62) consider the functfon —

([t )] — ix [igt - @D Ft) = (1), (10.64)

(10.63)

3This is a trick borrowed from a similar analysis that leads to the Heisenberg uncertainty principle in quantum
mechanics. Don’t worry if it is not obvious to you where it comes from. The important thing is the result.
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which depends on the entirely free parametedow look at the ratio

J5 dtlr @)
J2 dtlf (B

This ratio is obviously positive, because the integrands of both the numerator and the denom-
inator are positive. What we will do is choaseleverly, so that the fact that the ratio is
positive tells us something interesting.

First, we will simplify (10.65). In the terms in (10!65) that involve derivativeg(of,
we can integrate by parts (and throw away the boundary terms because wefdgsgoes
to zero at infinity) so that the derivatives actfgn). Then(10.65) becomes

% dt F()* (15 = 5t) (1)

(10.65)

A2 + k2 Aw? + & = atf P (10.66)
All other terms cancel. But
Qs = 1)+t 2 10). (10.67)
ot ot
Thus the last term in (10.66) is just «, and (10.65) becomes
A2 + K2 Aw? — k. (10.68)

(10.68)is clearly greater than or equal to zero for any valug, dfecause it is a ratio of
positive integrals. To get the most information from the fact that it is positive, we should
choosex so that/(10.65) (=(10.68)) is as small as possible. In other words, we should find the
value ofx that minimizes|(10.68). If we differentiate (10.68) and set the result to zero, we
find
1

Kmin = IAL2
We can now plug this back into (10.68) to find the minimum, which is still greater than or
equal to zero. Itis

(10.69)

1
T EL (10.70)

At?

which immediately yields (10.62).
Equation (10.62) appears in many places in physics. A simple example is bandwidth in
AM radio transmissions. A typical commercial AM station broadcasts in a band of frequency

about 5000 cycles/s (5 kc) on either side of the carrier wave frequency. Thus
Aw = 2rAv ~ 3 x 10*s7 !, (10.71)

and they cannot send signals that separate times less thana(feiseconds apart. This
is good enough for talk and acceptable for some music.
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A famous example of10.62)comes from quantum mechanics. There is a completely
analogous relation between the spatial spread of a wave packegnd the spread df
values required to produce i k:

Az Ak > % (10.72)

In quantum mechanics, the momentum of a particle is related tovédae:of the wave that
describes it by

—)  p=hk, (10.73)
whereh is Planck’s constarit divided by2x. Thus[(10.72)mplies
h
Az - Ap > o (10.74)

This is the mathematical statement of the fact tha osition and momentum of a particle
cannot be specified simultaneously. This is Heisenberg’s uncertainty rel ion.

10.4 Scattering of Wave Packets

In a real scattering experiment, we are interested not in an incoming harmonic wave that has
always existed and will always exist. Instead we are interested in an incamiagpacket
that is limited in time. In this section, we discuss two examples of scattering of wave packets.

10.4.1 Scattering from a Boundary

0] 10-3

We begin with the easier of the two examples. Consider the scattering of a wave packet
from the boundary between two semi-infinite dispersionless strings both with t&haiah
different densitiesp; and g, as shown in figur@.1. The dispersion relations are:

vIk? = T in region]
w? = L (10.75)
vk = —k* inregionl]
PII

wherev; and y; are the phase velocities in the two regions.
Specifically, we assume that the boundary conditionaatis that there is an incoming
wave,
flx —ot) (10.76)

in regioni, but no incoming wave in regialf, and we wish to find the outgoing waves, the
reflected wave in regiohand the transmitted wave in regidh
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We can solve this problem without decomposing the wave packet into its harmonic com-
ponents with a trick that is analogous to that used at the beginning of this chapter to solve the
forced oscillation problem, figure 10.1. The most general solution to the boundary conditions
at +oois

f(t —x/vr) +g(t+x/vr) inregionl

W(z,t) = (10.77)
h(t —x/vir) in regionII

whereg andh are arbitrary functions. To actually determine the reflected and transmitted
waves, we must impose the boundary conditions-a), that the displacement is continuous
(because the string doesn’t break) and iderivative is continuous (because the knot joining
the two strings is massless):

f(@)+g(t) =h(t), (10.78)
and 5 5
5 (= afor) + gt + @ /oDll,eg = 5= bt = a/vrr) - (10.79)

Using the chain rule in_(10.79), we can relate the partial derivatives with respeto to
deriviatives of the functions,

1)11 [—ft—x/vr)+ gt +x/v1)]],_o = —v; W(t—z/vir)|,_p » (10.80)
or v
— () +dt) = _vTII W(t). (10.81)
Differentiating (10.78), we get
Fi(t)+4(t) =), (10.82)

Now for every value of, (10.81) and (10.82) form a pair of simultaneous linear equations
that can be solved faf(¢) and?/(t) in terms off’(¢):

1 —wvr/vrg 't 2

"(t) = B(t)=—F f(t). 10.83
9O =T oo O AL (10.83)
Undoing the derivatives, we can write
1 —wvr/vrr 2
t)=———f(t)+ ki, h(t)= —F f(t) + ko, 10.84
90 = Ty oy O H R ) = e [0 + R (10.84)

wherek; and ks, are constants, independenttofin fact, though, we must have = k-
to satisfy (10.78), and adding the same constant in both regions is irrelevant, because it just
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corresponds to our freedom to move the whole string up or down in the transverse direction.
Thus we conclude that

1-— 7}[/11[[ 2
)= —F— h(t) = —— f(¢ 10.85
910 = T oo 0= 1070 TO) (10.85)
and the solution| (10.77), becomes
1 —wr/vrr . .
f(t —z/vf) + ——— f(t+x/v;) inregionI,
Wz, t) = ) L+vr/vrr (10.86)
— f(t — i ionlI.
TRy flt —x/vrr) in region

The same result emerges if we take the incoming wave packet apart into its harmonic
components. For each harmonic component, the reflection and transmission components are
the same (from (9.16)):

22 2
21+ 7 14+vr/ v’
A e o)
C Zi+Zir l+ovrfurr

When we now put the harmonic components back together to get the scatter and transmitted
wave packets, the coefficientsandr appear just as overall constants in front of the original
pulse, as in (10.86).

This scattering process is animated in program 10-3. Here you can input different values
of vrr /vy to see how the reflection and transmission is affected. Notice that; very
small corresponds to a large impedance ratjo/Z;, which means that the string in region
1T does not move very much. Then we get a reflected pulse that is just the incoming pulse
flipped over below the string. In the extreme limjt; /v; — oo, the boundary at = 0 acts
like a fixed endv;; /vy very large corresponds to a small impedance rdtip,Z;, in which
case the string in regiahhardly notices the string in regidd. In the limitv;; /vy — 0, the
boundary at: = 0 acts like a free end.

10.4.2 A Mass on a String

b 10-4

A more interesting example of the scattering of wave packets that can be worked out using
the mathematics we have already done is the scattering of an incoming wave packet with
the shape of10.39)encountering a mass on a string. Here the dispersion relation is trivial,
so the wave packet propagates without change of shape until it “hits” the mass. But then
interesting things happen. This time, when we decompose the wave packet into its harmonic
components, the reflection and transmission coefficients depend fhen we add them
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[ ]

Figure 10.6: A mass on a string.

back up again to get the reflected and transmitted wave packets, we will find that the shape
has changed. We will work this out in detail. The familiar setup is shown in figure 10.6.
For an incoming harmonic wave of amplitudethe displacement looks like

Y(x,t) = Ae™ .7 L R Ae™hT . ol for 1 < 0 (10.88)

Y(x,t) =7 A . e for z > 0 (10.89)

The solution forkR andr was worked out in the last chapterlin (9.39)-(9.45). However, the
parametet of (9.38) depends an. In order to disentangle the frequency dependence of the
scattered wave packets, we wilteandr as

20 W
T —iw’ R_QQ—iw’ (10.90)
where
o= L _vrT (10.91)
muv m

is independent o — it depends just on the fixed parameters of the string and the mass.
Note that in the notation ¢f (9.38),
0="2. (10.92)

€
Suppose that we have not a harmonic incoming wave, but an incoming pulse:

Yin(z — vt) = AeTlt=2/v] (10.93)
Now the situation is more interesting. We expect a solution of the form
Y(x,t) = Yin(x — vt) + Yr(x +vt) forz <0 (10.94)

W(x,t) = (x —vt) forz >0 (10.95)

wherey - (x 4 vt) is the transmitted wave, traveling in the direction, and)r(z + vt) is
the reflected wave, traveling in ther direction. To get the reflected and transmitted waves,
we will use superposition and take, apart into harmonic components. We can then use
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(10.90)to determine the scattering of each of the components, and then can put the pieces
back together to get the solution. Thus we start by Fourier transfotinping

VYin(z,t) = / dw e E=2/Y) Oy (W) (10.96)

We know from our discussion of signals that

Cin(w) = % / dtei:t ’l/<}in(0£ t) , > (10.97)
- .

1 0 ,
= dt Ae®te Tt + he.= —
2 /0 € e + 2 —w + I'+ 1w

Now to get the reflected and transmitted pulses, we multiply the componemnishyf the
reflection and transmission amplitudesnd rfor unit i,

1 1 1 20

Cr(w) _A% (F—iw F+iw> 20 —dw (10.98)
1 1 1 iw

Crlw) = A5 <r—¢w + F+iw) 20— iw (10.99)

Now we have to reverse the process and find the Fourier transforms of these to get the
reflected and transmitted pulses. This is straightforward, because we can rrewrite (10.98) and
(10.99) in terms of single polesdn

CT(W):Al 20 <1 1')

1 %6 QQ—F 1 F—’Lw 1 QQ—ZW (10100)
+27T2Q+r'<r+m+29—iw :
1 1 T 20
Ch(w) = A— ( LS )
) %ﬂ' 20 —-T FP—zw QQQQ—M (10.101)

Torsa 4T (_F—H'w "0
Now we can work backwards in (10.100) and (10.101) to get the Fourier transforms. We
know from (10.55) that each term is the Fourier transform of an exponential. It is straight-

forward, but tedious, to put them back together. The result is reproduced below (note that we
have combined the two terms in each expression proportioha(28 — iw)).

e (x,t) = 200 O(t — x/v) Ae Vt=2/v)
20— T (10.102)

e o —2Q(t—zx/v) o I'(t—x/v)
——0(t —x/v) Ae +QQ+I‘9( t+ xz/v) Ae
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and
Gr(5,8) = s Ot + w/0) Ae~T /)
20 -T 10.103
401 Co0(t4asy 2T . (10.103)
where
1fort >0,
0(t) = (10.104)
Ofort<O0.
A -
0

—4-3-2-101 2 3 4
Figure 10.7: A wave packet on a stretched string=at-2.

A T

—4-3-2-101 2 3 4
Figure 10.8¢ = —1.
These formulas are not very transparent or informative, but we can put them into a com-
puter and look at the result. We will plot the result in the Rftit— I'. The results(10.102)

and(10.103)look singular in this limit, but actually, the limit exists and is perfectly smdoth.
In figures10.7-10.12we showy(x, t) for I' = v = 1 in arbitrary units, fot values from-—2

“The apparent singularity is similar to one that occurs in the approach to critical damping, disco(Z5$&dl in
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O*’A

—4-3-2-101 2 3 4

Figure 10.9¢ = 0.

~4-3-2-10 1 2 3 4

Figure 10.10f = 1.

4-3-2-10 1 2 3 4
Figure 10.11¢ = 2.

to 3. Att = —2, you see the pulse approaching the mass for negauet = —1, you can
begin to see the effect of the mass on the stringt By, the string to the left of = 0 is
moving rapidly downwards. At= 1, downward motion of the string far < 0 has contin-
ued, and has begun to form the reflected pulset EoR, you can see the transmitted and
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—4-3-2-10 1 2 3 4
Figure 10.12¢ = 3.

reflected waves beginning to separate. #~er 3, you can see the reflected and transmitted
pulses have separated almost completely and the mass has returned nearly to its equilibrium
position. For large positive the pulse is split into a reflected and transmitted wave.

The really interesting stuff is going on betweena 0 andt = 1, so we will look at this
on a finer time scale in figurd$.13-10.15 To really appreciate this, you should see it in
motion. It is animated in program 10-4.

A -
0 —/K

—4-3-2-101 2 3 4

Figure 10.13: Thisis .2.

10.5 Is cthe Speed of Light?

We have seen that an electromagnetic wave in thieection satisfying Maxwell’s equations

in free space has the dispersion relation (8<t¥jhat light, at least in vacuum, travels at the
speed of light. But is the theory right? How do we test the dispersion relation? In fact, the
most sensitive tests of Maxwell’s equations do not involve traveling waves. They come/from
observations of magnetic fields that extend over astrophysical distances (like the gafaxy!).
However, there is an interesting, if not very sensitive, way of looking for correcti(4 1)
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A.,

—4-3-2-10 1 2 3 4
Figure 10.14: This is + .4.
A -

O T

4321012 3 4
Figure 10.15: This is + .6.
A -

4-32-10 123 4
Figure 10.16: This is+ .8.

that involves the speed of light directly. Before discussing this, let us digress briefly to talk

in more detail about photons, the particles of light that we described briefly in chapter 8.
Light is a wave phenomenon, as we have seen. Indeed, the wave properties of light are

obvious in our everyday experience. It is less obvious from our everyday experience, but
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equally true, that light also consists of photons. This becomes obvious when you work with
light at very low intensities and/or very high energies. That both of these statements can be
true Simultaneously is one of the (many) miracles of quantum mechanics.

Quantum mechanics tells us that all particles have wave properties. A particle with mo-
mentump and energyF has an associated angular frequency and angular wave number re-
lated by

E=hw, p=hk, (10.105)

whereh is Planck’s constant divided Bs. This combination appears so ubiquitously in
guantum mechanics that it has its own symbol, and we physicists almost alwayrs e
thanh. The reason is just thatis related to the frequenay, rather than the angular fre-
guency,w, and we have seen thatis the more convenient measure for most purposes. In
addition, the energy and momentum of the particle are related as follows:

E?2=p?> +m?c, ’u:c% (10.106)
wherem is the rest mass ands the classical velocity.
If we put (10.105) inta (10.106), we get a dispersion relation for the quantum mechanical
wave associated with the particle

9 mc?

W=+ Wd, wo= = (10.107)

The classical velocity is thgroup velocity of the quantum mechanical wave!

0w ok pc
“ok “w “F
In fact, particles, in a quantum mechanical picture, correspond to wave packets that move
with the group velocity.

The quantum mechanical dispersion relation, (10.107), agrees with (8.47)xandy .
Thus we can restate the question of whether (8.47) is correct by asking “Is the photon n}ais
really zero?”
— Tt would seem that we ought to be able to test this idea by looking at two photons withO
different frequencies emitted at the same time from a far away object and checking whether
they arrive at the same time. There is an obvious flaw in this scheme. If the object is so far
away that we cannot get there, how do we know that the two photons were emitted at the same
time? In fact, astrophysics has provided us with a way around this difficulty. We can look
at pulsars. Pulsars are (presumably) rotating neutron star remnants of supernova explosions
that emit light toward the earth at regular intervals. For example, pulsar 1937+21 is so regular
that the departure time of photons can be determined to within a few microsecs)dk (

v (10.108)

See G. Barbiellini and G. Coccoilature329 (1987) 21.
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is also about 16,000 light years away, so the photons with the higher frequency (the faster

ongs) have plenty of time to get aheagl. When this experiment is done, one finds a honzero

wo, of aboutl.7 x 1075+, corresponding to a mass of abauw6 x 10~4g. That seems

like a rather small mass, but in fact, it is ridiculously large for a photon. From studies of the

galactic magnetic field, we suspect that it is less than0~%g!® Thus something else is

going on.
The problem with this measurement as a test of the dispersion relation is that there are

electrons lying around out there — free electrons in interstellar spaiceto 10~2cm™3).

These electrons in space will wiggle in thdield — this will produce a current density that

will affect Maxwell's equations, and that, in turn, will affect the dispersion relation. Let us

analyze the effect of this dilute plasma assuming that the electron density is constant. Then

(at least for the long wavelength radio waves of interest in these experiments) we can still

use translation invariance to understand what is happening. Consider a plane wave in the

direction and suppose that the electric field of the plane wave is indinection. Then it is

still true that at a givew

E;I:(Fy t) = EO €i(kZ7Wt) ) By(ﬁ t) = BO ei(szwt) ’ (10109)

for somek. To find k&, we must look at the effect of the electric fields on the electrons,
and then go back to Maxwell's equations. The fields are very small, and for small fields
the induced electron velocities,are small. Thus we can negldg8t Then the force on an
electron at the poirit”, t) is

Fo(7,t) = e By (F,t) = e By e F*79Y = m a, (7, t) (10.110)
The displacement of the electron has the same form:
dy(7,t) = do "7 (10.111)

which implies ‘
ap (7, 1) = —w? d k>t (10.112)

comparing/(10.110) and (10.112) gives

E
dy = ——2. (10.113)
m w

Thus the electrons are displacs)® out of phase with the electric field and in the same
direction. Then the electron velocity is

vy = LEEO ilhz—un) (10.114)
mw

SChibisov, Soviet PhysicsUspekhj 19 (1986) 624.
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The movement of the electrons gives rise to a current defisity:

’i62NE0 ei(k:szt)

Tz = (10.115)
mw
whereN is the electron number density.
Putting this into the relevant Maxwell’s equations, we find
’NE
kEy=wBy, —kDBo=—whuoeoBo+ po 2, (10.116)
mw
or usinge = 1//uo€o, (8.47),
k k2 N
Bo=“~Ey, ——=—24 (10.117)
w w C c“m egw
or solving forw?
2 272 2 ; o €N
w:=c"k"+wj, with wj= . (10.118)
€eom

The constanty in (10.118) is called thplasma frequency.” The amazing thing is that it
looks just like a photon mass. Far ~ 10~2cm ™3, this is consistent with the observation
from the pulsar.

Chapter Checklist

You should now be able to:

i. Solve a forced oscillation problem for a stretched string with arbitrary time dependent

displacement at the end,;

ii. Decompose an arbitrary signal into harmonic components using the Fourier transfor

mation;

iii. Compute the group velocity of a dispersive system;

iv. Understand the relations between a function and its Fourier transform that lead to the

relation between bandwidth and fidelity;

v. Be able to describe the scattering of a wave packet;

vi. Understand the effect of free charges on the dispersion relation of electromagnetic

waves.

"Notice that the result is inversely proportional to the electron mass. This why we are concentrating on

electrons rather than protons. The protons don’t move as fast!
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Problems

10.1. Is it possible for a medium that supports electromagnetic waves to have the dis-
persion relation,? = ¢2 k% — w3 for real w?
Why or why not?

10.2. A beaded string has neighboring beads separated lffhe maximum possible
group velocity for waves on the stringuisfind 7'/m.

10.3. In the next chapter, we will derive the dispersion relation for waves in water (or at
least an idealized picture of water). If the water is deep, the dispersion relation is
Tk?
w? = gk + ——
p

whereg is the acceleration of gravity, 980 in cgs urifids the surface tension, 72, andis
density, 1.0. Find the group velocity and phase velocity as a function of wavelength. When
are they equal?

10.4. Consider the longitudinal oscillations of the system of blocksraass$lessprings
shown below:

<

O QQQI QQQI QO Q.-

Each block has masa. Each spring has spring constdfit The equilibrium separation
between the blocks is. The ring on the left is moved back and forth with displacement
B coswt. This produces a traveling wave in the system moving to the rightfo2/ K /m.
There is no traveling wave moving to the left.

The dispersion relation for the system is

w? = g sin? @ .
m 2
a. Suppose that = /K /m. Find the phase velocity of traveling waves at this fre-

quency.

b. Forw = \/K/m, find the displacement of the first block at time 7 /2w. Express
the answer a® times a pure number.
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C. Find the group velocity in the limit — 2,/ K/m.

d. Find the time average of the power supplied by the force on the ring in the limit
w— 2/ K/m.
e. Explain the relation between the answers to pagsdd. You may be able to do

this part even if you have gotten confused in the algebra. Think about the physics and try to
understand what must be going on.



Chapter 11

Two and Three Dimensions

The concepts of space translation invariance and local interactions can be extended to sys-
tems with more than one space dimension in a straightforward way. But in two and three
dimensions, these ideas alone are not enough to determine the normal modes of an arbitrary
system. One needs extra tricks, or plain hard work.

Preview

Here, we will only be able to discuss the very simplest sort of tricks, but at least we will be
able to understand why the problems are more difficult.

Vi.

We begin by explaining why the angular wave numbelhecomes a vector in two
or three dimensions. We find the normal modes of systems with simple boundary
conditions.

We then discuss scattering from planes in two- and three-dimensional space. We derive
Snell’s law of refraction and discuss total internal reflection and tunneling.

We discuss the example of Chladni plates.

We give a two-dimensional example of a waveguide, in which the waves are con-
strained to propagate only in one direction.

We study water waves (in a simplified version of water).

We introduce the more advanced topic of spherical waves.

253
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y=day
y=3ay 1,3 2,3 3,3 4,3
y=2ay 1,2 2,2 3,2 4,2
y=ay 11 2,1 31 4,1
=0
=0 r=ag r=2ayg x=3ayg x=4ayg  x=Sag

Figure 11.1: A two-dimensional beaded mesh.

11.1 The k Vector

Consider the two-dimensional beaded mesh, a two-dimensional analog of the beaded string,
shown in figure 11/1All the beads have mass. The tension of the horizontal (vertical)
strings isTy (1) and the interbead distancedg (ay). There is no damping. We can

label the beads by a pair of integéfsk) indicating their horizontal and vertical positions as
shown. Alternatively, we can label the beads by their positions in, thplane according to

(z,y) = (jam, kay). (11.1)

Thus, we can describe their small transverse (out of the plane of the papet, diréiction)
oscillations either by a matrix;(t) or by a function

We will use [(11.2) because we can then extend the discussion to continuous systems more
easily. We are interested only in the transverse oscillations of this system, in which the blocks
move up and down out of the plane of the paper, because these oscillations do not stretch the
strings very much (only to second order in the small displacements). The other oscillations
of such a system have much higher frequencies and are strongly damped, so they are not very
interesting.
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As in the one-dimensional case, the first step is to remove the walls and consider the
infinite system obtained by extending the interior in all directions. The oscillations of the
resulting system can be described by a funation y, t), wherex andy are not constrained.

This infinite system looks the same if it is translatedipyvertically, or byay hori-
zontally. We can write down solutions for the infinite system by using our discussion of the
one-dimensional case twice. Because the system has translation invarianaedingtbon,
we expect that we can find eigenstates ofithie' K’ matrix proportional to

(et 7 (11.3)

for any constank,. Because the system has translation invariance i thisection, we
expect that we can find eigenstates ofthe! K matrix proportional to

eikwy (11.4)

for any constant,,. Putting (11.3) and (11.4) together, we expect that we can find eigenstates
of the M~! K matrix that have the form

— U(x,y) = Aetha® ethvy — AR (11.5)
wherek - 7 is the two-dimensional dot product
k-7 =kox + kyy . (11.6)

In other words, the wave number has become a vector.

As with the one-dimensional system, we can use [(11.5) to determine the dispersion re-
lation of the infinite system. Putting in thedlependence, we have a displacement of the
form ~

Y(x,y,t) = AetkT e, 11.7)

The analysis is precisely analogous to that for the one-dimensional beaded string, with the
result thatv? is simply a sum of vertical and horizontal contributions, each of which look
like the dispersion relation for the one-dimensional case:

2 4TH sin2 kxaH + 4TV

w? = sin? W (11.8)

mag 2 may 2

Equations(11.,7) and (11.8) are the complete solution to the equations of motion for the
infinite beaded mesh.
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11.1.1 The Difference between One and Two Dimensions

0111
So far, our analysis has been essentially the same in two dimensions as it was in one. The
next step, though, is very different. In the one-dimensional case, where the normal modes
aree®™™* there are only two modes with any given valuedf Thus, no matter what the
boundary conditions are, we only have to worry about superposing two modes at a time. But
in the two-dimensional case, there are a continuously infinite humber of solutidisétp
for anyw, because you can lowég and compensate by raisihg. Thus a normal mode
of the finite two-dimensional system with no damping (which is just some solution in which
all the beads oscillate in phase with the sainenay be a linear combination of an infinite
number of the nice simple space translation invariant modes of the infinite system.

Sure enough, in general, the two-dimensional case is infinitely harder. If fifiire
were a system with a more complicated shape, we would not be able to find an analytic
solution. But for the special case of a rectangular frame, aligned with the beads, the boundary
conditions are not so bad, because both the m¢tkes) and the boundary conditions can
be simply expressed in terms of products of one-dimensional normal modes.

The boundary conditions for the system in figlitel are;

¢(07yat) = w(LHa y7t) = @Z’(l‘, Oat) = ¢($a LV>t) =0, (119)

where
Ly =5ay, Ly=4ay. (11.10)

In the corresponding infinite system, a piece of which is shown in fiduge(11.9)implies
that the beads along the dotted rectangle are all at rest. Comparind fiduszed figurell.2,
you can see that this boundary condition captures the physics of the walls id fidure
Now to find the normal modes of the finite system in figlkel, we must find linear
combinations of modes of the infinite system that satisfy the boundary conditibAg, We
can satisfy (11!9) by forming linear combinations of just four modes of the infinite system:

Aotk gikyy (11.11)

where
ky =nm/Ly, ky=n'n/Ly. (11.12)

Then we can take the solutions to be a product of sines,

Y(z,y) = Asin(nmz/Ly) sin(n'my/Ly)

forn =1to4andn’ = 11to 3.

(11.13)

There is a symmetry at work here! The modes in whichkthector is lined up along the or y axes are
those that behave simply under reflections through the center of the rectangle.
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Figure 11.2: A piece of an infinite two-dimensional beaded mesh.

The frequency of each mode is given by the dispersion relation (11.8):

ATy . onmag 4Ty . o n'may
w? = sin? + sin? .

11.14
mag 2Ly may 2Ly ( )

These modes are animated in program 11-1.

The solution of this problem is an example of a technique called “separation of variables.”
In the right variables, in this case,andy, the problem falls apart into one-dimensional
problems. This trick works equally well in the continuous case, so long as the boundary
surface is rectangular. If we take the limit in whighanday are very small compared to
the wavelengths of interest, we can express [(11.8) in terms of quantities that make sense in
the continuum limit, just as in the analysis of the continuous one-dimensional string as the
limit of the beaded string, in chapter 6. Assume, for simplicity, that

ay =ag=a and Ty =Tyg =T (11.15)

(so that the = and directions have the same properties). The quantities that characterize the
surface in this case are the surface mass density,

m

pe=", (11.16)
a
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and the surface tension,
T, = —. (11.17)
a

The surface tension is the pull per unit transverse distance exerted by the membrane. When
these gquantities remain finite as the separatiogoes to zero, (11.8) becomes

-2
A

T T
2 s 2 2 s
wt=—(ki+k;)=— 11.18

Ps ( ’ y> Ps ( )

An argument that is precisely analogous to that for the one-dimensional case shows that in
this limit, ¢/(x, y, t) satisfies the two-dimensional wave equation,

% ) (02 & 2 2
ﬁ@b(x,y’t) =v" | 5.2 + a7 Y(x,y,t) = v VY(x,y,t). (11.19)
Note that in this limit, the special properties of thendy axes that were manifest
in the finite system have completely disappeared from the equation of motion. The wave
numbersk, and k, form a two-dimensional vectdr. The infinite number of solutions to the
dispersion relatiori (11.18) are just those obtained by rotéﬁngill possible ways without
changing its length. This makes it possible to solve for the normal modes in circular regions,
for example. But we will not discuss these more complicated boundary conditions now. It is
clear, however, that (11.13) is the solution for the rectangular region in the continuous case,
and that the corresponding frequency is

T. (nﬂ)Q (ww)Q

2 S

wi=—|{—] +|— . 11.20
Ps [ Ly Ly ( )
Now because the system is continuous, the integansln’ run from zero to infinity (though
n = n’ is not interesting), or until the continuum approximation breaks down.

11.1.2 Three Dimensions

The beaded mesh cannot be extended to three dimensions because there is no transverse di-
rection. But a system of masses connected by elastic rods can be three-dimensional, and
indeed, this sort of system is a good model of an elastic solid. This system is rather com-
plicated because each mass can move in all three directions. A two-dimensional version of
this is illustrated in figure 11.3. This system is the same as figure 11.1 except that the strings
have been replaced by light, elastic rods, so that system is in equilibrium even without the
frame. Now we are interested in the oscillations of this sygietime plane of the paper
Compared to figure 11.1, this system has twice as many degrees of freedom, because each
block can move in both the andy direction, while in figuré 11.1, the blocks moved only
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y=day
y=3ay 1,3 2,3 3,3 4,3
y=2ay 1,2 2,2 3,2 4,2
y=ay 11 2,1 31 4,1
=0
=0 r=ag r=2ayg x=3ayg x=4ayg  x=Sag

Figure 11.3: A two-dimensional solid, with masses connected by elastic rods.

in thez direction. This means that we cannot use space translation invariance alone, even to
determine the modes of the infinite system.

For each value df, there will be four modes rather than the usual two. We would have
to do some matrix analysis to see which combinationsady motion were actually the
normal modes. We will not do this in general, but will discuss it briefly in the continuum
limit, to remind you of some physics that is important for fields like geology.

Consider the continuous, infinite system obtained by taking'theery small in fig-
ure[11.3, with other quantities scaling appropriately. Consider a wave with wave rumber
The normal modes will have the form

AetRT (11.21)

for some vectord (in the three-dimensional casd,is a 3-vector, in our two-dimensional
example, it is a 2-vector). If the system is rotation invariant, then there is no direction picked
out by the physics except the directionkofThen the normal modes must be a longitudinal

or “compressional” mode

ol

Ak, (11.22)

and a transverse or “shear” mode

Eopl]

Alk. (11.23)
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Each mode will have its own characteristic dispersion relation. In three dimensions, there
will be two shear modes, because there are two perpendicular directions, and they will have
the same dispersion relation, because one can be rotated into the other.

y=day
- N -
y=3av | 1999/1,3]9.09/2,31099/3,3299/4,3/999
s £ B
y=2ay | |999/1,2/900/2,2109Q|3,2/999/4,2/99Q
s £ B E
y=av | [900Q[1,11900/2,110 9 Q3,190 9(4,1]9QQ
s £ B &
y=0
©=0  r=ag  z=2ay x=3ay r=4ay  a=Say

Figure 11.4: A two-dimensional system of beads and springs.

11.1.3 Sound Waves

In a liquid or a gas, there are no shear waves because there is no restoring force that keeps the
system in a particular shape. The shear modes have zero frequency. If we replaced the rods in
figure11.3with unstretched springs, we would get a system with the same property, shown in
figurel11.4. Without the frame, this system would not be rigid. However, the compressional
modes are still there. These are analogous to sound waves. For an approximately continuous
system like air, we expect a dispersion relation of the form

w? =2 K (11.24)

wherew is constant unlessis too large. We have already calculatedh (7.43),by consid-
ering one-dimensional oscillations. It is called the speed of sound because it is the speed of
sound waves in an infinite or semi-infinite system.

We can describe the normal modes of a rectangular box full of air in terms of a function
P(z,y, z) that describes the gas pressure at the oint z). The pressure or density of the
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compressional wave is related to the displacenz?émy, z):
Vx VP, Px-V-19. (11.25)

As in the two-dimensional system described above, we can use separation of variables and
find a solution that is a product of functions of single variables. The only difference here is
that the boundary conditions are different. Becausée of (11.25), which is the mathematical
statement of the fact that gas is actually pushed from regions of high pressure to regions of
low pressure, the pressure gradient perpendicular to the boundary must vanish. The gas at
the boundary has nowhere to go. Thus the normal modes in a rectangulacbox< X,
0<y<Y,0<z<Z, have the form

P(x,y,z) = Acos(nymz/X) cos(nymy/Y) cos(n,mz/Z) (11.26)

2 2 2
2 2 Ny T Ny n,m
= — . 11.27
© “((X)*(Y)*(Z)) (1120
The trivial solution » = n,, = n. = 0 represents stationary air. If any of thie is nonzero,
the mode is nontrivial.

with frequency

11.2 Plane Boundaries

The easiest traveling waves to discuss in two and three dimensions are “plane waves,” solu-
tions in the infinite system of the form

W(r,t) = AeiET=wt) (11.28)

This describes a wave traveling the direction of the wave-number vecteith the phase
velocity in the medium. The displacement (or whatever) is constant on planes of constant
k - which are perpendicular to the direction of motiriyVe will study more complicated
traveling waves soon, when we discuss diffraction. Then we will learn how to describe
“beams” of light or sound or other waves that are the traveling waves with which we usually
work. We will see how to describe them as superpositions of plane waves. For now, you
can think of a plane wave as being something like the traveling wave you would encounter
inside a wide, coherent beam, or very far from a small source of nearly monochromatic light,
light with a definite frequency. That should be enough to give you a physical picture of the
phenomena we discuss in this section.

We are most interested in waves such as light and sound. However, it is much easier to
discuss the transverse oscillations of a two-dimensional membrane, and many of our exam-
ples will be in that system. There are two reasons. One is that a two-dimensional membrane
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is easier to picture on two-dimensional paper. The other reason is that the physics is very
simple, so we can concentrate on the wave properties. We will try to point out where things
get more complicated for other sorts of wave phenomena.

Consider two two-dimensional membranes stretched i the 0 plane, as shown in
figure[11.5. Forz < 0, suppose that the surface mass density end surface tensidf.
Forz > 0, suppose that the surface mass densip/ iand surface tensiofi,. This is a
two-dimensional analog of the string system that we discussed at length in chapter 9. The
boundary between the two membranes must supply a force (in this case, a constant force per
unit length) in thex direction to support the difference between the tensions, as in the system
of figure/9.2. However, we will assume that whatever the mechanism is that supplies this
force, it is massless, frictionless and infinitely flexible.

Ts, ps Té, p;

z=0

Figure 11.5: A line of constant phase in a plane wave approaching a boundary.

Now again, we can consider reflection of traveling waves. Thus, suppose that there is, in
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this membrane, a plane wave with amplitutland wave numbek for z < 0, traveling in
toward the boundary at= 0. The condition that the wave is traveling toward the boundary
can be written in terms of the components ak

ky > 0. (11.29)

We would like to know what waves are produced by this incoming wave because of reflection
and transmission at the boundary;= 0. On general grounds of space translation invariance,
we expect the solution to have the form

Y(r,t) = AeikT=wt) | Z R, AeiRaT=wt) g0 <0

L (11.30)
W(r,t) = Z 75 Aetks Tt forxz >0
B
/
2= wQ% LR = WZ%Z : (11.31)
and
kar <0Oand k> 0forall o andp. (11.32)

Thea andgin (11.30)run over all the transmitted and reflected waves. We will show shortly
that only one of each contributes for a plane boundary condition=at0, but (11.30)is
completely general, following just from space translation invariance. Note that we have put
in boundary conditions atoco by requiring(11.29)and (11.32). Except for the incoming
wave with amplituded, all the other waves are moving away from the boundary. But we
have not yet put in the boundary condition: at 0.

11.2.1 Snell's Law — the Translation Invariant Boundary

bli1-2

As far as we know from considerations of the physicsat, the reflected and transmitted
waves could be a complicated superposition of an infinite number of plane waves going in
various directions away from the boundary. In fact, if the boundary were irregularly shaped,
that is exactly what we would expect. It is the fact that the boundary), is itself invariant

under space translations in thalirections that allows us to cut down the infinite number

of parameters ifL1.30)to only two. Because translations in ghdirection leave the whole
system invarianincluding the boundary, we can find solutions in which all the components
have the same irreducibledependence. If the incoming wave is proportional to

eFuy (11.33)
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then all the components of (11.30) must also be proportioréitc Otherwise there is no
way to satisfy the boundary conditionzat= 0 for all y. That means that

kay =ky, kg, =ky. (11.34)

But L11.34), together with (11.31) and (11.32), completely determines the wave vectors
andkg. Then(11.30) becon@s

P(r,t) = ARt | g peikTivt Y_(r,t) forz <0

o (11.35)
Y(r,t) =7 AeF T =y (1) t) forx >0
where )
ky=ky, k,=ky, (11.36)
and )
ky = —\Jw?/v2 — k2 = —ky, K, = \Jw?/v?— k2, (11.37)
with

!
v—’/ZS, v’-,/i}. (11.38)

The entertaining thing about (11.35)-(11.37) is that we know everything about the direc-
tions of the reflected and transmitted waves, even though we have not even mentioned the
details of the physics at the boundary. To get the directions, we needed only the invariance
under translations in thedirection. The details of the physics of the boundary come in only
when we want to calculate andr. The directions of the reflected and transmitted waves
are the same for any system with a translation invariant boundary. Obviously, this argument
works in three dimensions, as well. In fact, if we simply choose our coordinates so that the
boundary is the: = 0 plane and the wave is traveling in the, plane, then nothing de-
pends on the coordinate and the analysis is exactly the same as above. For example, we
can apply these arguments directly to electromagnetic waves. For electromagnetic waves in
a transparent medium, because the phase veloeity4sw/k, the index of refractiom, is

proportional tok,
n="5—-k< (11.39)
Ucp w
(11.36)-(11.3) shows that the reflected wave comes off at the same angle as the incoming
wave because the only difference betweerkthectors of the incoming and reflected waves
is a change of the sign of thecomponent. Thus the angle of incidence equals the angle
of reflection. This is the rule of “specular reflectiorFfom (11.36), we can also derive

Snell’s law of refraction for the angle of the refracted wav@.idfthe angle that the incident

2\We have definegh+ here to make it easier to discuss the boundary conditions, below.
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wave makes with the perpendicular to the boundary@aisdhe corresponding angle for the
transmitted wave, thenh (11.:36) implies

ksinf = k' sin@’. (11.40)
For electromagnetic waves, we can rewrite this as
nsind =n' sind’ . (11.41)

For example, when an electromagnetic wave in air encounters a flat glass surface at an angle
6, n’ > nin (11.41). The wave is refracted toward the perpendicular to the surface. This is
illustrated in figurél1.6for n’ > n.

by

AN

€T

Figure 11.6: Reflection and transmission from a boundary.



266 CHAPTER 11. TWO AND THREE DIMENSIONS

Let us now finish the solution for the membrane problem by solvingfand = in
(11.35). To do this, we must finally discuss the boundary conditions in more detail. One is
that the membrane is continuous, which from the farm, (11.35), implies

P (r,t)]pmg = U (r1)],—p (11.42)

or
1+R=r. (11.43)

The other is that the vertical force on any small length of the membrane is zero. The force
on a small lengthj?, of the boundary at the poirif), y, 0), from the membrane far < 0 is

given by

—(r,1

i G| (11.44)

Ox =0
This is analogous to the one-dimensional example illustrated in figureT8.force of
surface tension is perpendicular to the boundary, so for small displacements, only the slope of
the displacement in thedirection matters. The slope in thelirection gives no contribution
to the vertical force to first order in the displacement. Likewise, the force on a small length,
d¢, of the boundary at the poirtf), y, 0), from the membrane far > 0 is given by

rae 20+0) (11.45)
Ox x=0
Thus the other boundary condition is
g 20| g 2O (11.46)
or
Tk, T = Tsk,(1 — R). (11.47)
Thus the solution is
2 gl (11.48)
T T i '
where _—
r= T (11.49)

You can see from (11.48) and (11.49) that we can adjust the surface tension to make the
reflected wave go away even when there is a change in the lengthkofeber from one
side of the boundary to the other. It is useful to think about refraction in this limit, because it
will allow us to visualize it in a simple way.#f= 1in (11.48), themR = 0 andr = 1. There
is no reflected wave and the transmitted wave has the same amplitude as the incoming wave.
Thus in each region, there is a single plane wave. Remember that a plane wave consists of


http:t)|(11.42
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infinite lines of constant phase perpendicular tdithector, moving in the direction of the

vector with the phase velocity, = w/|E\. In particular, suppose we look at lines on which

the phase is zero, so that= A. The perpendicular distance between two such lines is the
wavelength27r/|l§|, because the phase difference between neighboring liges But here

is the point. The lines in the two regions must meet at the boundary), to satisfy the
boundary condition(11.43). If the incoming wave amplitude is 1 at= 0, the outgoing

wave amplitude is also 1. The lines where- A are continuous across the boundary 0.

This situation is illustrated in figufel.'/.TheE vectors in the two regions are shown. Notice

that the angle of the lines must change when the distance between them changes in order to
maintain continuity at the boundary. In program 11-2, the same system is shown in motion.

e
NN
NN

NN

Figure 11.7: Lines of constait= 1 for a system with refraction but no reflection.

11.2.2 Prisms

The nontrivial index of refraction of glass is the building block of many optical elements. Let
us discuss the prism. In fact, to do the problem of the scattering of light waves by prisms
entirely correctly would require much more sophisticated techniques than we have at our
disposal at the moment. The reason is that the prism is not an infinite, flat surface with space
translation invariance. In general, we would have to worry about the boundary. However, we
can say interesting things even if we ignore this complication. The idea is to think not of an
infinite plane wave, but of a wide beam of light incident on a face of the prism. A wide beam
behaves very much like a plane wave, and we will ignore the difference in this chapter. We
will see what the differences are in Chapter 13 when we discuss diffraction.
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Figure 11.8: The geometry of a prism.

Thus we consider the following situation, in which a wide beam of light enters one face
of a prism with index of refraction and exits the other face. The geometry is shown in
figure/11.8 (the directions of the beams are indicated by the thick lines). The interesting
guantity isé. This describes how much the direction of the outgoing beam has been deflected
from the direction of the incoming beam by the prism. We can calculate it using simple
geometry and Snell’s layl1.40).From Snell’'s law

sin 6, = nsin 6, (11.50)
and
sinfgyt = nsinfy . (11.51)
Now for some geometry.
Oy + 61 = ¢’ (11.52)

— because the complement@f = — ¢, along withd; andé, are the angles of a triangle,
and thus add te.

é=¢ (11.53)
— becausep) and ¢’ are corresponding angles of the two similar right triangles with other
acute angle.. Thus

0 =&+ & = O+ Oout — 01 — 02 = Oiy + Oout — & (11.54)
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where we have used (11.52) and (11.53). But for small angles, from/(11.50) and (11.51),
Gin =~ n91 s gout =~ TL92 . (1155)

Thus
drmn(lL+02) —p~(n—1)¢. (11.56)

The result,[(11.56), is certainly reasonable. It must vanish whenl, because there is
no boundary fon = 1. If things are small and the answer is linear, it must be proportional
to ¢.

One of the most familiar characteristics of a prism results from the dependence of the
index of refraction;n, on frequency. This causes a beam of white light to break up into
colors. For most materials, the index of refraction increases with frequency, so that blue light
is deflected more than red light by the prism. The physics of the frequency dependence of n
is that of forced oscillation. The index of refraction of a material is related to the dielectric
constant (see (9.53)), that in turn is related to the distortion of the electronic structure of the
material caused by the electric field. For a varying field, this depends on the amplitude of
the motion of bound charges within the material in an electric field. Because these charges
are bound, they respond to the oscillating fields in an electromagnetic wave like a mass on
a spring subject to an oscillating force. We know from our studies of forced oscillation that
this amplitude has the form

Ca

2 _ 27
Wi —w

(11.57)

resonances
@

wherew,, are the resonant frequencies of the system and’thare constants depending

on the details of how the force acts on the degrees of freedom. We can estimate the order
of magnitude of these resonant frequencies with dimensional analysis, if we remember that
any material consists of electrons and nuclei held together by electrical forces (and quantum
mechanics, of course, batwill not enter into our estimate except implicitly, in the typical
atomic distance). The relevant quantities’are

The charge of the protore ~ 1.6 x 10~ C
The mass of the electronn, ~ 9.11 x 1073 kg

Typical atomic distance a ~ 1071°m = 14 (11.58)

The speed of light ¢ =299,792,458 m/s
In terms of these parameters, we would guess that the typical force inside the materials is of

2 . . 2
ord_er47riW (from Coulomb’s Igw), and thus that the spring constant is of %d;g‘{g (the
typical force over the typical distance). Thus we expect
W — (11.59)
o\ dregadme '

3Note that it is the mass of the electron rather than the mass of the proton that is relevant, because the electrons
move much more in electric fields.
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and
2me dmegadme

o &~ = ~ 27c s ~ 107 "m=10004. (11.60)
Wa e

This is a wavelength in the ultraviolet region of the electromagnetic spectrum, shorter than
that of visible light. That means that for visible light,< w,, and thus the displacement,
(11.57),increases ag increases for visible light. The distortion of the electronic structure

of the material caused by a varying electric field increases as the frequency increases in the

visible spectrum. Thus the dielectric constant of the material increases with frequency. Thus
blue light is deflected more.

Incidentally, this is the same reason that the sky is blue. Blue light is scattered more than
red light because its frequency is closer to the important resonances of the air molecules.

11.2.3 Total Internal Reflection

The situation in which the wave comes from a region of Iggiato a region of smalleli|
has another feature that is surprising and very useful. This situation is depicted it Xi§ure
for a system with no reflection. For smdl|,as shown in figur&1.9, this looks rather

DN
R

Figure 11.9: Lines of constarit= 1 for n’ < n.

N

like figurel11.7,except that the wave is refracted away from the perpendicular to the surface
instead of toward it. But suppose that the afigtelarge, satisfying

nsinf/n > 1. (11.61)
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Then there is no solution for re@lin (11.41). Thus there can be no transmitted traveling
wave. The incoming wave must be totally reflected by the boundary. This is total internal
reflection. It happens when a plane wave tries to escape from a region kfﬂ hhaga region
of lower |E\ at a grazing angle. It is extensively used in optical equipment and many other
things. Let us investigate this peculiar phenomenon in more detail.

Suppose we start froth = 0 and increasé. As 0 increasesk, increases ané, de-
creases. This continues until we get to the boundary of total internal reflection, called the

critical angle,

n/

sinf = sinf. = —

(11.62)

The amplitudes for both the reflected and transmitted waves in|(11.48) also increase. At the
critical angle k., vanishes. The amplitude for the reflected wave is 1 and the amplitude for
the transmitted wave is 2. However, even though the transmitted wave is nonzero, no energy
is carried away from the boundary becausektiiector points in the direction.
As 6 increases beyond the critical angtg,continues to increase. To satisfy the disper
sion relation,
W =0 (K4 k) (11.63)

k. must be pure imaginary! Thedependence is then proportional to
e ™ where k=Imk,. (11.64)

Now the nature of the boundary condition at infinity changes. We can no longer require
simply thatk, > 0. Instead, we must require

Imk, > 0. (11.65)

The sign is important. [fm &, were negative, the amplitude of the wavefor 0 would
increase withz, going exponentially to infinity as — oo. This doesn’t make much physical
sense because it corresponds to a finite cause (the incoming wave foy producing an
infinite effect. As we will see below, we can also come to this conclusion by going to this
infinite system as a limit of a finite system.
We actually have three different boundary conditions at infinity for this situation:
Rek, >0forfd < 40,.,
k,=0foro =6, (11.66)

Imk, >0ford > 0,.
These three can be combined into a compound condition that is valid in all regions:

Rek, >0, Imk,>0. (11.67)
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The condition{11.67),is actually the most general statement of the outgoing traveling wave
boundary condition at infinity. It is also correct in situations in which there is damping and
both the real and imaginary partsigfare nonzero. This is the mathematical statement of
the physical fact that the wave for> 0, whatever its form, is produced at the boundary by
the incoming wave.

From (11.48)and(11.49),you see that fof > 6., the amplitude of the reflected wave
becomes complex. However, its absolute value is still 1. All the energy of the incoming wave
is reflected.

We have seen that in total internal reflections, the wave does penetrate into the forbidden
region, but the: dependence is in the form of an exponential standing wave, not a traveling
wave. They dependence is that of a traveling wave. This is one of many situations in
which the physics forces the nature of the two- or three-dimensional solution to have different
properties in different directions.

It is easy to see total internal reflection in a fish-tank, a glass block, or some other rect-
angular transparent object with an index of refraction significantly greater than 1. You can
look through one face of the rectangle and see the silvery reflection from an adjacent face, as
illustrated in figurél1.10.

\:fff'f:f':9':&5:5b|OCkfffffff/

@

Figure 11.10: Total internal reflection in glass with index of refraction 2.

11.2.4 Tunneling

Consider the scattering of a plane wave in the system illustrated in figidr®.  This
is the same setup as in figuk&.10, except that another block of glass has been added a
small distanced, below the boundary from which there was total internal reflection. We
have defined the positivedirection to be downwards for consistency with the discussion of
Snell's law, above. Now does any of the light get through to the observer below, or is the
light still totally reflected at the boundary, as in figile10?The answer is that some light
gets through. As we will see in detail in an example below, the presence of the other block of
glass means that instead of a boundary condition at infinity, we have a boundary condition at
the finite distance].

The details of this phenomenon for electromagnetic waves are somewhat complicated by
polarization, which we will discuss in detail in the next chapter. However, there is a precisely
analogous process in the transverse oscillation of membranes that we can analyze easily.
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Figure 11.11: A simple experiment to demonstrate tunneling.

In fact, we will find that we have already analyzed it in chapter 9. Consider the scattering
problem illustrated in figuré1.12. The unshaded region is a membrane with lower density.
The arrows indicate the directions of th@ectors of the plane waves. The shaded regions

Figure 11.12: Tunneling in an infinite membrane.

have surface mass densjty and surface tensiofi;. The unshaded region, which extends

fromz = 0 to x = d, has the same surface tension but surface mass deyy<ityThus the

ratio of phase velocities in the two regions is two, the same as the ratio from air to glass in

figurel11.11.The dashed lines are massless boundaries between the different membranes.
We can now ask what are the coefficiedi®sand r, for reflection and transmission. We

have done this problem for a single boundary earlier in this chapet.¥2)-11.49. We

could solve this one by putting two of these solutions together using the transfer matrix

techniques of chapter 9. In fact, we do not even have to do that, because we can read off the

result from(9.97)and(9.98)in the discussion of thin films in chapter 9. The point is that all

the terms in our solution must have the same irredugidpendence;*+¥, because of the

space translation invariance of the whole system including the boundaryjirditteetion.

This common factor plays no role in the boundary conditions. If we factor it out, what is

left looks like a one-dimensional scattering problem. Compdfifhgt7)for T, = 7. with
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(9.10), you can see that the analyses become the same if we make the replacements
ki — kg
ky — K, (11.68)
L — d
wherek,. is thex component of thé vector of the incoming wave in the shaded region and

k! is thex component of thé vector of the transmitted wave in the unshaded region. The
result is

K2+ k2 -
T = <cos Kl.d—i % sin k;d) e~ thad (11.69)
xVg
and
k2 -k, K2+ K2 -
R = (z W sin k;d) (cos K.d—i W sin k;d) : (11.70)

It may be a little easier to look at the intensity of the transmitted wave, which is proportional
to

2h2k!
(K + Ky *) sin® K d + 2k2k, 2

Note that we have not mentioned the critical angle or total internal reflection or anything like
that. The reason is that our analysis in chapter 9 was perfectly general. It remains correct
even if the angular wave number in the middle region becomes imaginary. All that happens
for 6 larger than the critical anglé,, is thatk!. becomes imaginary. But this has a spectacular
effect in (11.71). I, — ik, wherex is real, then it follows from the Euler identity, (1.57)

and (1.62), that

|72 = (11.71)

sin k.. d — isinh rd (11.72)

wheresinh is the “hyperbolic sine”, defined by

sinhz = 67 . (11.73)

Thus for angles above the critical angle, the denominator of (11.71) is an exponentially in-
creasing function ofl (the e"¢ term in (11.73) dominates for largel). The intensity of
the transmitted wave therefodecreases exponentially withi. In the limit of larged, we
quickly recover total internal reflection.

We can get some insight about what is happening by looking at the boundary conditions
atz = d for angles above the critical angle. Ror- d, the wave has the form (suppressing
the common factors ef*+¥ and Ae “?)

relke (11.74)
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For0 < x < d, the wave has the form
Trre™ ™ + Ryrre™* (11.75)

where | have called the coefficierfts; and R;; by analogy with transmitted and reflected
waves, even though these are not traveling waves. The boundary conditicasiare

Teik’xd _ TIIe—Kd + Rlleﬁd ,

A (11.76)
ikyTethed = (—Tne_“d + Rue"d) .
This looks more complicated than it really is. If we solveTfgre"¢ and R;7e"? in terms
of ret*=4_ the result is

2K

2K .
Kkd iked R]Iend — '
K+ tky

Trje "= ——7¢ ,

: rethed | (11.77)
Kk — iky

The important point is that the values of the two components of the wave, (11475),d&t
Trre "% and R;re?, are more or less the same size. These two quantities do not have any
exponential dependence @n This qualitative fact does not depend on the details of
(11.76). 1t will be true for any reasonable boundary condition at: = d.

Thus the coefficienf?;; of the “reflected” wave (in quotes because it is a real exponential
wave, not a traveling wave) must be smaller than the “transmitted” wave by a factor of roughly
e2, Notice that this justifies the statement, (11.67), of the boundary condition at infinity.
As d — oo, for any reasonable physicsdathe wave becomes a pure negative exponential.

At x = 0, for largexd, the R;; term in wave will be completely negligible, afid;
term will be produced with some coefficient of order 1, just as in the limit of total internal
reflection.

Thus what is happening in the boundary conditions for tunneling can be described qual-
itatively as follows. The incoming wave far < 0 produces the™"* term in the region
0 < x < d, with an exponentially small admixture &f. But atx = d, the two parts of the
exponential wave are of the same size (both exponentially small), and they can produce the
transmitted wave.

The rapid exponential dependence of the transmitted wavehas some interesting
consequences. It implies, for example, that the reflected wave is also very sensitive to the
value of d, for small d (energy conservation impli&s + |7|?> = 1). You can see this rapid
dependence in the example ©of (11.10) by putting your finger on the bottom surface of the
glass block or fish tank, where the wave is being reflected. You will see a ghostly fingerprint!
The reason is that the tiny indentations on your finger are far enough away from the glass that
kd is large and the wave is almost entirely reflected. But where the flesh is pressed tightly
against the glass, the wave is absorbed. This is a simple version of a tunneling microscope.
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Finally, before leaving the subject of tunneling, let us consider what happens when we
turn down the intensity of the light wave in figure 11.11 so that we see the scattering of
individual photons. The first thing to note is that each photon is either transmitted or reflected.
The meaning oR andr in this case is that tHé&|? and|7|? are theprobabilities of reflection
and transmission. You cannot predict whether any particular photon will get through. In the
guantum mechanical world, you can predict only the probabilities.

The second thing to note is that in the particle description, the whole phenomenon of
tunneling is very peculiar. A classical photon, coming at the boundary of the glass plate at
more than the critical angle could not enter at all into the air. It would be forbidden to do so
by conservation of energy and conservation ofjtbemponent of momentufhHow can the
particle get through to the > d side if it cannot exist fob < x < d? Obviously, in classical
physics, it cannot. Tunneling is, therefore, a truly quantum mechanical phenomenon. The
wave manages to penetrate into the forbidden region, but only in the form of a real exponential
wave, not a traveling wave. It is only for< 0 andxz > d, where the waves are traveling,
that they can be interpreted as particles in anything like the classical sense.

11.3 Chladni Plates

Figure 11.13: A Chladni plate.

“The boundary does not changg of the photon, because of the translation invariance iy ttlieection.
However, there is no reason why the boundary cannot exert a force dndihection and changg, of the
photon.
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Chladni plates are a very pretty and instructive example of a two-dimensional oscillating
system. A Chladni plate is simply a square metal plate that is driven transversely at its center.
It is illustrated in figuré 11.13The dot in the center shows where the plate is driven in the
transverse direction (out of the plane of the paper). The center, which we will take to have
equilibrium position” = 0, moves up and down out of the plane of the paper at a frequency
w. Let us assume that the square sits inctygplane and has sidd., and call the transverse
displacement (in the direction)

U(x,y,t) for |af |yl < L. (11.78)

In principle this is a forced oscillation problem. We could take the boundary condition at the
origin to be
1(0,0,t) = Acoswt (11.79)

and try to findy everywhere else.

To find ¢, we must know the boundary condition at the edges of the plate. This depends
on the details of the physics of the plate, because there are several ways that the plate can
deform in response to the driving force. Just for simplicity, we will assume that the dominant
deformation is shear, illustrated in figure 11.Fbr this kind of displacement, to avoid an
infinite acceleration, the slope of the plate must go to zero on the boundary in the direction
perpendicular to the boundary, or in mathematics,

RV =0 (11.80)

on the edge, whereis a unit vector in the plane perpendicular to the edge. In this case,

0 0
% ¢(x>yat)|x:|L\ = aiy 1/’(1% yvt)|y:|L| =0. (1181)

While the general case is more complicated than this, we will use|(11.81) for illustration. The
instructive thing about Chladni plates, as we will see, is not what is happening at the edges,
but what is happening in the middle!

The general solution to this forced oscillation problem is not easy to write down. How-
ever, we are primarily interested in the resonances. Those are the modes of free oscillation of

_—
J—

_— _—
— T —

= l

l T

C—

Figure 11.14: Shear.
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the plate (subject to the boundary condition (11.81)) that can be excited by the driving force.
These will be those modes that have nonzero values of the displacement at the origin.
The relevant free oscillation modes of the plate have the>form
NypTX Ny T
CO

7 Y coswt (11.82)

w(nxﬂlu) (‘T7 Y, t) - A COS

with
w? =W (k) = w? = f(n? + ng) . (11.83)

If the frequencies of these modes were unigue, (11.82) would be the wholeBstbtihe
interesting thing about this system is that the symmetry guarantees that tteggerisracy
— that is that ifn, # n,, there are two modes with the same frequency. We can get a
physically equivalent mode by interchanging < n,, because this just corresponds to a
90° rotation of the plate, which doesn’t change the physics at all. When we have degenerate
modes, then linear combinations of them are also modes, as shown in (3.117). Thus we have
to askwhich linear combinations are excited by the driving forceAnother way of saying
this is summarized in (11.83). Rotation invariance ensures thdg¢pends only on2 + nz

In particular, it is clear that the difference

nyTY Ny Ny T
— cos 0s
L L

vanishes at the origi©nly the sum couples to the driving force!

1/1(_,“ nu)(w’ y,t) =A (cos nazr:c y) coswt  (11.84)

w(tbz’ny)(x, y,t)=A <cos nng cos nyliry + cos ny[inL‘ coS nflj) coswt  (11.85)
These are the resonant modes of a Chladni plate.

One reason that this is amusing is that it is easy to see. If you excite the plate, and
sprinkle sand on it, the sand builds up in the regions where the plate is not moving — along
the displacement nodes whepe= 0. Thus we can get a visual picture of the zerog.of
Let’s look at some of these modes (in order of increasing frequency) to see what to expect.

The modeﬁao is not interesting. It corresponds to the whole plate going up and down
as a block. Obviously, the corresponding frequency is 0, because there is no restoring force.
The first interesting mode is

+ _ ™ Ty
71’(1,0)(3%%15) =A <COS I + cos I ) coswt . (11.86)
This vanishes for
y=+Ltz (11.87)

so the Chladni sand pattern looks like the diagram in figure/11.15.

®There are also modes proportionakite (n, + 1/2)wz/L and/orsin (n, + 1/2)wy/L, but these vanish at
the origin and are not excited by the driving force.
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Figure 11.15: The Chladni pattern for the medg, n,) = (1,0).

The next mode is
1/}6 1)(x, y,t) = 2A cos % cos % coswt . (11.88)

Because this mode is not degenerate, it does not give rise to a very interesting pattern. It
vanishes at

L L

which gives the pattern shown in figure 11.16. We won'’t consider any more of these boring
modes withn, = n,,.
The next mode is

2x 21y
+ _
1/1(270) (x,y,t) = A <cos I + cos L) coswt , (11.90)
which vanishes for
L 3L

y::I:E:i::z: or y::t?:lzx (11.91)

so the pattern looks like figure 11.17.

Next comes
2 2

¢(§,1)($’ y,t) =A (cos % cos % + cos % cos 77Ly> coswt . (11.92)

This vanishes for
(26, —1)+¢,(2c2 —1)=0

=(cz+¢y)(2cecy—1)=0

(11.93)
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Figure 11.16: The Chladni pattern for the mode (1,1).

Figure 11.17: The Chladni pattern for the mode (2,0).

with ¢, = cos(mz/L) andc, = cos(my/L). The pattern is shown in figure 11.18.
We could go on, but you should have the idea by now. Let us look at one last mode:
T 3Ty 3rx s

e = =2 cos 222 e
¢(371)(x,y,t)—A<cos T Cos— + cos 7 cos L) coswt (11.94)
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) .

B [ ]

Figure 11.18: The Chladni pattern for the mode (2,1).

vanishing for
Cr 4¢3 —3¢,) +ec 402—% =0
(1) = 3e) + ey (4cd — er) 1195)
:cxcy(4ci+4c§—6):0

with pattern shown in figure 11.19.

P NN

N rN O

Figure 11.19: The Chladni pattern for the mode (3,1).
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Moral: When there is more than one mode with the same frequency, look at linear
combinations to determine which are excited!

11.4 Waveguides

Generically, a “waveguide” is a device that forces a traveling wave to propagate only where
you want it to go. Typically, a waveguide is some kind of tube that allows the wave distur
bance to propagate in one direction while confining it in the other directions. In this section,
we will discuss the case of straight wave guides with simple uniform cross sections. The
really interesting physics occurs when the width of the waveguide is not much larger than the
wavelength of the wave. Then, as we will see, the physics of the waveguide has a dramatic
effect on the propagation of the wave.

The simplest situation to discuss is the case of transverse oscillations of a membrane in
the form of an infinite strip, as shown in figure 11.2Consider a membrane with surface

Figure 11.20: A section of an infinite strip of stretched membrane that acts as a waveguide.

mass density,; and surface tensidfi;, stretched in an infinite strip in they plane between
y = 0 andy = ¢ and fromx = —oo to co. The edges, at = 0 andy = ¢ are held fixed in
the plane. We are interested in the oscillations of the interior of the strip up and down out of
the plane.

This is a job for separation of variables. We can look for modes of this system which are
products of a function aof and a function of;. In particular, we can satisfy the boundary
conditions aty = 0 by combining two modes of the infinite system,

etkatoikyy  and dkat gikyy (11.96)

into '
sin(kyy) e (11.97)

Now this satisfies the boundary conditioryat ¢ if
ky = n% forn=1t0o. (11.98)
Thus the modes look like this:

nmy

Un(z,y,) = A sin == eilkaz—ct) (11.99)
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and
UVn—(x,y,t) = A sin Y E (ke —wt) (11.100)

For each value af, these look like waves traveling in the: direction!
The dispersion relation for the membrane is givefilldy18).But the modesy,,+, have
|ky| = F. Thus the dispersion relation for the traveling wa{e$.,99) and (11.100) is

w? =02k W2, (11.101)
where
v= 5 (11.102)
Ps
and -
wn == (11.103)

One interesting thing abo(t1.102)is that the dispersion relation has a low frequency
cut-off that depends on. For any givenv, the only modes that actually propagate are the
finite number of modes with

n<-—. (11.104)

For example, fow < mwv/¢, there are no traveling waves. Far/¢ < w < 27v/{, there is
only one, corresponding to= 1, etc.

The modes satisfyinfd1.104)have a simple physical interpretation. They can be thought
of as the plane wavefl1.96),of the infinite system, bouncing back and forth between the
fixed edgesy = 0 andy = ¢. The requirement(11.98),on the allowed values df,
arises because for other valueg:gfthe reflected waves get out of phase, giving destructive
interference. You might expect a zig-zag wave of this kind to propagate indinection
with a speed less than the phase velogjtgf the waves in the infinite system by a factor of

ko kx
\/]%26 + k2 \/k2 + (wn/v)?

(11.105)

because it has to go that much farther as it bounces back and forth to move a given distance
in z, as illustrated in figur@1.21. In fact, the phase velocity of the zig-zag waves for fixed

Figure 11.21: A zig-zag wave in the waveguide.
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n, w/ky, is actuallylarger than vby the factor, (11.105), rather than smaller,

12 )2
e v”k(“’/”). (11.106)
However, the group velocityw /0k,, of the zig-zag waves, the velocity with which you can
actually send signals, is smaller by just the expected factor,
ow ky
= — ACE— 11.107
Y Oke R (onf0)? ( )

For light waves, we can make a wave guide by making a tube of some conducting mate-
rial, so that the electric field is nonzero only inside the tube. However, in this case, the details
of the boundary conditions at the edges depend on the direction of the electic field. We will
return to a related question in the next chapter.

11.5 Water

Water is pretty complicated stuff. It wets things. It has viscosity. It forms whirlpools and
eddies and has nonlinear turbulent motions that we cannot hope to understand using the
techniques that we have at our disposal. In this section, we consider a somewhat idealized
fluid, that we will call “dry water” (after Feynman) that has none of this complicated structure.
It has three features that we will keep in common with the real thing. It has mass density. It
has surface tension, and it is nearly incompressible. Let's see how it waves.

Imagine an infinite universe full of an incompressible, frictionless liquid. This will allow
us to see the consequences of the incompressibility in a simple, qualitative way. Consider the
analog of a plane sound wave in such a system. That is, for example, a plane wave traveling
in thex direction (withk, = k. = 0) with longitudinal displacements in thedirection. If
the liquid is truly incompressible, thig must be zero for this wave, because any longitudinal
displacement must be accompanied by compressions and rarefactions of the medium. Thus,
for such a plane wavé,= 0. There are no nontrivial plane waves in the infinite system!
In general, we do not expect that all the components @ftketor must vanish, because even
in an incompressible liquid, displacement in one direction is allowed if it is accompanied by
appropriate motion in other directions. But what we have seen is that we cannot have a mode
that has a redi vector. That would be a plane wave, which we have seen is not compatible
with incompressibility. Instead, we expect that the constigine 0 will be replaced by
a constraint on the rotation invariant length of theector, thatt - k = 0. If some of the
components of thé vector are |mag|nary this can be satisfied for nonzero

Note that the conditiof - £ = 0 is not exactly a dispersion relation, because it makes
no reference to frequency. But it is the whole story for an infinite system of incompressible
fluid. In fact, it is clear that there are no harmonic waves in the infinite system, because there
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is nothing to produce a restoring force. Even if there is a gravitational field, the pressure in
the liquid just adjusts itself to cancel the effect of gravity. We can get a nontrivial dispersion
relation only when there is a surface. The dispersion relation then depends on the physics of
the surface. This would seem to violate our general principle that the dispersion relation is a
property of the infinite system. What is happening is this. The relatidn= 0 is really the

only dispersion relation that makes any sense for the three-dimensional infinite system. When
we introduce a surface, we hdweken the translation invariance in the direction normal to

the surface. This allows us to get a nontrivial dispersion relation for the two-dimensional
system parallel to the surface.

11.5.1 Mathematics of Water Waves

Now let us try to make these considerations quantitative. As usual, we will label our fluid in
terms of the equilibrium positions of its parts. Then call the displacement from equilibrium
of the fluid that is at the poimtat equilibrium

(7, 1) (11.108)
for some smalt. This means that the actual position of the wafer is
R(7,t) = F+ (7 t). (11.109)

We can regard (11.109) as a kind of change of coordindttesaps us from the equilib-

rium coordinates (a rather arbitrary label because the water is free to flow) to the physical
coordinates that tell us where the water actually is. If the water is incompressible, which is
a pretty good approximation, then a small volume element should have the same volume in
equilibrium and in the physical coordinates.

dR, dR,dR. = dx dydz . (11.110)

This will be the case if the determinant of the Jacobian matrix equals 1:

ox oy 0z
OR, OR, OR, _
OR. OR. OR:

ox oy 0z

Because is small, we can expand (11.111) to lowest order in

Ot Oa O
1 +6€ Ox € 8% € a@z
_ ¢ v v
I U A (11.112)
(2 2 [ )
€ o oy 1T

=1+4eV-9+0(?).

%Here we can take to be dimensionless and let the parametdre a small displacement.
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Thus

V-=0. (11.113)
(11.113)is very reasonable. It is the statement that the flux of displacement into or out of any
region vanishe$.This is what we expected from our qualitative discussion.
To see what this means for waves, let us also assume that there are no eddies. The
mathematical statement of this is
Vxy=0. (11.114)

If we do not assum@1.114),angular momentum conservation becomes important and life
becomes very complicated. You will have to wait for courses on fluid dynamics to learn more
about it. With the simplifying assumptio(f.1.114),the displacement can be written as the
gradient of a scalar functiog,

eh = eVy. (11.115)
This simplifies our life enormously, because we can now deal with the scalar quantity,
Space translation invariance tells us that we can find modes of the form

X = ekt (11.116)
which gives a displacement of the form
) = i ek Rt (11.117)
The condition,/(11.113hen becomes
k-k=0, (11.118)

as anticipated in our qualitative discussion at the beginning of the section.

11.5.2 Depth

0J11-3

Let us now consider waves in an “ocean” of deptlignoring frictional forces, eddies and
nonlinearities. We will further restrict our attention to a two-dimensional situatiory et

the vertical direction, and consider water waves irutldirection. That is, we will také,

real, because we are interested in wave propagation indinection, and, pure imaginary
with the same magnitude, so ti{al.118)is satisfied. Then we assume that nothing depends
on the other coordinate, Having simplified things this far, we may as well assume that our
ocean is a rectangular box. Then the modes of interest of the infinite system look like

Xoo (T, y, ) = eFhodhy—ivt, (11.119)

"Note, however, that for large incompressibility is the nonlinear constraint, (111111).
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If the ocean has a bottom @at= 0, then the vertical displacement must vanisly at 0.
Then (11.115) implies that we must combine modes of the infinite system tg gdtasey
derivative vanishes gt= 0, to get

x(x,y,t) oc eFHRETl cogh Ky | (11.120)

wherecosh is the “hyperbolic cosine.” defined by

coshz = % . (11.121)

Then from|(11.115), we get

9 .
’(/Jz (.T, Y, t) = 87X($7 Y, t) =+ eilkxilwt cosh ky )
X

(11.122)
9 +ikr—iwt _;
Vy(z,y,t) = afyx(w,y,t) =e sinh ky .
Before going further, note that we could extend these considerations by addingra
dinate. Then (11.120) would become

tikgpxtik,z)—iwt

x(z,y,t) o el cosh ky (11.123)

k= \/k2+ k2. (11.124)

These are the two-dimensional wave modes of the infinite ocean of deptiey depen-
dence is completely fixed by the boundary condition at the bottom and the cohditierD.
The only interesting dependence, from the point of view of space translation invariance, is
the dependence anandz.

Now, let us return to the rectangular ocean, anc:timelependent modes, (11.1.22). If
our ocean has sideszat= 0 andz = X, we must choose linear combinations of the modes,
(11.122), such that the displacement vanishes at the sides. We can do this for0 by
forming the combinations

where

Yy (z,y,t) = —sin kx cosh ky coswt ,

(11.125)
Yy (z,y,t) = cos kxsinh ky coswt .
Then if nr
= — 11.12
k=< ( 6)

the boundary condition at= X is satisfied as well.
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Figure 11.22: The motion of an incompressible fluid in a wave.

Now we know the mathematics of the displacement of the dry water. Before we go
on to discuss the dispersion relation, let us pause to consider what this actually looks like.
Imagine that we put a regular rectangular grid of points in the water in equilibrium. Then in
figure/11.22, we show what the grid looks like in the mode, (11.125) with n

Each of the little rectangles in (11.22) was a square in equilibrium position {inhaeb).

Note the way incompressibility works. When the water is squeezed in one direction, it is
stretched in the other. You can see this in motion in program 11-3.

=0 T =g z=X

Bk

Figure 11.23: The surface of a water wave, with horizontal displacement suppressed.

Having stared at this, we can now forget about it for a while, and concentrate just on the
surface. That is what matters for the dispersion relation. For ease of presentation in the dia-
grams below, we will exaggerate the displacement in the veytdiadction and forget about
the displacement of the surface in théirection (which won't matter anyway). Then the
wave looks like the picture in figure 11.23. We will use energy arguments to get the disper
sion relation. There are three contributions to the total energy of the standing wave/ (11.125)
— gravitational potential energy, energy stored in surface tension, and kinetic energy. Let us
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consider them in turn.

3
D
Il

EaE]

z=0 T = s5¢ T =

Figure 11.24: Water is removed from the rectangl¥ in = and raised to the rectanglexat

Gravitational Potential

In the diagram in figure 11.24, you can see that the overall effect of the displacements in
the mode((11.125) is to take a chunk of the water ffm z, raise it byey, (z, L, t) (the
vertical displacement of the surface), and move it over. td he volume of this chunk is

W dx ey (z, L, t) wheredz is the length of chunk arid is the width in the: direction (into

the paper). Thus the total gravitational potential is

Vaw =pg [ aV Ah=pgW [* dolew (o, L0 +O(E)
. 0
=pgW /Qk dx €% cos® kx sinh? kL cos® wt + - - - (11.127)
0

= %ngEQ sinh? kL cos® wt + - - - .

Surface Tension

The energy stored in surface tensiorilistimes the difference between the length of the
surface and the equilibrium lengti(). This requires that we be a little careful about the
position of the surface, going backto (11.109). The position of the surface is

Ry(z,t) =z +ey(x,L,t), Ry(z,t)=ey(x,L,t). (11.128)
The length is then

2 2
Ok, +% . (11.129)
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But

ﬁzpy . (11.130)
a

Thus
Vowrtace = T' X (Area - Areao)

=TW /OZ da <\/(1 + €0, /0x)? 4 (€01, /O0x)? — 1) (11.131)
=TW /O ; dz <68¢$/3m + %(eawy/axf + 0(63)) .

The order term in (11.131) cancels when integrated: 0o

* 1
=TW ¢ /k d:cf k? sin? kx sinh? kL cos® wt + - - -
(11.132)

@TWE k? sinh? kL cos® wt + -

Kinetic Energy

The kinetic energy is obtained by integrat%w@v2 over the whole volume of the liquid:

1
KE:Q,O/dvﬁ2

i L (11.133)
1 z 9 9
S / dz / dy ((e0s/01)? + (i, /01)?)
2 0 0
1 > [* L 2 . 2
=—pWe / dx / dy w* sin” wt
2 0 0 (11.134)
. <C082 ka sinh? ky + sin? kx cosh? ky)
4ka€ / dy w? sin® wt (smh ky + cosh? k:y)
4ka€ / dy w? sin® wt cosh 2ky (11.135)
_ 2,2
= @pWG w? sinh 2kL sin® wt .
Dispersion Relation
The total of[(11.127)-(11.135) is
Verav + Vsurface + KE = ul pgW €2 sinh? kL cos® wt
dk (11.136)

—|—4kTW6 k% sinh? kL cos® wt + @pWWQ €2 sinh 2kL sin® wt + -
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This must be constant in time, which implies

12 T 13
. 9sinh? kL (gk+ Lk )
inh 2kL (11.137)
= (gk + = k3) tanh kL
p

wheretanh is the “hyperbolic tangent,” defined by

: r _ ,—T
tanhx = sinh _c-c (11.138)
coshx e*+4e7®

Note that in the twin limit of long wavelength and shallow water, the water waves become
nondispersive — fokL < 1, andpgk > T k®> — tanh kL — kL

w? ~ gL k?. (11.139)

Gravity versus Surface Tension

The dispersion relation, (11.139), involves a competition between gravity and surface ten-
sion. For long wavelengths gravity dominates andgthterm is most important. For short
wavelengths, surface tension dominates andzgguderm is more important. The cross-over
occurs for wave numbers of order

kako =422 (11.140)
T

The cross-over wavelength is actually a familiar distance. There is a much more familiar
process that involves a similar competition between gravity and surface tension. Consider a
water drop on a low friction surface, such as a teflon frying pan. A very tiny drop is nearly
spherical. But as the size of the drop increases, it begins to flatten out. Then when the drop
increases above a critical size, the height of the drop does not increase. It spreads out with a

fixed height/, as shown in cross-section in figure 11.25.
- N\

Figure 11.25: The cross-section of a water droplet on a frictionless surface.

As with the dispersion relation, we can understand what is going on by considering the
energy. The total energy of the drop is a sum of the gravitational potential energy and the
energy due to surface tension.

1
Vgrav ~ §pghv7 (11141)
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wherev is the volume of the drop and

T
Vsurface & Tv . (11142)

The volume is fixed, so the equilibrium valuehahinimizes the sum

1 T
Vgrav + Vsurface = § pghv—+ T?) . (11.143)
The minimum occurs for )
T=5pgh. (11.144)

The measured surface tension of watéf is 72 dynes/cm. This gives the familiar height of
a water droph ~ 0.4 cm. This height is related g by

/1Pg V2
= e — 11.14
ko T h ( %)

11.6 Lenses and Geometrical Optics

Geometrical Optics

The idea of geometrical optics is to understand the effects of refraction and reflection on
beams of light, ignoring the effects of diffraction. This is really only Snell's law and geome-
try. One application of these ideas will be in the discussion of the rainbow in the next section.
There we use what is called “ray tracing” which as the name suggests is simply keeping track
of what each ray of light does as it passes through the drop. A spherical drop is a “thick lens.”
Obviously, there is no sense in which a sphere could be regarded as “thin.” In this section we
are going to see how to give a simpler approximate description of what a “thin lens” does. In
fact, if we were designing a very precise optical instrument, we would still use ray tracing to
get the fine details right. But the thin lens analysis is a good approximate starting point and
will help us understand what is happening in some important situations.

Tecnically, what “thin” means in this context is that if a narrow beam of light approxi-
mately perpendicular to the plane of the lens comes into the lens at some point on one side, it
comes out at about the same point on the other side. If we ignore the small change in position,
this simplifies the analysis and gives us the thin lens formula.

Thin Spherical Lenses

In Chapter 11, we derive the formula for the angular change in a narrow (we are ignoring
diffraction) beam of light due to a prism. The analysis is uses the geometrical construction
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Figure 11.26:

shown in figurél1.26 and gives

5:01n+90ut_‘91_92
~n(f+6)—op=(n—1)¢

(11.146)

where the first is exact and the second follows in the limit in which #mgles are small. In
this limit, the angular deflection is independent of the incoming angle.

Thin lenses and small angles

We can use this result to understand how a lens focuses light. A lens is a device in which
the angular change given to the beam is proportional to the distance from the axis for small
angles and distances —

S~ h/f (11.147)

wheref is length. This is approximately true for a piece of glass with surfaces that are parts
of spheres. In figur@1.27is a diagram showing how this works for a lens which is flat on
one side and a partial sphere with radiuen the other. In the diagramh, is the angle of the
“effective prism” seen by the part of a beam at distanfrem the axis. It should be clear
from the figure that i, is small, it is proportional té.
_ h
01 ~sinf; = — (11.148)

™
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Figure 11.27:

More often, the lens is curved on both sides. If the radi;aaedrs, the result looks like
figurel11.28. Figurell.28shows the beam at the very tip of the lens for convenience, but as

Figure 11.28:

the previous diagram should make cléart 6 is the “effective prism” angle for arly. The

figure also exaggerates the curvature of the two sides, so that the lens pictured is not really
“thin.” A thin lens looks more like figurgl1.29.This is important because if the lens is fat,

the heighth is not very well-defined because if the light inside the lens is not horizontal, we
might have oné where the light enters the lens and a very diffeliemhere it come out. But

if the lens is thin and if the light rays are not too far from the perpendicular, this ambiguity in
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Figure 11.29:

h can be ignored just like other corrections to small angle relationssiflikex 0).
Putting together the geometry from figiie 28with the formula fow in a prism, we get
the constanf for a thin spherical lens:

0= (n — 1)(91 —|—92)

L h h (11.149)
ELICEE R
and thus ) . )
=1 (Tl L r2> (11.150)

This is called the “lens-maker’s formula”

Figure 11.30:

A lens of this kind focuses parallel rays of light, as shown in fi@ir80. This works
becaus®d ~ h/f as shown in figurd1.31. Parallel rays at any angle are focused onto
a “focal plane” a distancé¢ from the lens as shown in figutd.32. The analytical way of
explaining how this works is to note that the difference in the slopes of the rays on the two
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Figure 11.31:

sides of the lens is proportional to the height. Thus the in this case, because the slopes on one
side are the same, the difference in slopes on the other side is proportional to the difference
in height, and that means that they all come together at theasame

Figure 11.32:

Another way to see that this focusing must work is illustrated in fidur@&8and11.34.
Note that if the parallel rays are coming in at an angléhe ray a distanck; = ¢ f above
the center of the lens is bent to the horizontal, as shown in fidgu88with the solid line.
Then for the rays on either side of that ray (shown as dashed lines), because the dependence
of the bending on the height in the lens is linear, the total angularfendl, is f multiplied
by the total distance from the center+ h,, but thenh, = 6, f, which is the condition for
focusing. This is illustrated in figuiiel.34.

For a bundle of parallel rays at any angle, you can determine where they hit the focal
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Figure 11.34:

plane by tracing any ray, the easiest being the one through the center of the lens, which is not
bent at all, as shown in figud..35. The parallel rays (a part of a plane wave — we know
this is impossible, but we are ignoring diffraction) can be thought of as coming from a point
source at infinity. If there is a point source closer to the lens, it focuses farther away. Now
play with the animation LENS.EXE.

To find the relation betweefy andd,, consider the diagram in figutd.37— the sum
of the angles of deflection on the two sides equals

S1+0, =16 (11.151)
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Figure 11.37:
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which for small angles is equivalent to

h h h

—+— == 11.152

di dy f ( )
or 1 1 1

—t — == 11.153

d  dy f ( )

This is called the “thin lens formula.”

So far, we have discussed “converging” or “convex” lenses for whishpositive, but
there are also “diverging” or “concave” lenses, for whids negative. In this case, parallel
rays are not focuses, but defocused, and appear to diverge from a plane a-digtaviteh
is a positive humber) beyond the lens, as shown in fidu@8: The point from which the

Figure 11.38:

outgoing rays diverge is called a “virtual image.” In this case it is a virtual image of the point
at infinity. Shown in figurd1.39is the effect of a concave lens on a point source. Again
there is a virtual image. Here the thin lens formula is still satisfied, butfbetia d, are
negative.
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Figure 11.39:

Images

The focusing property of a lens can be used to project an image of an object on a surface,
as shown in figurd1.40. What is happening is that light fanning out from each point on

screen

Figure 11.40:
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the object is focused back to a single point on the screen. As in fiduBésand11.37,the
distances satisfy the thin lens formula,

11 1
— === (11.153)

d dy f
This tell you where to put the screen. Note also that it is easy to see where on the screen
the image of a particular point on the object appears because a ray of light that goes right
through the center of the lens is not deflected at all (we also used this for parallel rays above
figure/11.35). This plus simple geometry then implies that the ratio of the size of the image
to the size of the object b /d;.

size of image d

! iac Al 11.154
size of object d; ( )

If the screen in figuré&1.40is removed, you can see that the light to the right of where the
screen was is a copy of the light coming from the object, but upside down, and changed in
size bydsy/d;. If you have played with lenses, you know this.

virtual )
Image object
<d >
-~ —dy ——
Figure 11.41:

Notice that(11.153)implies that neithetl; nor ds can be less that. If you bring the
object too close to the lens, you do not get a real image on the other side. thdteadmes
negative and you get a “virtual image” on the same side of the lens as the object, and the light
to the right of the lens is diverging as if it came from the virtual image. This situation is
illustrated in figurel1l.41. As we will discuss further below, this is how a magnifying glass
works.
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The image formation illustrated in figutd.40is what happens in a camera, and in your
own eyeball. The lens focuses light from outside points onto points on the film, or your
retina. Of course, the retina is not actually a plane. For the same reason, your eye lens is not
a spherical lens, but some more complicated shape instead. The ray tracing has been done by
evolution, however, so that objects in a plane get focused properly onto the retina.

Because the distance from your eye lens to your retina is fixed by the geometry of your
eye, you must be able to adjust the shape of your lens. By doing so, you can change the focal
length of your lens and thus change the distance at which points are perfectly in focus (this is
called “accommodation”).

The formation of an image on your retina is illustrated in the diagram in fidudé.

Again as in figure 11.40 the image is upside down. You cannot focus on objects that are too

Figure 11.42:

close to your eye lens because the amount of accommodation you can do is limited. If you
bring the object too closer than the smallest focal length your eye lens can produce, the real
image is beyond your retina, the object will look fuzzy, as shown in flouds.

A magnifying glass works by allowing you to produce a larger image of the object on your
retina. It does this in two ways, both of which are illustrated in the diagram in [fifié
(with fewer light rays shown now because the diagrams are getting too busy).

Obviously, the image is larger. But note also that the magnifying glass changes the
amount of accommodation required by your eye lens. Your eye is actually focusing on the
virtual image which is much farther away, and that is easier. Thus when you look at an object
in a magnifying glass, you can bring it much closer to your eye then you could without the
glass. This further increases the magnifying effect, because closer objects look bigger. In this
diagram you can also see a third salutary effect of the magnifying glass — more of the light
from the object reaches your eye.

One of the magnifying effects of a lens can be obtained without a lens in a very simple
way — with a pinhole. If you look at a nearby object through a pinhole, you can bring it



11.6. LENSES AND GEOMETRICAL OPTICS 303

Figure 11.43:
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Figure 11.44:

much closer to your eye. The reason is that only a narrow beam of light get through the
pinhole from each point on the object you are looking at, so not much focusing is required.

The size of the image on your retina is not increased when you look at the object through a
pinhole at the same same distance as without the pinhole, but with the pinhole, you can bring
it much closer to your eye without fuzziness, and therefore you make it appear bigger.

You may also have played with pinhole cameras, in which you form an image on a screen
in a dark box without a lens, as shown in figlite45.

One disadvantage to a pinhole camera is that you need a very bright object. You throw
away most of the light coming from the object. You can get more light by making the pinhole
larger, but that makes the image fuzzier. Actually, however, you cannot make the pinhole too
small anyway. Ultimately, as we will see in chapter 13, diffraction limits the resolution of a
pinhole camera. If you try to make the image very sharp by making the pinhole very tiny, the
beam you get inside the camera will be spread by diffraction. The best you can do is choose
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<

Figure 11.45:

the size of your pinhole so that the spreading at the screen due to diffraction just matches the
size of the pinhole.

While we are on the subject, note that diffraction and the finite size of your pupil limits the
angular resolution of your eye. As we will understand in detail in chapter 13, the finite size,
s of your pupil introduces an angular spread of ortjex for light of wavelength\. Unless
you have huge eyesjs less than .25 cm, so for green light with wavelength 500 nanometers
(550 is about the middle of the visible spectrum), the angular resolution is greater than about
2 x 1074, At a distance of 10 meters, for example, even if your eyes are perfect, you will not
be able to resolve two objects less than a few millimeters apart.

You can use a pinhole to study your eyes in rather interesting ways. Put the pinhole close
to your eye and look at a bright diffuse source of light. We will do this in lecture, but you
can make your own pinhole by punching a small hole in a piece of aluminum foil with a pin
and try this out. If you wear glasses, take them off. You won't need them. You should see
a circular spot of light. This is the image of your pupil on your retina, as shown below:

TR

pinhole

Figure 11.46:
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You can watch the size of your pupil change with this arrangement. Just cover or close your
other eye. Because you are now getting less light, both pupils will expand. Uncover the other
eye and look at the bright light again and the pupils will contracts. Can you notice a short
time-lag?

Now carefully bring a pen or pencil point up from below in between the pinhole and
your eye, until it just begins to obscure your view. What do you see? This should convince
you, if you were not sure before, that the image on your retina is upside down, as shown in
figure11.47. The bottom half of the image on your retina is missing. Your brain, being used

TR

pinhole

A

Figure 11.47:

to seeing images on the retina upside down, interprets this as an object coming down from
above!

Magpnification, telescopes, microscopes, and all that

By combining lenses in various ways, you can construct all sorts of interesting optical instru-
ments. The simplest way to think about magnification is just to consider the angular size of
the observed image, compared to the angular size you would see without the instrument.
A simple telescope is illustrated in figuté.48. The distances are somwhat distorted.

In a real telescope the object would be much farther way and the sizes of the lenses much
smaller. When you look at a distant object (lafgewith your telescope, the light arrives
at the first (“objective”) lens as a nearly parallel bundle of rays. We know from the thin lens
formula

E + .1 (11.153)

di dy f '
with dy = L > f that a real image forms at a distance from the objedtijast slightly
larger than its focal lengtfy. The “eyepiece” is then placed a distance just beyond its focal
length, f5, from the real image, to make the light from the image into a nearly parallel bundle
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objective eyepiece

<—L>>f17f2—>e%fle<%f2>

Figure 11.48:

again. Essentially what you are doing with the eyepiece is looking at the light from the real
image with a magnifying glass.

We can understand how (and how much) a telescope magnifies distant objects by looking
at the angles involved. If the object has dizgits angular size without the telescope is

ho ho
—2 _~2 11.155
L+fi+fs L ( )
By similar triangles, the size of the real image is
ho
— - 11.156
i3 1 ( )

and thus the angular size of the real image at the eyepiece (and your eye) is

ho fl
— = 11.157
L h ( )
Thus the magnification is approximately
i1 (11.158)
P

Note that the telescope image appears upside down because what you are actually seeing
is the real image.

A microscope looks something like what is shown in fidiirgl9(with even fewer light
rays drawn because you should be getting used to them by this time.

The sample is placed just a little more than the focal lerfgtlaway from the objective
so that a real image forms that is much bigger than the sample. Then you look at the real
image with the eyepiece as a magnifying glass, again positioned a little more than its focal
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objective eyepiece

~<rRfi=<—"7"L>f1fi ——<= fo>

Figure 11.49:

length, f>, away, to be able to view the image comfortably with your eyes relaxed. If the
sample has sizk,, the size of the real image is

L. ho (11.159)
N
and the angular size of the image at the eyepiece (and your eye) is
Lh,
11.160
Jife ( )

This should be compared with the angular size of the object at some referencellgngth,
25 cm, at which you can view the object comfortably with your unaided eye, which is

ho
— 11.161
i (11.161)
Thus the magnification is
L Ly
— 11.162
Jife ( )

11.7 Rainbows

Most elementary physics books either do not explain the rainbow at all, or explain-t incor
rectly (sometimes embarrassingly so). Obviously, it has something to do with the refraction
of light by raindrops. We ought to be able to explain it just using Snell’s law and geometrical
optics — ray tracing. But it is a little subtle, as you will see.

To begin with, consider the refraction of a narrow ray of light from a spherical drop of
water, illustrated in figur@1.50.The index of refraction of watet, varies from about 1.332
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for red light to about 1.343 for violet light. The ray enters somewhere on the drop, which
can parameterize by the angléetween the direction of the incoming light and the radius
from the center of the drop to the point where the light enters. The isgédso the angle
between the light ray and the perpendicular to the surface of the drop, so it is the appropriate
to use in Snell’s law. Thus the angl®f the refracted ray inside the drop is given by

sin ¢ = % sin # (11.163)

or

¢ = sin~! (8129> (11.164)

Figure 11.50:

Some of the light is also reflected from the drop. Note that the reflected light is reflected
specularly. Fop = 0, the light is reflected directly backwards. Acreases fronl the
reflected ray is rotated counter-clockwise with respect to the incoming ray by am aritfle
until atd = 7 /2 it just kisses the sphere and is not rotated at all.

The important geometrical fact that makes the problem fairly simple is that the angle
between the ray and the perpendicular to the surface is the same when it comes out of the
drop as when it comes in. Snell’s law works in reverse, and the ray coming out of the drop
makes an anglé with the perpendicular. As you can see from figlites1, this means
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Figure 11.51:

that the refracted ray coming out of the drop This is just a version of the reflected ray in
figure[11.50 rotated by — 2¢. This means that is it rotated by

6y = (1 — 2¢) — (r — 260) = 20 — 2¢ (11.165)

from the original direction of the incoming light.

The trouble with this is that it has nothing to do with the rainbow. The problem is that the
direction of the refracted ray is basically forward and it depends sa that no particular
value off is picked out. There are three mysterious things about the rainbow that this effect
cannot explain.

i. The primary rainbow occurs at a definite angle, and

ii. the angle is in thbackwards direction — at an angle of about*4(about .7 radians)
from the incoming light ray — that is rotated by about 2.4 radians from the original
direction, and

iii. there is a second rainbow outside the first in which the colors go applositedirec-
tion!



310 CHAPTER 11. TWO AND THREE DIMENSIONS

0.25 0.5 0.75 1 1.25 1.5
Figure 11.52Plot of §; versus 6 for red light and blue light.

So what does this refraction do? The answer is almost nothing! The refracted ray is spread
over a large range of angles, as shown in the graph inffigure 11.52. At any particular outgoing
angle, the light from this effect is very faint and hardly noticeable. Not only are the colors
not separated very much, but all of them are spread more or less evenly over outgoing angle,
so you don’t see any rainbow from this refraction.

So where does the rainbow come from? The answer is that in addition to being refracted
from the inside surface of the drop, the ray can also be reflected, and then come out at a still
larger angle. The result looks like the picture in figure 1.1.53.

Comparing figure 11.5%igure 11.53 and equation (11.165), it is clear that for this path
the light is rotated by

Oy = 2(m — 2¢) — (1 — 20) = 20+ 7 — 46 (11.166)

And now here is the critical point. If we plot tifisversug), the graph has a minimum! This
is shown in figure 11.54.

Now the outgoing angle has a minimum fiorz 1.05 (which is the value of illustrated
in the diagrams). The outgoing angle = 6, corresponding to thi8 gives the angular
position of the rainbow. Here, becadsaloes not change much for a small changg you
see the sum of the refracted light from a rangtsaround the minimum. The angle is about
what we expectl,,: ~ ™ — .7, where.7 radians: 41° is the angle between a vector from the
water drop to the sun and the same drop to your eye, as shown in figure 11.55. The negative
sign inT — .7 means that the light has not rotated by afg&ll°, so the light reaching your
eye entered the refracting water drop on the side farther away from you.
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Figure 11.53:

You can also see from the graph in figliie54that the colors are spread out. The red
light is on the outside (farther away fr@m) and the blue light on the inside.

Mathematically, why does the light pile up at the edge? The energy from sunlight falling
on a small part of the surface of the water drop betwesmd + df is proportional tal do
(there are other factors, likes 6, but they vary slowly, so let's forget them). The angle of the
outgoing rayf..: is a function ob, and the energy I; df is spread over an angular region
betweer),,+ andf,,; + df,.. Thus the outgoing intensity is proportional to

incoming
energy betweerx 1i df (11.167)
6 and 6 +df
outgoing
energy between X Lo dfout (11.168)
eout and ‘%ut + daout
I;do I;
I, x = —— 11.169
deout % ( )
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sun

eye

Figure 11.55:
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Whendb,,:/df = 0, the intensity goes to infinity! The edge is infinitely more bright than
the interior. That is why we see it!

Figure 11.56:

We can now check this picture by seeing how it explains the second rainbow. As you
might guess, this comes from yet another reflection, as shown in btk
Now the light ray is rotated by

03 = 3(m — 2¢) — (7 — 20) = 20 + 27 — 6¢ (11.170)

This is shown, along witl,, in the plot in figurell.57. The minimum offs is the
position of the second rainbow. But now because the angle is greater, ttinlight is
reaching your eye from the side of the drop that is closer to you, and it is bending completely
around.

This is why the colors are reversed. Again the blue is refracted more, but this time that
means that the blue is on the outside, while the red in on the inside.

By accident, the minima faf, and 63 are almost equally (within about .13 radians)
displaced fromr, though on opposite sides. This is why the two rainbows are fairly close



314 CHAPTER 11. TWO AND THREE DIMENSIONS

0.25 0.5 075 1 1.25 1.5
Figure 11.57Plot of 65 and 65 versus @ for red light and blue light.

together in the sky.

Another prediction of this picture that can often be seen is “Alexander’s dark band” that
appears between the rainbows. The light that is not concentrated at the minimum value of
0 is spread inside the first rainbow but outside the second rainbow, thus the region between
the two rainbows (or outside the first if the second cannot be seen) is darker. If we plot the
angular distance away fromas a function of the angle at the which the incoming sunlight
enters the water drop, the first and second rainbows look like figure 11.58 (as usual, | have
exagerated the difference in index of refraction between red and blue. Here you clearly see
that the angle of first rainbow is smaller, and the dark band between the two.

11.8 Spherical Waves

Consider sound waves in a very large room with absorbing walls. In the middle of the room
(we will take the middle of the room to be the origin of our coordinate systea)) is a
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1.4¢

0.25 0.5 0.75 1 1.25 5

0.8y

0.6

Figure 11.58Both rainbows.

spherical loudspeaker, a sphere that produces an oscillating pressure at its surface (at radius
R) of the formpg coswt. What sort of sound waves are produced? It seems rather silly to
use our plane wave solutions with space translation invariance for this problem, because this
system has a symmetry under rotations about the origin. Instead, let us look directly at the
wave equation and make use of the spherical nature of the problem. That is, assume that
the solution has the form(7,t) = x(|7],t). Putting this into the wave equation gives (with
r= |y

Lo = V2x(r,t) =V -V x(rt

”zfﬁgf(ng; x(nﬂ B 8Xfﬁ ) (11.171)

=V (Vr) 5 ox(r,t) = V- (7/r) 5 x(r,0)

8If you have seen spherical coordinates, you may remember that you cannot compute the Lﬁplai‘i,an,
simply as%. You don't need to remember the details here because we compute it from scratch for the function,

x(I71,8).



316 CHAPTER 11. TWO AND THREE DIMENSIONS

2
= (9 7r) (1) + (Fr) - (/) (1)
- - 0 0?
= (V-7 /r 47 V()] 2ox(r8) + (7r) - (7/r) 5 () (11.172)
2 0 0*
= ; EX(n t) + ﬁX(Ta t) .
We can rewrite this in the following useful form:

1 92 1 9
02 @X(Ta t) = - ﬁrx(r, t). (11.173)

Thusrx(r, t) satisfies the one-dimensional wave equation.

We can now solve the problem that we posed above. The solutiong fuave the
form sin(kr + wt) andcos(kr + wt), wherek = w/v. Because the pressurerat= R is
po coswt, we are interested in the combinatiens(kr — kR — wt) andcos(kr — kR + wt).
These describe waves going outward from and inward toward the origin respectively. The
appropriate boundary condition at infinity is to take the outgoing wave, so that the disturbance
is produced entirely by the speaker. Thus

w(rt) = PR costhr — kR — wt). (11.174)
T

The general features of the solution, (11.174), are easy to understand. The wave-fronts, along
which the phase of oscillation is constant, are spheres centered about the origin, as they must
be because of the rotational symmetry. The waves move out from the origin at speed

they move outward, their local intensity must decrease, because the same amount of energy
is being spread over a larger area. This is the reason fofitie (11.174). If the amplitude

falls as1/r, the intensity of the wave falls agr2, as it must. Though the physics is clear,

the precise form of this solution is deceptively simple. In two dimensions, for example, it

is not possible to find a solution to an analogous problem using the functions that you know
from high school. In two dimensions, the amplitude of the wave must decrease roughly as
1/4/r. The solutions to the two-dimensional wave equation with this property are called
Bessel functions. You will learn about them in more advanced courses.

11.9 Chapter Checklist

You should now be able to:

i. Interpret plane waves in two- and three-dimensional space in terms wdcor, an-
gular wave number;

ii. Analyze the scattering of a plane wave from a plane boundary between regions with
different dispersion relations;
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iii. Derive and use Snell's law;

iv. Understand the phenomenon of total internal reflection, along with the general state-
ment of the boundary condition at infinity for complex

v. Understand the physics and mathematics of tunneling phenomena;

vi. Understand how degeneracy of the frequencies of the normal modes affects the forced
oscillation problem and find the sand patterns on square Chladni plates;

vii. Understand the propagation of waves in waveguides, using separation of variables to
construct the modes and interpret the result in terms of zig-zag waves;

viii. Be able to analyze water waves, ignoring viscosity and angular momentum.

iX. Solve problems involving spherical waves where the displacement involves amdy
4

Problems

11.1. Consider the free transverse oscillations of the two-dimensional beaded string
shown in figure 11.59. All the horizontal strings have tengjgrall the vertical strings have
tensionT’,, all the solid circles are beads with massThe square frame is fixed in the= 0

plane.

a. Find the normal modes and their corresponding frequencies.

b. Suppose thaf, = 1007}. Draw nine diagrams, one for each normal maderder

of increasing frequencyindicating which beads are moving up (by a + sign), which are
moving down (by & sign), and which are not moving (by a 0). You can interchange + and
— and still have the right answer by changing the setting of your clock, or multiplying your
normal mode vector by 1. For example, the lowest frequency mode looks like

+ + +
+ + +
++ +

while the mode with the fifth highest (and also the fifth lowest — in other words the one in
the middle) looks like

+0O |
0O
| o+
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y=1L —
. . . j=3
° . . j=2
. ° 3 j=1
y=0 —
a:‘:O :c:‘L

Figure 11.59: A two-dimensional beaded string.

Do the rest andet the order right. You should be able to do this even if you got confused
by the details of part a.

11.2. Consider the forced transverse oscillations of the two-dimensional beaded string
shown in figuré 11.60. All the strings have tensigrll the solid circles are beads with mass

m. The frame is held fixed in the= 0 plane. The open circles are moved up and down out
of the plane of the paper with the same transverse displacement,

21(t) = 22(t) = 23(t) = dcoswt

where
T
w=24—".
ma
Find the displacement for each of the beads. You can do this by solving for the displacement,

z;(t), of the bead whose horizontal position is
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y=1L —
® ® ® ® o j=3
] ® ® ® o0 j=2
® ° ° ® o j=1
y=0 —
x‘:0 x:‘L

Figure 11.60: A two-dimensional beaded string.

for all relevantj andk. All displacements will be proportional tbcos wt, SO write your
answer in the form of a table of the coefficientd abs wt for each jandk:

k
J 1 2 3 4
1 2 92 2 9
2 2 92 2 9
3 2 97 2 9
11.3. Consider the forced transverse oscillations of the semi-infinite two-dimensional

beaded string shown in figure 11.64ll the strings have tensidh, all the solid circles are
beads with mass:. The equilibrium separations of the blocks arerallhe frame ay = 0
andy = 4a is held fixed in thee = 0 plane. The open circles at= 0 are moved up and
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y =4a —
G L 4 @ L 4 L 4
G L 4 L L 4 4
G L 4 @ L 4 L 4
y=0 —
x‘:O :E:‘4CL

Figure 11.61: A semi-infinite two-dimensional beaded string.

down out of the plane of the paper with transverse displacement,

d
z1(t) = z3(t) = —=coswt, z2(t) = —dcoswt,

V2
for the values ofv given below. For each find the displacement for each of the beads as

a function of its equilibrium position. That is, determipgr, y,t). Assume that the entire
system is oscillating with frequencyand that the displacement is well-behaved at +oc.

a. Findy(x,y,t) for
W24 VE )
am

In botha andb, assume thatis a small real number, small enough so that you can approxi-
mate

~
~

sinh

N
N

b. Findy(x,y,t) for
w? = £(6+\/§+62).
am
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11.4. A flexible membrane with surface tensieg and surface mass densijty is
stretched so that its equilibrium position is the- 0 plane. Attached to the surface of the
membrane at = 0 is a string with tension;, and linear mass densip;,. Consider a
traveling wave on the membrane with transverse displacement

’(/J(.T, y,t) — ,(/}_ (x,y,t) —_ Aefithrikszrikyy + RAefiwtfikszrikyy

forz <0, and o |
b(x,y,t) = Py (z,y,1) = T Ae~witikeatiky

forxz > 0.

In what direction is the reflected wave (fok 0) traveling?Easy!

Newton’s law for a small element of the string of lengthwith equilibrium position
(0,,0)is

2

0 0 0
Ts dy %1%(0, Y, t) - %1#— (07 Y, t) + 7L dy Tygq/}:t(ov Y, t)

62
= prdy @wi(& y,t).

Explain the physical significance of the term above, proportiong).t&What is pulling on
what? Why does it have the form shown above?

11.5. Consider the transverse oscillations of an infinite flexible membrane stretched in
the z = 0 plane with surface tensidf, and surface mass densiB;. Along thez = 0,
x = 0 line, a string with linear mass densify, but no tension of its own is attached to the
membrane.

Consider a wave of the form:

Aei(kxcos@+kysin97wt) + RAei(szcose+kysin97wt) forr <0

TAei(k:’J: cos 0’ +k'y sin 0’ —wt) forz >0

wherecos § > 0 and cost’ > 0.

Findsin & in terms ofsin 6 (TRIVIAL!).

FindR and T

Hint: ConsiderF’ = ma for an infinitesimal piece of the weighted string, remembering
that it has no tension of its own.

11.6. Two semi-infinite flexible membranes are stretched inzthe0 plane. The first
has surface tension 1 dyne/cm and mass density 169°gritns fixed along the: = 0,
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y = 0 axis and thee = 0, y = a axis and extends from = 0 to co in the 4z direction.
The second has the same surface tension but mass density 180 frisralso fixed along
thez = 0, y = 0 axis and the = 0, y = a axis and extends from = 0 to —co in the—z
direction. The two membranes are joined together with massless tapeatConsider the
transverse oscillations of this system of the following form:

w(xvy’t) — Asin(kyy)(e—i(wt—kxac) + Re—i(wt—&-kwx)) for z < 0
w(xvyvt) = ASln(kyy)T e*i(wtfk;m) forz >0

wherek, = 12r cm ! andw = 7 s L.
Find k, andk.,.

Find R and T!
fixed rod
y=a
elastic membrane
y=0
z=0 fixed rod

Figure 11.62: A forced oscillation problem in an elastic membrane.

11.7. A uniform membrane is stretched in the= 0 plane, as shown in figure 11.62. It
is attached to fixed rods alogg= 0, z = 0 andy = a, z = 0 from z = 0 to co. ¥(z,y,t)

is thez displacement of the point on the membrane with equilibrium podition 0). For
small oscillationsy) satisfies the two-dimensional wave equation,

»? 5?
2 - - —_
0 <8x2 " 6y2> Y=

If this system is extended to an infinite system by continuing it to negatsteow that
the normal modes of the infinite system take the form:

Y(z,y) = Asin(nkgy) e .
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Find ky. Suppose that the end of the membrane-=ato is driven as follows:
¥(0,y,t) = cos(bvkot)[B sin(3koy) + C sin(13koy)]

The boundary condition ab is such that there is no wave traveling in thedirection
along the membrane. Fintx, y, t).

Explain the following statement: Far < 2vkg, the system acts like a one-dimensional
wave carrier with the dispersion relatioh = v?k? + wg. What iswy?

11.8. Consider a rigid spherical shell of inner radiusiled with gas in which the speed

of sound isv. In this sphere there astanding wavenormal modes of many kinds. We will
be interested in those in which the pressure depends only on the digtdrare, the center

of the sphere. Suppose thdt”, t) = x(r, t) is the difference between the pressure of the gas
in such a mode and the equilibrium pressure. We know from (11HaA3)r, ¢t) = r x(r, t)
satisfies the one-dimensional wave equation:

2

0 0?
@f(ra t) = UQ ﬁg(ht) :

Explain the physics of the boundary conditiom at 0.

In terms of an unknown wave numblerfind a form fory (r, ¢) that satisfies the boundary
condition atr =0 .

Explain the physics of the boundary conditiom at L.

Write down the mathematical statement of the boundary conditios dt, the solutions
of which give the allowed values bffor the normal modes.

Hints:. Remember that it ig and not¢ that is the physical pressure difference. The
lowest nontrivial mode has/avalue which satisfieg . ~ 4.4934. The amplitude of the
pressure oscillations in this mode as a functionisfshown in the graph in figufel.63.

r=20 r=1L

Figure 11.63: Amplitude of pressure oscillation vensus

11.9. Consider a boundary between two semi-infinite membranes stretchedriy the
plane. The membrane far < 0 has surface tension and surface mass densjty. The
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membrane forr > 0 has the same surface tensiarbut a different surface mass density
p.. Along the boundary there is a device (I don’t know exactly how it works) that produces
a vertical frictional force, proportional to minus the vertical velocity of the membrane at the
boundary. In other words, if(z, y, t) is thez displacement of the membrane as a function
of (z,y), then the force (in thedirection) on a small chunk of the boundary stretching from
the point(0, y) to (0, y + dy) is

0
dF' = —dy~y (0, y,1).
Y atw( ,Yst)
On the membrane there is a plane wave of the form shown below, with displacement:
w(xﬂ Y, t) - Aei(kaOS 0+ky sin 97(_01‘,)

w(l’ y t) — 421(1€,$C()bel+k/ysin 0/ )

for x > 0. The setup is shown in figutd..64.The dispersion relation far < 0 is

Te —.
W= 252,
Ps

Find &'
Find ¢’
Find~. You should findy — 0 for p; — p’.. Explain why.

11.1003 11-4 Instead of an open ocean, consider a system with a bottgra-a0
and a fixed top ay = 2L, half full of water and half full of paint-thinner, another nearly
incompressible fluid which is lighter than water and floats in the top half without mixing with
the water.

Show that waves in this system have the form of (11.ft22) < L (in the water) and

Vo, y,t) = FieF =4 cosh[k(2L — y)],

o (11.175)
by(w,y,t) = R sinh[k(2L - y)],
for L < y < 2L (in the paint-thinner), by arguing th¢tl.175)and (11.122)satisfy the
appropriate boundary conditionssat= 0 andy = 2L and (for small displacements) at
y = L, and show thgfl1.175)Jike (11.125),s consistent with incompressibilitﬁ(-zﬂ = 0).

Show thaty,. is discontinuous af = L and explain physically what is happening at this
boundary and why. When you have done this, take a look at program 11-4, in which this
system is animated. If you look carefully, you will notice the effect of the breakdown of
linearity for large displacements.
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6/

ky K,

z=0
Figure 11.64: Scattering from a boundary in an elastic membrane.

Now suppose that the liquids are contained within vertical walls=ab and z= X.

What boundary conditions are satisfied at the vertical boundarie$, andx = X?

Find the form of the displacements for the normal modes in this system. You may want
to check that they satisfy - 1/ = 0.

Show that the dispersion relation for this system is

_ k3
w2 = PW — pPp gk + TS
pPW + pp pPw + pp

tanh kL (11.176)

wherepp is the density of the paint-thinngry is the density of the water, and is the
surface tension of the boundary between the water and the paint-thiimer.You use an
energy argument analogous(id.127)-(11.13), and just discuss how the various contribu-
tions change when you go from (11.187)11.176).
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11.11 Consider the reflection of sound waves from a massless, infinitely flexible mem-
brane that separates two gases with the same equilibrium pregsbrg,different densities.

The membrane is in the= 0 plane. The gas in region 1, fer< 0 has equilibrium density

p1, ratio of specific heat at constant pressure to specific heat at constantyglantgsound
speed\/~1po/p1 While the gas in region 2, far > 0 has density,, specific heat ratig,

and sound speeg~,po/p2. A pressure wave in the system has the following form:

P(r,t)/6p = AeiFr =it 4 R Acikri—iwt

in region 1, forx < 0, and )
P(r,t)/0p = T Aeik2m—iwt

in region 2, forx > 0, whereP(r,t) + po is the pressure of the gas whose equilibrium
position isi”. The small pressurép, describes the amplitude of the pressure wavendT
are the reflection and transmission coefficients.
The kvectors are
k1 = (k cosf,k sin#,0)

ER = (*k‘R COS QR, k:R sin@R,O)
EQ = (k’Q COS 92, kz sin 92,0)

wherek, kg, ko, cosf, cosfg, and cod), are all positive.

Find kr andcos 0 in terms ofk and @

Find k2 andcos 65 in terms ofk andé.

Show that ifp; /v1 > p2/72, there is a critical value éfabove which the wave is totally
reflected, and find the critical angle.

To find R andT’, we need the boundary conditionsgat 0. One condition follows from
the fact that the membrane is massless and infinitely flexible. That implies that there can be
no force on it transverse to its surface.

Find this boundary conditiotdint: Where does the force transverse to the surface come
from?

The other condition involves the transverse displacement of the membrane. The displace-
ment can be obtained from the pressure:

-

W(r,t) = ﬁP(r, t),

pjw?

Whereqﬁ(r, t) is the displacement of the gas whose equilibrium positionaisd j is the
region label.
Thus

1;(7*, 1)/op = 7 . (E1 eiﬁl-ﬂiwt i RER ez’%-ﬂ@t)
1w
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in region 1, forx < 0, and

iA TEQ eiEz-’F—iwt

Y(r,t)/6p =

paw?

in region 2, forz > 0.
Find the other boundary conditiodint: Assume that the amplitude is small.
Find Rand T.

11.12 Consider a universe filled with material that has a honzero conductivitjhat
is, in this material, there is a current proportional to the electric field (Ohm’s law),

J(7t) = o E(7,t). (11.177)

We will assume that the material has no other electrical properties, in particular that there
is no polarization or magnetization, and that no charge builds up anywhere, go=that
Consider the propagation of a plane electromagnetic wave in this universe. Because this
universe is perfectly space translation invariant and rotation invariant, and because (11.177)
is linear, we would expect that there will be plane wave solutions in which the electric and

magnetic fields are proportional to
ei(E-F—wt)

for k2 andw related by some dispersion relation. In particular, consider propagationtia the
direction with the electric field in thedirection and the magnetic field in thelirections:

E. (7 t) = Bk B (7 t) = E,(7,t) =0

By(7,t) = Be'k>=«) ' B (7,t) = B,(F,t) = 0.

a. Show from the relevant Maxwell's equations,

9 o . 0B,
A e T

0 0 0E,
@Bz - %By = Hoco—p,~ + podz

t
that such a plane wave can exist if

k? = uoeouﬂ + ipgow .
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\i/
HQH
/T\

—

Figure 11.65: A spherical sound damper.

b. Assume thab is real and positive and that the real part &f positive. Find the sign
of the imaginary part of, and interpret your result physically. That is, explain why the sign
had to come out the way it did.

11.13 Consider a spherical sound wave coming in from far away and being completely
absorbed by a spherical sound damper at a radigs?, as shown in figure 11.65The
pressure in is this system is described by the real part of the complex traveling wave below,
depending only on the radius and time:

p(?“ t) —py = E e—i(kr-‘rwt)
’ r
where
W2 = JP0 2
p

with pg, the equilibrium pressure apdhe equilibrium mass density of the gas. The typical
displacement of the air from its equilibrium position in this wave is in the radial direction,

1 Op
/I;Z}T(Ta t) = W& .
a. Find the time-averaged power absorbed by the spherical damper/at

b. Explain (qualitatively) the factor df/r in the pressure.

Now suppose that there is a massless, flexible spherical boundary between two different
gases at radius = r,, shown as the dashed circle in the diagram in figure 11T6@.
equilibrium pressurey, is the same on both sides of the boundary. Also, assume ithat



PROBLEMS 329

|
0 7/ Ty

Figure 11.66: A spherical sound damper with a reflecting boundary.

the same for both gases and that the only difference is the densities. Inside the density is
and outside the density 6 Now for/ < r < rp, the pressure is still given as above, but in
the region outside the dashed circle, there is a reflected wave as well as the incoming wave,

p(r,t) —po = é e~ ik r+wt) + E Gilk'r—wt)
r r
where 2
w? = % i
C. What are the boundary conditionsrat 7, and why?

d. Find B/A and ¢/Ain the limit,

1
koK > —
b

in which you can drop terms proportionallto, compared td: or £’

11.14 One of the problems with glass lenses is that the index of refraction of glass
depends on frequency. Thus, according to the lens maker’s formula, the focal length of a
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glass lens will depend of frequency, and that is not good, because if one color is focused
sharply, the others will be fuzzy. This is called “chromatic aberration.” Fortunately, different
kinds of glass have different behavior in this respect, and this makes it possible to eliminate
chromatic aberration. Suppose that you make a lens that looks like this by gluing together
lenses made of two different types of glass.

glass 1 glass 2
/ Q\
radiusr; radiusrs

Suppose that the indices of refraction of the two glasses are
n1(A) = nd + al, na(X) = nJ + az ). (11.178)

What relation must be satisfied if the compound lens is to have a focal length that is indepen-
dent ofA?

11.15 You can also make a telescope with one converging lens (the objective) and one
diverging lens (the eyepiece).

objective eyepiece

M
—

The focal length of the convex lensfisand the focal length of the concave lens 5.

a. If the ray tracing works as shown, that is that parallel rays entering the objective
are focused down to parallel rays leaving the eyepiece, find the distabetyeen the two
lenses.
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b. Compute the magnification by assuming that you are looking at a distance object
which subtends an angular si2e Then consider a ray at andglghat passes through the
center of the convex lens. By calculating where it passes through the concave lens, you should
be able to determine its angtg, when it reaches the observers eye. The magnification is
then €/6. What is it in terms of the focal lengths?

C. The image in this case is right-side-up. Draw a careful diagram to explain why.

11.16 The appearance of the rainbows depends dramatically on the index of refraction
of water. Describe in detail what the rainbows look like vfere decreased tiy03 for each
frequency of light? Discuss the first and second rainbows and Alexander’s dark band.
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Chapter 12

Polarization

In this chapter, we return to (9146)-(9.48) and examine the consequences of Maxwell's equa-
tions in a homogeneous material for a general traveling electromagnetic plane wave. The
extra complication is polarization.

Preview

Polarization is a general feature of transverse waves in three dimensions. The general elec-
tromagnetic plane wave has two polarization states, corresponding to the two directions that
the electric field can point transverse to the direction of the wave’s motion. This gives rise to
much interesting physics.

i. We introduce the idea of polarization in the transverse oscillations of a string.

ii. We discuss the general form of electromagnetic waves and describe the polarization
state in terms of a complex, two-component vector\We compute the energy and
momentum density as a functionzfand discuss the Poynting vector. We describe the
varieties of possible polarization states of a plane wave: linear, circular and elliptical.

iii. We describe “unpolarized light,” and explain how to generate and manipulate polarized
light with polarizers and wave plates. We discuss the rotation of the plane of linearly
polarized light by optically active substances.

iv. We analyze the reflection and transmission of polarized light at an angle on a boundary
between dielectrics.

333
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12.1 The String in Three Dimensions

In most of our discussions of wave phenomena so far, we have assumed that the motion is
taking place in a plane, so that we can draw pictures of the system on a sheet of paper. We
have implicitly been restricting ourselves to two-dimensional waves. This is all right for
longitudinal oscillations in three dimensions, because all the action is taking place along a
single line. However, for transverse oscillations, going from two dimensions to three dimen-
sions makes an enormous difference because there are two transverse directions in which the
system can oscillate.

For example, consider a string in three dimensions, stretched indinection. Each
point on the string can oscillate in both thdirection and the direction. If the system were
not approximately linear, this could be a horrendous problem. Linearity allows us to solve
the problem of oscillation in the-z plane separately from the problem of oscillation in the
y-z plane. We have already solved these two-dimensional problems in chapter 5. Then we
can simply put the results together to get the most general motion of the three-dimensional
system. In other words, we can treat theomponent of the transverse oscillation andithe
component as completely independent.

Suppose that there is a harmonic traveling wave intthdirection in the string. The
displacement of the string afrom its equilibrium position(0, 0, z), can be written as

U(z,t) = Re [($1d + yhog) e/ F=1)] (12.1)

wherez andg are unit vectors in the andy direction and); andi, are complex parameters
describing the amplitude and phase of the oscillations im-thplane and thg-z plane,

Vi = Aj €% for j=1to02. (12.2)

It is convenient to arrange these parameters into a complex vector

Z = (z;) , (12.3)

which gives a complete description of the motion of the string.

12.1.1 Polarization

0li12-1

“Polarization” refers to the nature of the motion of a point on the string (or other transverse
oscillation). This motion is animated in program 12-1. You may want to read the discussion
below with this program running.
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If 1 = @9, Or Ay Or Ay is zero, then (12.3) represent a linearly polarized string. Linear
polarization is easy to understand. It means that each point on the string is oscillating back
and forth in a fixed plane. For example,

uy = (é) (12.4)

uy = (?) (12.5)

represent strings oscillating in thez plane and thg-z plane respectively. A string oscillat-
ing in a plane an angtkefrom the positiver axis (towards the positivg axis) is represented

i up = <C°S9> : (12.6)

sin 6
This is shown in the:-y plane in figure 12/1The polarization vectors (12.4)-(12.6) can be

multiplied by a phase factoe’?, without affecting the polarization state in any important
way. This just corresponds to an overall resetting of the clock.

U2

Ug

Uy

Y

Figure 12.1uq, up andug.
More interesting is circular polarization. A circularly polarized wave in a string is repre-

sented by either
( 1) (12.7)

<_12> . (12.8)

In (12.7), they component lags behind thecomponent byr/2 (=¢2). Thus, at any fixed
point in space, the field rotates franto y, or in the counterclockwise direction viewed from

or
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the positivez axis (with the wave coming at you), as shown in figl2e?. This is called
“left-circular polarization” because the string resembles a left-handed screw. Likewise,

<_1%> . (128)

represents clockwise rotation of the string. This is called “right-circular polarization.”

wt =m7/2

Figure 12.2: Circular polarization.

(4) 029

with A > B > 0 represents elliptical polarization. A point on the string traces out an
ellipse with semi-major axid along the 1 axis and semi-minor adsalong the 2 axis, with
counterclockwise rotation, as shown in figlige3

The vector
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(0, B)

J

Figure 12.3: Elliptical polarization with long axis in thelirection.

Figure 12.4: General elliptical polarization.

A completely general vector can be written in the following form;

Y1\ _ iy (Acost —iBsinf
(¢2) - Asinf 4 iB cos 6 (12.10)

with A > |B| and0 < # < w and¢ is real phase (which is not very relevant relevant to the
physics but can be there to make the math look uglier). This represents elliptical polarization
with semi-major axisd at an anglé with the 1 axis, as in

ug = (0089> . (12.6)

sin 6
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and semi-minor axi®3 as shown in figurd2.4. If B is positive (negative), the rotation
is counterclockwise (clockwise). The physically interesting paramdtefs andé can be
found fromey; and % as follows:

A%+ B? = |1 |* + 4o,

(12.112)
AB = —Im (Y1 ¢3) .
Thus,
A+ B = \J|n]2 + [1o]2 F 2Im (41 3) | (12.12)
givesA and B. Thend satisfies
A2 _ B2 20 — 2 2 ’
(4% — B?) cos 20 = |un]? — [is| (1213)

(A% — B?)sin 260 = 2Re (1 ¥3) .

Notice that the overall phase factéf cancels out in (12.11)-(12.L3

12.2 Electromagnetic Waves
12.2.1 General Electromagnetic Plane Waves

0li12-1
We saw in chapters 8 and 9 that an electromagnetic plane wave traveling-mdhection
looks like this,

Ey(z,t) = ege’kzwt) Ey(z,t) = Eyei(kz_”t) , (12.14)
By(z,t) = Byettkz=wt) By(z,t) = ﬁyei(kz_“’t) , (12.15)
E.(z,t) = B,(2,t) =0, (12.16)

where theds are determined by Maxwell's equations to be

n n

By = o B = — .y (12.17)

As usual, we have written the wave with the irreducible time dependerick, To get the
real electric and magnetic fields, we take the real pgfi2o14)-(12.15). Note, in particular,
that the constants; and /3 for j = 2 and ymay be complex.

The restriction to motion in the direction is not important. Because the physics of
Maxwell’s equations is invariant under rotations in three-dimensional space, we can write
down the form of a plane wave moving with an arbitrién;ector by extracting the features
of (12.14)-(12.1)y that do not depend on the direction. These are:
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i. k, EandB are mutually orthogonal vectors,

—

k-E=k-B=E-B=0; (12.18)
i. B is determined by the cross product

B =

o3

T
ixE=-kxE, (12.19)
w

wherek is a unit vector in the direction of tihevector, the direction of propagation of
the wave.

These two conditions imply that a general real electromagnetic plane wave can be written as

E =Re (é’(l;) eiE'F_M)

B (12.20)
B =Re (B(F) ")
where the vectorg;and b, are complex, in general, satisfying
- — 1 — — A - ~ g
b@):;kxg%%:%kxa@ and k- é(k)=0. (12.21)

There are two things to note about the relations, (12.21).

i. Itis enough to specify the direction of the electric fié(d{). The magnetic field is
then determined by (12.21). The vec#rs called thé'polarization” of the electro-
magnetic wave.

ii. Because of (12.21), the polarization is perpendiculd}', tand thus lives in a two-
dimensional vector space.

In the two-dimensional space perpendiculaE,twve can choose a basis of real vecteérs,
and &, where

X
D>

. (12.22)

=k
For example, for a plane wave traveling in thdeirection,l% = z, we could take; = z and
e2 = y. Then we can write

é1-k=é-k=¢é-é2=0, € xé&

&(k) =1 é1+ 1o ér. (12.23)

The components); and, go into the the two-dimensional vector, (12.3), that describes the
polarization state of the electromagnetic wave, just as it describes the polarization state of
the string* We can always go back to the components of the electric field Using (12.23) and
(12.20) and then find the magnetic field using (12.21).

1This is sometimes called the Jones vector. See Hecht, page 323.
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Now the entire discussion of transverse waves on a string from (12.4) to (12.13) can be
taken over to describe polarized light. The direction of displacement of the string goes over
directly into the direction of the electric field. Thus the animation in program 12-1 applies
just as well to the electric field in a polarized wave as to polarization in a string.

12.2.2 Energy and Intensity

The energy density in an electromagnetic field is

1 - 1 -
E=— <e E?4 = B2> . (12.24)
2 %

Because the energy density is a nonlinear function of the field strengths, we nmestl use
fields in (12.24). The momentum density is

P=cExB. (12.25)

The Poynting vector, a measure of energy flow, is

—

S=cP. (12.26)

These quantities satisfy 5
6t5+V-S_O. (12.27)
The Poynting vector is useful because it measures the intensity of the wave, the energy per
unit time per unit area carried by the electromagnetic wave. The relation, (12.27), then ex-
presses conservation of energy. The sum of the change in the energy density at any point plus
the energy flowing away from it is zero.

To see what these quantities look like in terms of the vecidet us compute the electric
and magnetic fields explicitly using (12.20) and (12.21):

(12.20)
E — Re (b(k) ezk rfzwt)
- - ]_ — — A~ — ~ —
b(k) = — k< &) =~k x (k) and k-é(k)=0. (12:21)
w c
The result is
E = Alélcos(E-F—wt+¢1) +A2égcos(E-F—wt+¢2),

(12.28)

B = N3 (A1 éo COS(E- 7 —wt+ ¢1) — Aséy COS(E- 7 — wt + ¢2))
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Putting this into[(12.24) and (12.26) gives

&= 4i (A% cos?(k - 7 — wt + ¢1) + A3 cos?(k - 7 — wit + <Z>2)) , (12.29)
7
S=i, /i 4i (A3 cos? (-7 — wt + 1) + AJcos®(F -7 —wt + ¢)) . (12.30)
78

You can check explicitly that (12.27) is satisfieBecausev is very large for interesting
electromagnetic waves, we are almost always interested in only the time averaged values of

£ andS. These are .

(€)= ¢ (43 + 43) , (12.31)

Nk S (a21 A2
(§) ="k \/; o (43 + 43) . (12.32)
Note that the time averaged values depend only on the quantity
1Z|% = |y ” + |ol® = AT + A3 (12.33)

The intensity of the light is proportional to | Z|%.

12.2.3 Circular Polarization and Spin

Although linear polarization is more familiar and perhaps easier to understand, there is a
sense in which circular polarization is the more fundamental. The plane electromagnetic
wave in thek direction can be rotated around thexis without changing anything but its
polarization state. The rotation symmetry of the physics suggests that we ought to be able to
find states that behave simply under such a rotation, and just get multiplied by a phase factor.
These states are, in fact, the circular polarization states. The action of a rotation by an angle
6 about thek axis on the polarization vectdt, is represented by the matrix

cosf —sind
Ry = <sin9 cos 6 ) ' (12.34)

For exampleRy acting onuy, (12.4), givesiy, (12.6):

o (é) - (Zifz) : (12.35)

But on the left- and right-circularly polarized states,

Ry (1) — i (1) Ry <ll> — it (1@) . (12.36)

This is related to the fact that the circularly polarized states carry the maximum angular
momentum possible, which in turn is related to the quantum mechanical property of the spin
of the photon.
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12.3 Wave Plates and Polarizers

One reason that polarization is important is that the polarization state of an electromagnetic
wave can be easily manipulated. Two of the most important devices for such manipulation
are polarizers and wave plates.

12.3.1 Unpolarized Light

L[l12-2

In any beam of light, at any given point and time, the electric field points in a particular di-
rection. Likewise, because any plane electromagnetic wave with a definite angular frequency
can be described by (12/289)d (12.21),

F=he (5(12) - r—wt) (12.20)
B’ = Re (E(E) ezk rfzwt)

- — 1 — - A - ~ -

B(R) = — F x &) = %k x &) and k-é(k)=0. (12.21)

every plane wave is polarized. However, in an “unpolarized” beam, the light wave consists

of a range of angular frequencies with different polarizations. As a result of the interference

of the different harmonic components of the wave, the polarization wanders more or less
randomly as a function of time and space, and on the average, no particular polarization is
picked out. A simple example of what this looks like is animated in program 12-2, where we

plot an electric field of the form

E.(t) = cos(wit + ¢1) + cos(wat + ¢2) ,
Ey(t) = cos(wst + ¢3) + cos(wat + ¢4),

(12.37)

where the phases are random and the frequencies are chosen at random in a small range
around a central frequency. You can watchAHeld wandering in the-y plane, eventually

filling it up. The narrower the range of frequencies in the wave, the more slowly the polar
ization wanders. In the example in program 12-2, the range of frequencies is of the order
of 10% of the central frequency, so the polarization wanders rapidly. But for a beam with a
fairly well-defined frequency, the polarization will be nearly constant over many cycles of the
wave. The time over which the polarization is approximately constant is called the coherence
time of the wave. For a plane wave of definite frequency, the coherence time is infinite.



12.3. WAVE PLATES AND POLARIZERS 343

12.3.2 Polarizers

A “polarizer” is a device that allows light polarized in a particular direction (the “easy trans-
mission axis” of the polarizer) to pass through with very little absorption, but absorbs most
of the light polarized in the perpendicular direction. Thus an unpolarized light beam, passing
though the polarizer, emerges polarized along the easy axis.

For the transverse oscillations of a string, a polarizer is simply a slit that allows the string
to oscillate in one transverse direction but not in the perpendicular direction.

For electromagnetic waves, the most familiar example of a polarizer, Polaroid, was in-
vented by Edwin Land over 50 years ago, partly in experiments done in the attic of the
Jefferson Physical Laboratory, where he worked as an undergraduate at Harvard. The idea of
polaroid is to make material that conducts electricity (poorly) in one direction, but not in the
other. Then the electric field in the conducting direction will be absorbed (the energy going
to resistive loss), while the electric field in the nonconductive direction will be unaffected.
One way of doing this is to make sheets of polymer (polyvinyl alcohol) stretched (to align the
polymer molecules along a preferred axis) and doped with iodine (to allow conduction along
the polymer molecules).

12.3.3 Wave Plates

“Wave plates” are optical elements that change the relative phase of the two components
of Z. Wave plates are possible because there are materials in which the index of refraction
depends on the polarization. This property is called “birefringence.” It can happen in various
ways.

For example, the transparent polymer material cellophane is made into thin sheets by
stretching. Because of the stretching, the polymer strands tend to be oriented along the stretch
direction. The dielectric constant in this material depends on the direction of the electric
field. It is easier for charges to move along the polymer strands than across them. Thus the
dielectric constant is larger for electric fields in the stretch direction.

The same effect may arise because of the inherent structure of a transparent crystal. An
example is the naturally occurring mineral, calcite, a crystalline form of calcium carbonate,
CaCQ,. Crystals of calcite have the fascinating property of splitting a beam of unpolarized
light into its two polarization states. Birefringence can even be produced mechanically, by
stressing a transparent material, squeezing the electronic structure in one direction.

However the birefringence is produced, we can make a wave plate by orienting the mate-
rial so that ther andy directions correspond to different indices of refractignandn,, and
then making a slice of the material in the form of a plate inthelane, with some thickness
£ in the z direction. Now an electromagnetic wave traveling in dtdérection through the

2See Sears, Zemansky and Young, page 813.
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plate has different values depending on its polarization:

— w for polarization in the: direction
k= ¢ (12.38)

", for polarization in they direction
C

In particular, the phagdifference, between: andy polarized light in going through the plate
is n,

Ap = ”x% Wl (12.39)

Note that in general the phase differente, depends on the frequency of the light. Even if
n, andn, depend on frequency, it would be a bizarre accident if that dependence canceled

thew dependence from the explicit factorofn (12.39).

y
A
1 S
—
unpolarized
white light
polarized
colored light

Figure 12.5: Initially unpolarized light passing through a pair of crossed polarizers with a
wave plate in between.

Consider, now, putting such a wave plate between two crossed polarizers, oriented at
+45°, as shown in figur&2.5. Without the wave plate, no light would get through because
the first polarizer transmits only light polarizediat, described by th& vector

7= G?g) (12.40)

and the second polarizer absorbs it.
Coming out of the first polarizer, the vectdr, looks like(12.40)for all the frequency
components in the white light. But when the wave plate is inserted in between, a frequency
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dependent phase difference is added, so th&f tleetor coming out of the wave plate (up to
an irrelevant overall phase) looks like

Z- <€1A/q}//§ ﬂ> . (12.41)

For frequencies such that? is —1, the light is polarized in the 45° direction, and gets
through the second polarizer without further attenuation. But for frequencies such4fat
is 1, the light is still absorbed by the second polarizer. Intermediate frequencies are partially
absorbed.

It is this frequency dependence that produces the interesting patterns of color that you see
when you put cellophane or a stressed piece of plastic between polarizers.

12.3.4 Matrices

The effects of wave plates and polarizers and the like can be summarized by multiplication
of the Z vector by 2>2 matrices. For example, a perfect polarizer with an axis at anéngle
from the 1 axis can be represented by

2 .
) — ( cos“ 0 cos sm9> (12.42)

cos @ sind sin? 6

The objectFy is called a‘projection operator,” because it projects the vector onto the
direction parallel tasy. It satisfies
PyPy =Py, (12.43)

as it must, since the first polarizer produces polarized light and the second one transmits it
perfectly. Py acting on a vector transmits the component in theettion. This is easiest to
visualize if¢ = 0 or 7/2. The matrices

10 0 0
PO_(O o)’ P,T/z_(o 1), (12.44)

represent polarizers along the 1 and 2 axes respectively.

A wave plate in which the phase difference j2 is called a “quarter wave plate.” For a
wave plate in which the phase difference is between @ aih@és conventional to call the axis
with the smaller phase the “fast axis.” A quarter wave plate with fast axis along the 1 axis is
represented by

Qo = ((1) ?) : (12.45)

Notice that we can write
Qo= PFy+ iP7r/2 . (12.46)
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This should convince you that in general if the fast axis is ifi theection, the quarter wave
plate looks like
Qo = Py + Z'Pngﬂ/Q . (12.47)

The discussion 0f12.39)shows that in general, a wave plate will only be a quarter wave
plate for light of a definite frequency.
A wave plate in which the phase difference is called a “half wave plate.” A half wave
plate is obtained by replacing tha (12.45)-(12.47) by -1. Thus,
Ho =Py — Pyir/a- (12.48)

Notice that
= QyQy; (12.49)

two quarter wave plates make a half wave plate.

L./

&
/ \
| \
7
unpolarized \ |
light Vo
|ntenS|tyIO polarized e
light
intensityI/2 circularly
polarized
light
intensity I, /2

Figure 12.6: Producing circularly polarized light.

Here are two amusing devices that you can make with these optical elements (or matri-
ces). Consider the combination of first a polarizetbatand then a quarter wave plate, as
shown in figurel2.6. By forming the matrix product)o Py 4, you can see that this produces
counterclockwise circularly polarized light from anything with a component of polarization
in the 7 /4 direction. The argument goes like this. The product is

N T I O B

When this acts on an arbitrary vector you get circularly polarization unless the vector is

annihilated byPy 4.
P\ Yrt+e (1
Qo Pr4 (%) = (Z> : (12.51)
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In the opposite order’;/, Qo is an analyzer for circularly polarized light. It annihilates
counterclockwise light and converts clockwise polarized light to light linearly polarized in
ther /4 direction.

12.3.5 Optical Activity

“Optical activity” is a property of many organic and some inorganic compounds. An opti-
cally active material rotates the polarization of light without absorbing either component of
the polarization. A familiar example of such a material is corn syrup, a thick aqueous solution
of sugar that you probably have in your kitchen. If you put a rectangular container of corn
syrup between polarizers, as shown in figl@er/,and rotate the second polarizer until the
intensity of the light getting through is a maximum, you will find that direction of the second
polarizer is not the same as that of the first. The plane of the polarization has been rotated
by some anglé. The rotation angld), is proportional to the thickness of the container, the
length of the region of syrup that the light goes through.

unpolarized @ .
sytb

light
|ntenS|tyIO
polarized
light
intensity I, /2

Figure 12.7: A rectangular container of corn syrup between polarizers.

Clearly, the optical activity of corn syrup cannot depend on crystal structure, because the
stuff is a perfectly uniform liquid, completely invariant under rotations in three-dimensional
space. It can have no special axes, or any such thing. Optical activity must work very differ
ently from birefringence.

You can find a clue to the nature of optical activity by considering what it looks like if
you look at it in a mirror. If you reflect the system illustrated in figurel t2tRe z-z plane,
by changing the sign of all thecoordinates, the anglechanges te-6. Thus the corn syrup
that you see in a mirror must be fundamentally different from the corn syrup in your kitchen.
This is not so strange. After all, your right hand looks like a left hand when you look at it in
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a mirror. The corn syrup must have the same property and have a definite “handedness.” In
fact, because of the tetrahedral bonding of the carbon atoms of which they are built, the sugar
molecules in the corn syrup can and do have such a handedness.

Because of the handedness of the sugar molecules, the index of refraction of the corn
syrup actually depends on the handedness of the light. It is slightly different for left- and
right-circularly polarized light. This happens becauseRHield of a circularly polarized
beam twists slightly as it traverses each sugar molecule and sees a slightly different electronic
structure depending on the direction of the twist. Then, because the indices of refraction are
slightly different, the left- and right-circularly polarized components of the light get different
phase factorsk{) in passing through a thicknegspf the syrup.

We can now use our matrix language to see how this leads to optical activity. Up to an
irrelevant overall phase, we can choose the phase produced on the left-circularly polarized
light to be—6 and that on the right-circularly polarized light todeThen we can represent
the action of the syrup on an arbitrary wave by the matrix

e P +e?p_, (12.52)

where P, are matrices that pick out the left- and right-circularly polarized components, re-
spectively. They satisfy

1 1 1
()= (L) e (L) =0 1253
You can check that the matrices are

Pr=5l4 1

;( 1 ﬂ) . (12.54)

Then (12.52) becomes

_ol (1 —i wl /1 cosf) —sinf

¢ 2<i 1>+692(—i 1):(Sin0 cosG)’ (12.55)
This is just the rotation matriky, of (12.34)! Ry rotates both components of any light by an
anglef.

One might wonder about the reason for the handedness of the sugar molecules. In fact,
there are physical processes, the weak interactions that give figad@mactivity, that look
different when reflected in a mirdband thus in principle could distinguish between left-
handed and right-handed molecules. However, these interactions are most likely irrelevant to
the handedness of corn syrup. Probably, the reason is biology rather than physics. Long ago,
when the beginnings of life emerged from the primordial spurely by accident, the right-
handed sugars were used. From then on, the handedness was maintained by the processes of
reproduction.

3They violate what is called “parity” symmetry.
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Figure 12.8: Initially unpolarized light passing through a pair of crossed polarizers.

12.3.6 Crossed Polarizers and Quantum Mechanics

Polarization offers many opportunities to get confused when you think of the light wave
in terms of photons. Let us imagine turning down the intensity of the light to the point
where one photon at a time is going through the polarizers and consider first the deceptively
simple situation of light moving in thedirection through crossed polarizers in #hg plane.
Suppose that the first polarizer transmits light polarized inctigection, and the second
transmits light polarized in thgdirection. This is deceptively simple because it seems that
we can interpret what is going on simply in terms of photons. The situation is depicted in
figurel12.8. This seems simple enough to interpret in terms of photons. The unpolarized light
in region/ is composed equally of photons polarized inathiBrection and in theg direction
(goes the wrong “classical” argument). Those polarized in:ttigection get through the
first polarizer, so half the photons are still around in regignvhere the intensity is reduced
by half. Then none of these get through the second polarizer, so that the intensity in region
II1is zero.

But compare this with the apparently similar situation in which the second polarizer trans-
mits light polarized at5° in thex-y plane, as shown in figufi?.9. Now the wave description
tells us that the intensity in regidid [ is reduced by another factor of 2 from that in region
11. This is impossible to interpret in terms of classical particles. To see this, it is only neces-
sary to turn down the intensity so that only one photon comes through at a time. Then the first
polarizer is OK. As before, if the photon is polarized in:ttdirection, it get through. But
now what happens at the second polarizer. The photon cannot split up. Either it gets through
or it doesn’t. To be consistent with the wave description, in which the intensity is reduced by
another factor of two, the transmission at the second polarizer must be a probabilistic event.
Half the time the photon gets through. Half the time it is absorbed. There is no way for the
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Figure 12.9: Initially unpolarized light passing through a pair of polarizers at with axes at
45°.

photon in regiorf I to tell whether it is going to make it! It is random. God plays dice.

12.4 Boundary between Dielectrics

Let us return to the infinite plane boundary between two dielectrics that we discussed in
chapter 9, but now consider an electromagnetic wave coming in at an arbitrary angle. As in
chapter 5, we will assume that the boundary is:tke0 plane, and that for < 0 we have
dielectric constant, while forz > 0, dielectric constard. We assumg = 1 everywhere.

On the general grounds of translation invariance and local interactions discussed in the
previous chapter, all the components of the electric and magnetic fields will have the general
form

P(r,t) e“;"?—i— Re*FT for 2 <0
(12.56)

W(r,t) oc TR T for z >0

where .
ke =ky, K =k, (12.57)

ky = —y/w2/v2 — k2 = —k,
/ (12.58)

and
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Thus Snell’s law is satisfied, withand ¢ defined as shown in figude.10.

k-sinf =k sin@’ .

| = \//E% :n% (12.59)

nsinf =n' sind’ .

l;:z
P
];72
0 o
9
Ky k!
Té T4
k. k.

Figure 12.10: Scattering of plane waves from a plane boundary.

The details of the scattering will depend on the polarization. It is clear (by symmetry as
usual) that the two cases will be polarization iniheplane and polarization perpendicular
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to thex-z plane. Of course, we lose nothing by considering these two separately, because
of linearity. Any polarization for the incoming wave can be dealt with by forming a linear
combination of the parallel and perpendicular solutions.

12.4.1 Polarization Perpendicular to the Scattering Plane

Let us first consider perpendicular polarization. This means that the electric field ig/in the
direction (out of the plane of the paper), while the magnetic field is-thelane®

Ey(r,t) = Aei(Fr=wt) 4 Ry Ae'FT0 for 2 <0

Ey(r,t) = 7 AdF 71 for z > 0 (12.60)
Ez = L = 0
Using (12.19))
B="ixE=1ixE, 12.19)
c w

we can write

B, (r,t) = I AcosgeiRrwn L I cos R ATt for 2 <
c c

!/

B,(r,t) = —% cos® T, AeiFT=w) for >0
B,(r,t) = % sin § AeiFT=wt) | % sinf R | Aei(’?"t“’t) for 2 <0 (12.61)
B,(r,t) = TZ sinf' 7, AeiF7=wt) for z >0
B,=0.

The system is shown in figure 12.1This figure shows the directions of the magnetic
fields of the incomingl@-), reflected ér), and transmittedﬁt) component waves in scatter
ing of an electromagnetic plane wave polarized parallel to a plane dielectric boundary. The
k vectors are shown directly beneath the magnetic fields. The nontrivial boundary conditions
are that, and B, are continuous (the latter because we have asspymed so there is
no sheet of bound current on the boundaBy)is also continuous, but that provides no new
information. Thus

1+R, =711 (12.62)

“The quantities R, and 7. in this section and?;, and 7y in the next are conventionally called “Fresnel
coefficients.” See Hecht, page 97.
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Figure 12.11: Scattering of an electromagnetic plane wave polarized parallel to a dielectric
boundary.

ncosf (1 —Ry)=n"cosd 7,

(12.63)
or because  |k|
ko(1—Ry) = k.70 . (12.64)
Thus 5
L= e (12.65)
R, — 1-&1

= (12.66)
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where .
fL=1"" (12.67)
12.4.2 Polarization in the Scattering Plane
Polarization in the:-z plane looks like
By(r,t) = AeiET=wt) | R ATt for 2 <0
B (12.68)
By(r,t) =7 AR =wt) for >0
B, =B, = 0,

where, for convenience, we have defined the reflection and transmission coefficients in terms
of the magnetic fields, and

E,(r,t) = € cosf AeilRmwn _ € cos b R AR for <0
n n

E,(r,t) = % cos ' 7 AeikT=w) for z >0
E.(rt) = —% sin § AeiF7T=wt) _ % sinf R Aei(_i"r_m) for z <0 (12.69)
E.(rt) = —5 sin' 7 Aei(F-=wt) forz >0
E,=0.

Now the nontrivial boundary conditions are the continuitgpiindE,. E. is not continuous
because a surface bound charge density builds up on the dielectric boundary. The boundary
conditions yield

1+ R” =T (12.70)
cos 8 cos 8’
- (1— R”) =—T (12.71)
or
_ 2 (12.72)
1
75” (12.73)
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where o -
cost'/n n°k

= = z 12.74

y cosf/n  n'?k, ( )

One of the interesting things abaut (12.74) is that when

n? k.

there is no reflection. This condition is satisfied for a special angle of incidence called Brew-
ster’s angle. We can understand the significance of Brewster’s angle as follows:

2 22/
from Snell’s law, n—2 = % (12.76)
n/ sin“ 0
K, ky/k tan 6
£ = 2 E 12.77
k. kLJK,  tané’ ( )
n*k,  sin@ cost’ _ (12.78)

n'?k,  sinfcosf

Thussin 26 = sin 26’. Becausé® # ' (that would be the trivial situation with no boundary),
this means that
0=m/2—0. (12.79)

In other words, Brewster’s angle is defined by the condition that the reflected and transmitted
plane waves are perpendicular, as shown in the diagram in'figuré 12.12. The relevance of this
condition is that the reflected wave can be thought of as being produced by the motion of the
charges on the boundary. But if these are moving in a direction perpendicular to the electric
field in the would-be reflected wave, then the wave cannot be produced.

12.5 Radiation

In this section, we write down the electric and magnetic fields associated with changing
charge and current densities.

12.5.1 Fields of moving charges

Because Maxwell’'s equations are partial differential equations, lots of initial conditions or
boundary conditions must be specified to determine the solutions. For example, a constant
electric field everywhere is a solution to the free-space Maxwell's equations, and therefore
you can add a constant field to any solution and it will still be a solution. Such things must be
determined by physical initial conditions or boundary conditions. One set of conditions that
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z=0

Figure 12.12: Brewster’s angle.

is frequently interesting is an analog of the boundary condition at infinity that we discussed
for one-dimensional waves. Suppose that you have a universe which is initially stationary,
with no electric currents, no magnetic fields, and only electric fields due to stationary charges
(which you know how to compute from Physics 15b). At some time, you begin to move
charges around in some finite region of space. What are the electric and magnetic fields
produced in this way? This question has a relatively simple answer that is a nice intuitive
generalization of the relations you learned in 15b for the electric and vector potentials from
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stationary charge and current distributions. These relations were

$(F) = / PRG (12.80)
|7 — r
_7
/ @ I ) (12.81)
|7 — 7“
The generalizations are
0
/d3 lp 7“ r ‘/C) (1282)
=
o _ o
At =1 /d3 It == rl/c) (12.83)
c. |7 —r ]

It is a straightforward, but tedious, exercise in vector calculus to show these satisfy Maxwell's
equations. | am not going to talk about this (I'll write down the derivation in an appendix
for those of you who are interested), but it is worth trying to understand what these relations
mean physically. The important physical point that these relations imply is that if the charge
and current distributions depend on time, and if they are producing the fields, then what de-
termines what the field is at some poirig the values of the charge and current distributions

at earlier times. The farther away the charge is, the earlier the time has to be. That is what
the factor oft — |7 — +/|/c is telling us. The appearance of this factor is a kind of boundary
condition at infinity. It is consistent with the relativistic version of the principle of causal-
ity. Because information cannot be transferred faster than light, a charge distribution at a
space-time pointi”, t') can effect the fields at the space-time pgiht), only if ¢ > ¢’ and

—

il

<c (12.84)

~~
~
<

In these relations, (12.82) and (12.83), however, the condition is even stronger — a charge
distribution at a space time poift, t') can effect the fields at the space time pgint) only
if light can travel directly fron{”, ¢') to (7, t) — that is ift > ¢ and

|7~
/

— ¢ (12.85)

~~
~

or
t—t =|7—1'|/c (12.86)

or -
t'=t—|F—1'|/c (12.87)
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These are just words. We have not derived this! The real justification of this discussion
comes when you check that the relations actually satisfy Maxwell’s equations. That can wait
for Physics 153 or 232 (or the appendix if you are in a hurry). However, | hope that this
discussion at least makes the result reasonable. In fact you have already seen the result in
action in 15b in Purcell’s discussion of the electric field from a charge that starts and stops.
Look at the ANIMATIONS - PURCELL - the field from a charge that suddenly accelerates.
This is an animation of a famous figure in Purcell's book. The interesting thing about the
animation is the kink in the electric field that propagates out from the acceleration event at
the velocity of light — because it is light. Inside the kink, the fields are those of the moving
charge. Outside the kind, the fields are those of the stationary charge. The kink — the
electromagnetic way — is what connects the two asymptotic regions together. It is also fun
to compare with PURCELL2 which illustrates what happens if an initially moving charge
stops suddenly.

Now let's see at what the electric and magnetic fields look like in an important limit. The
connection between the potentials and the fields is the following:

B - 10 -
E=_Vo—-—A 12.88
Ve c Ot ( )
B=VxA (12.89)

These relations are completely general. The special limit that | want to consider is one in
which the charges and currents are confined to a small region afeartd Then we will

look at the electric and magnetic fields produced by the moving charges far away, for large
|7]. Itis actually easiest to look at the magnetic field:

25y
B=VxA=Yx /d%/j(rt [m—r'l/e) (12.90)

7= ]

The point is that the curﬂx) can operate in two different places, either onl{fje — F’] or

on the—|7 — #/|/c in the time dependence gf. The first gives a contribution that drops of
like 1/ for larger, just like the magnetic field from a time-independent distribution ef cur
rents. But the second gives a contribution that only falls offllike Thus this contribution
dominates for large. Explicitly (using the chain rule), it is

E:ff/di“ T LR ) (12.91)
|7 — / dt
11 [, doae
—>—C—2;/dr’rxaj(r’,t—h“—r’\/c) (12.92)

where in|(12.92) we have droppecT’aTn the numerator because this term falls like? for
larger.
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This is the magnetic field of an electromagnetic wave. Notice that it is perpendicular to
the direction of motionr). Thel/r fall-off is what we expect for an electromagnetic wave,
because the energy density goes like the square of the field, and falls bff-filess the wave
spreads.

The electric field can be computed in a similar way, although you also need to use the
conservation of electric charge.

%Hﬁ.j:o (12.93)

As you would expect, the result is that the electric field has the same magnitude as the mag-
netic field and is perpendicular to both direction of motion and to the magnetic field. The
piece that corresponds to a traveling electromagnetic wave can be written as

. 1 % Pt d =~ 5
B sy [ T (i x STt = 7= 7o) (12.94)
¢ kNG t
L1l / &r' F x (f X ij(ﬁ t— \F—F’y/c)) (12.95)
czr dt ’ .

To lowest order inl /r for charges moving with velocities much smaller thawe can
simplify the electric field in (12.95) by substituting

7=’ =7 (12.96)

and write the result as

E(Ft) ~ c%% / Br' 7 x (7“ X %j(ﬁ,t - r/c)) (12.97)
The reason for the restriction to nonrelativistic motion of charges is that if a charged particle
is moving at a speed close to the velocity of light, then we cannot neglect its po%jtion,
when it is moving towards. To see this, consider the impossible limit in which the charge is
moving towards the pointat the speed of light. Then if the charge contributes to the electric
field at”at one time, then it also contributes at later times because the particle keeps up with
the moving light wave. While = ¢ is impossible, fow = c, ther’ dependence cannot be
ignored because it leads to very rapid time dependence of the potentials, and hence to large
fields. What happens is that the contribution of charges moving relativistically to the electric
fields in front of them get enhanced by factors6f . This effect is widely used today to
produce intense “light” from particle accelerators — so called synchrotron radiation. You
can see this effect in the ANIMATIONS if you makelose to 1.


http:r/c)(12.97
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A particularly important and instructive caselof (12.97) is the nonrelativistic motion of a
single chargep, moving along a trajectori(¢). For this systers,

83 (7 — R(t)) (12.98)

Then the integration ovef’r’ in (a) eliminates the-function, and the electric field of the
outgoing electromagnetic wave is proportional to the acceleration,

B(7 1) ~ 012 % Qi x (7 x @(t —r/c)) (12.99)
where .
LR
a(t) = dt2() (12.100)

All that the cross products withdo is to pick out minus the componentiof — r/c) that is
perpendicular t@. It follows from the famous “bac-cab” identity,

@ x (Exa)zg(a.a)—a(a.z?), (12.101)
that
B, 1) ~ _CiQ % Q (a(t o) = #(7 -t - r/c))) | (12.102)

This had to happen because the electric field of an electromagnetic wave is perpendicular to
its direction of motion. In this case, for largethe wave is nearly a plane wave moving in
directionr.

12.5.2 The Antenna Pattern

Let us do an even more explicit example by considering a charge that oscillates harmonically
along thez axis,
R(t) =z coswt. (12.103)

so that
a(t) = —tw? Zcoswt. (12.104)

5This equation makes use ®function notation. To a physicist,dafunction(z) is just a function that has
area 1 and is so sharply peaked around 0 that we don't care exactly what it looks like. All that matters is
the area and where the peak is. Tﬁé?é— R(t)) in the equation is actually the product of three delta functions,

for the, y andz components, and just tells you that= (z,y,2) = R(t) = (X(t),Y(t), Z(t)) — that is
that the particle is moving along the trajectdftyt). For a mathematical discussion of théunction you can
look at http://mathworld.wolfram.com/DeltaFunction.html. But don’t be frightened. It is just a simple device for
ignoring small details that we don’t care about. If you translate the integral into words or pictures, it may help.
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E(Ft) ~ E:; %Q <§ —7(r- 2)) coslw(t —r/c)]. (12.105)

The vectorz — #(7 - 2) is the component of perpendicular t@, as illustrated in figur#2.13.
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Figure 12.13:

Evidently, the magnitude of — 7(7 - 2) is sinf. This means that the intensity of the
electromagnetic wave at an anglérom thez axis is proportional tein? §. The intensity
pattern can be conveniently represented in polar coordinates, where we plot the intensity as
a function off. The result is shown below. This is the “antenna pattern” for the oscillating

N\

Figure 12.14:

dipole in thez direction. It is shown in figuré2.14. The two lobes of the pattern arise
because the field is highest in the plane, ford = 7/2, and drops to zero as we approach
thez axis,d =0orf = .

12.5.3 * Checking Maxwell's equations

These things are called retarded potentials. This is a confusing name, since there is really
nothing special about the potentials themselves. What is special is the assumption of a partic-
ular relation between the potentials and the charges and currents — that the fields are being
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produced entirely by the charges and currents. Here | show that they satisfy Maxwell's equa-
tions. | call this an appendix because you are NOT responsible for knowing the details. |
include it for your general education.

Some mathematical things to notice about the solution:

9p+6-i:o (12.106)
ot
implies
0 - o
— A= 12.107
8t¢+ cV ( 07)
This is called the Lorentz gauge condition
. 5 10 = 7
V-E=-V%—-=-V- (12.108)
c ot
1 6
_/d3 '( (r' t — |7 —7|/c) ( V2> (12.110)
! —v2+ia—2 (r' t — |7 —7|/c) (12.111)
|F—7:;‘ 292 plr', r—r'/c .
- L o .1
=2 (Vp(r,t = |7 =7'|/e)) - [ V—— (12.112)
7
The first term is the one we want. It is
= / d*r' p(ri,t = |7 = 77| fe) 4 6% (7 — 17 (12.113)
= 4m p(F, 1) (12.114)

The other two terms cancel because of the special form of the variatie— 7| /c.

1 V2 10 (r' t — |7 — 7| /c) (12.115)
7 — 17| 2o | P\ .
L. L1
_9 (V,O(T’,t — |- r’|/c)> vV— (12.116)
=

1 1.~ L=
= ﬁgp(rl,t— ‘7"—7"/|/C) (12117)
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7 —r

V- p(r t— |7 =1 /c) (12.118)

11

7 —7| ¢
11 . - Lo

- 2= —p(r',t — |7 —1"|/c) (12.119)

=7

7= 1]

where means differentiation with respect to the time variable:

plrl t— |7 =1l fc) = %p(ﬁ, t') (12.120)

t'=t—|F—r"|/c

1 andii come from a(from theg—;2 and—V? terms respectively) andi comes from b. Now
theV in ii gives two terms — acting gincancels and acting orﬁj:—g' cancels iiThus

V-E=dnp. (12.121)
Likewise,
T e
VxB--=F (12.122)
c ot
=V x (v x A) - (—w - C&A> (12.123)
p— . —_— 2 — —_—— [
=V (V-4)-v2A-V (Catd)) + 54 (12.124)
or using the Lorentz gauge condition,
1 9%\ -
(w2, 9
= ( Ve + 2 8t2> A (12.125)

Form here on, the derivation is the same a@fonﬁ, and we find

L9p_ i 7 (12.126)
c Ot c

QED.

Chapter Checklist

You should now be able to:

i. Describe polarization on a beaded or continuous string;

ii. Write down the general form of an electromagnetic plane wave and relate it to the

two-dimensional vectol/;
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iii. Find the energy and momentum density of a plane electromagnetic wave;
iv. Understand the possible polarization states of a plane wave;

v. Analyze systems of polarizers and wave plates using matrix multiplication;
vi. Understand the connection between optical activity and handedness;

vii. Calculate the reflection and transmission of a plane electromagnetic wave from a plane
boundary between dielectric for any angle and find and explain Brewster’s angle.

Problems

12.1*. A pane of glass with index of refraction= 2 sits in thexz-y plane, fromz = 0
to z = £. A plane wave with wave numbér(outside the glass) comes at the pane at an angle
# from the perpendicular in they plane, withk, = k cos 8 andk, = ksin6.

For each of the two polarization states (in ¢héirection, and in the:-z plane), some
fraction of the intensity is reflected as a functio ahdk. In this problem, we will use the
method of transfer matrices, discussed in Chapter 9 to find it. We will work out the case of
polarization perpendicular to thez scattering plane in detail. Then your job will be to repeat
the calculation for polarization in thez plane. To do it, we must generalize the analysis
of (12.62)-(12.63) and (12.70)-(12/71) to a situation with arbitrary incoming and outgoing
waves on both sides and to a boundary at arbitrégther thary for this problem). For the
perpendicular polarization state, the boundary conditions look like:

. » ) o
elkzsz_ +e zkzzRi — BZkZZTJQ_ +e zkzzRi
. i " i

n cos 6 (elkzzTi —e ’kzZRi) =n'cost (elkZZTf +e ZkZZR%_)

which gives

where the transfer matrid(z) is
1 ek 0 L+h, 1—hy\ (%% 0
2\ 0 e**)\1—-h, 1+h 0 etk

with
n cos 6

h) =

n' cos @’
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Going from index:’ to indexn at z gives a transfer matrix that is the inverse(af). Apply-
ing this to the present problem,/f, andr, are the reflection and transmission coefficients
from the pane of glass, we have

() =007 ()

. QhLeikzé

~ 2hy coskLl —i(1+ h2)sinkLl
- —i(1 — h%)sin k¢

"~ 2h cos kLl —i(1+ h%)sin kLl
The fraction of the reflected intensity is

which implies

TL

R,

(1 —h2)2sin? kLl

R, =
IRl 4h2 cos? kLl + (1 + h2 )2 sin? kL0

2
Now, do the same analysis for the polarization in ahe plane. Find‘R”‘ . What
happens at Brewster's angle?

12.2. Consider a boundary at = 0 between two regions of empty space. On the
boundary surface at = 0, there is a thin layer of stuff with surface conductivity That
means that an electric field, with a component parallel to the surface (in ghe plane)
produces a surface current density in the boundary layer:

—

j(ya Z) = (07 o Ey(ov ya Z), 2 EZ(Oa ya Z)) *
In this system, there is an electric field of the form shown below:

E (x y t) _ Aei(kxcos@—i—kysin@—wt) +RAei(_k’xcos@’+k/ysin0’_wt)
z » -

Ez(x’y 1) — Z Ael(k”xcos0”+k”ysm9// t)

forz > 0. E, andE, vanish everywhere.

Find %', k", ¢ and¢”. FindT in terms ofR. Find the current density on the boundary,
J (y, z). Find the magnetic field everywhere. FiRd

Check your result foR by explaining the limitr — oo, a superconducting surface. What
happens taR in this limit and why?

Hint: Use Maxwell’'s equations to find and then look at the discontinuity of the mag-
netic field across the surface current.
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12.3. Suppose that on the planes= 0 andz = a for x > 0, there are two flat
semi-infinite conducting planes. Suppose, further, that the oscillation of the system is forced
by some device that produces an electric field inathe 0 plane for0 < z < a with

the following propertiesﬁ points in they direction but itsy-component is independent of

y and equal taE sin(37z/a) cos(wt), wherew > 3mc/a andc is the speed of light in
vacuum. If this produces a traveling wave in the direction, find the form of the electric

field everywhere between the plates. If this traveling wave is used as a carrier wave for
amplitude modulated signals, with what speed does the signal travel?

12.4. Consider the standing electromagnetic waves in a cubical evacuated box with
perfectly conductingsides att = 0, x = L,y =0,y = L, z = 0 andz = L. There exist
modes in which the electric and magnetic fields vanish outside the box, and inside take the
following form:

E.(x,y,2,t) = Aw sin kyx sin kyy cos wt

By(z,y,2,t) = —Akysin kyx cos kyy sinwt
By(z,y, z,t) = Ak, cos kyx sin kyy sin wt
E,=E,=B,=0.

You can check that inside the box and for properly chasehese satisfy Maxwell's equa-
tions,

- . 9B
VxB=-22
X —at,
oFE -
VXB—NOGOE‘F,UO&L

Findw as a function ok, and k,.

There are no charges or currents inside the box, but there will be charges and currents built
up on the boundary to confine the electric and magnetic fields inside the box. For example, a
nonzero surface charge density appears on the tepl{) and bottom £ = 0). The charges
oscillate back and forth from top to bottom while nonzero surface current densities appear
on all sides. The form above is constructed to satisfy appropriate boundary conditions on the
four sidest =0, y =0, z=0and z= L.

Explain the physics of the boundary conditions for Ehételd on the sides = L and
y = L and find the allowed values &f andk,. Then explain the physics of the boundary
conditions for theE field on the sides = L andy = L adn draw a diagram to explain what
is going on for the lowest possible values:pfandk,. Hint: Remember that the magnetic
field vanishes outside the box.
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12.5. A plane wave of light traveling in thez direction is polarized at an angldrom

thex axis in ther — y plane. When it encounters a sheet of polaroid i thel plane that
transmits only light polarized and an an@le 5, the wave is completely absorbed. However,

if the plane wave first passes through a sheet of cellophane r=tieplane with the “fast

axis” alongz axis, some of the light gets through. Suppose that the cellophane introduces a
phase difference af between the component of the light wave polarized along thexfast (
axis and the component polarized along the sigvaxis. Find the ratio of the intensity of

the transmitted wave beyond the polaroid to the incoming wave intensity as a function of
and ¢ Hint: Does your answer go to zero@s~ 0? What happens #s— 0?

12.6. A plane wave of light traveling in thez direction is polarized in the direction.
When it encounters a sheet of polaroid in the L plane that transmits only polarized
light, the wave is completely absorbed. However, if the plane wave first passes through a
sheet of cellophane in the= 0 plane with the “fast axis” at an anglewith the x axis,
some of the light get through. Suppose that the cellophane introduces a phase difference of
¢ between a wave polarized along the fast axis and one polarized along the slow axis. Find
the ratio of the intensity of the transmitted wave beyond the polaroid to the incoming wave
intensity as a function @¢fand ¢.

Compare the result with the previous problem and explain what is going on.

12.7. Suppose that a charggis stationary at the origin until= 0. From timet = 0 to
t = At, the charge experiences uniform acceleratidon

a. Use (12.102) to find an approximate expression for the electric field at a large distance
r > a/At? from the origin.

b. How does this compare with what you see in the animation PURCELL?
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Chapter 13

Interference and Diffraction

A “beam” of light is very familiar. A laser pointer, for example, produces a pattern of light
that is almost like a transverse section of a plane wave. But not quite. The laser beam spreads
as it travels. You might think that this is simply due to the imperfections in the laser. But, in
fact, no matter how hard you try to perfect your laser, you cannot avoid some spreading. The
problem is‘diffraction.”

Interference is a crucial part of the physics of diffraction. We have seen it already in
one-dimensional situations such as interferometers and reflection from thin films. Here we
begin to see what amazing things it does in more than one dimension.

Preview

In this chapter, we show how the phenomena of interference and diffraction arise from the
physics of the forced oscillation problem and the mathematics of Fourier transformation.

i. We begin by discussing interference from a double slit. This is the classic example of
interference. We give a heuristic discussion of the physics, and generalize it to get the
fundamental result of Fourier optics.

ii. We then continue our quantitative analysis of interference and diffraction by discussing
the general problem again as a forced oscillation problem. We show the connection
with making a beam. We find the relevant boundary condition at infinity and express
the solution in the form of an integral.

iii. We show how the integral simplifies in two extreme regions — very close to the source
of the beam, where it really looks like a beam — and very far away, where diffrac-
tion takes over and the intensity of the wave is related to a Fourier transform of the
wave pattern at the source, the same result that we found in our heuristic discussion of
interference.

369
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iv. We apply these techniques to examples involving beams made with one or more slits
and rectangular regions.

v. We prove a useful result, the convolution theorem, for combining Fourier transforms.

vi. We show how periodic patterns lead to sharp diffraction patterns, and discuss the ex-
ample of the diffraction grating in detail.

vii. We apply the same ideas to the three-dimensional example of x-ray diffraction from
crystals.

viii. We describe a hologram as a rather complicated diffraction pattern.

ix. We discuss interference fringes and zone plates.

13.1 Interference

13.1.1 The Double Slit
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Figure 13.1: The double slit experiment.
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The classic arrangement of the double slit experiment is illustrated infigure 13.1. There
is an opaque screen with two narrow slits in it in4he 0 plane (shown in cross section in
the z-z plane — the slits come out of the paper inghdirection) a small distanceapart.

The opaque screen is illuminated by a “point” source of light. For example, this could be
a light with a clear glass bulb and a colored filter to pick out a narrow frequency range, far
away in the—z direction. A laser beam spread out with a lens would serve just as well. The

important thing is to produce illumination at the opaque screen in which the frequency is in a
narrow range and the phase of the light reaching the two slits is correlated. This will certainly
be true if the illumination for < 0 is nearly a plane wave.

Now an interesting thing happens at the second screen; at. This “screen” could be
a photographic plate, a translucent screen, or even your retina. What appears on this screen
is a series of parallel lines of brightness ingtdirection (parallel to the slits). If one of the
slits is covered up, the lines disappear.

What is going on is interference between the two possible straight-line paths by which the
light can reach the screen. We will give a heuristic, physical discussion of the interference
in this section. Then in the next section, we will derive the same result using the kind of
forced oscillation and boundary condition arguments that you know from our study of one-
dimensional waves.

The physical picture is this. The electric fieldzat Z is a sum of the fields that come
from the two slits. At = 0, in the symmetrical arrangement shown in figure!13.1, the two
possible paths for the light have the same length. Therefore, the two components of the field
have the same phase. Therefore they interfere “constructively” and there is a bright line at
x = 0. Asx changes, at = Z, the relative length of the two paths changes. We will then get
alternating positions of constructive and destructive interference. This gives rise to the bright
lines.

We can understand the effect quantitatively by computing the path length explicitly. Con-
sider a point on the screenzat= X. This is shown in figure 13.2.

The length of the dotted line in figure 13.2 is

VX2 4272, (13.1)

For the upper and lower slits, the path lengths are slightly shorter and longer respectively.
The total difference in path length is

AC=\J(X +5/22 + 22— \J(X — 5/2)2 + 22 (13.2)
For Z > s, we can expand/ in (13.2) in a Taylor series,

NP S (13.3)

TVXI+ 22
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Figure 13.2: Path lengths.

Therefore if the angular wave number of the ligtit, ithephase differencebetween the two

paths is
ksX

VX272

We get an intensity maximum every time the phase is a multigle, afhen

(13.4)

ksX
VX2 + 72

In terms of the wavelength,= 27 /k, this is

=2nm. (13.5)

X A (13.6)

—_— =,
VX272 s

13.1.2 Fourier Optics

Suppose that instead of a simple pattern of two slits, there is some more complicated pattern
on the opaque screen. In general, we can describe the wave disturbance4natmane
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by some function aof andy,*
flz,y). (13.7)
Our strategy will be to think of the wave produced4or 0 by this general function as a
sum of the effects of tiny holes at all the values ahdy for which f(x, y) is nonzero. For
each little piece of the function, we can compute the path length to some point on the screen
at z= Z. Then we can add up all the pieces.
Suppose, for simplicity, thaf(z,y) is only nonzero in some small region around the

origin, so that: andy will be small

Yy <L Z, (13.8)

for all relevant values of andy. Now the path length from the poift, y, 0) on the screen
at z= 0 to the point( X, Y, Z) on the screen at= 7 is

VX —2)2 4+ (Y —y)? + 22 (13.9)
Using (13.8), we can expand this as follows:
R+ Al(z,y)+---, (13.10)
where
R=VX2+Y24 22 (13.11)
and
Al(z,y) = —%. (13.12)
Thus the wave on the path frqm, y,0) to (X,Y, Z) gets a phase of approximately
eR(BAAL) (13.13)

Now we can put the pieces of the wave back together to see how the interference works at
the point(X, Y, Z). We just sum over all values ofandy, with a factor of the phase and the
function, f(z,y). Because: andy are continuous variables, the sum is actually an integral,

/da: /dy flz,y) eR(BHAL) — eikR/dx /dy f(z,y) e H@XHYY)R/R (13.14)

As we will see in more detail below, this is a two-dimensional Fourier transform of the func-
tion, f(x,y).

The equation, (13.14), is the fundamental result of Fourier optics. It contains much of
the physics of diffraction. We have made a number of assumptions in deriving it that need
further discussion. In the next section, we will derive it in a different way, treating the wave
for z > 0 as the result of a forced oscillation, produced by the wave in the0 plane.

This will give us an alternative physical description of diffraction. But it will be useful to
keep the simple picture of adding up all the possible paths in mind as we get deeper into the
phenomena of interference and diffraction.

We are ignoring polarization.
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13.2 Beams

13.2.1 Making a Beam

Consider a system with an opaque barrier inztee 0 plane. If it is illuminated by a plane
wave traveling in the 2tdirection, the barrier absorbs the wave completely. Now cut a hole in
the barrier. You might think that this would produce a beam of light traveling in the direction
of the initial plane wave. But it is not that simple. This is actually the same problem that we
considered in the previous section, (13.7)-(13.14), with the fungtiany), given by

flay)e ™ (13.15)

where

1 inside the opening
f(z,y) = (13.16)

0 outside the opening.

In fact, it will be useful to think about the more general problem, because the the function,
(13.16), is discontinuous. As we will see later, this leads to more complicated diffraction
phenomena than we see with a smooth function. In particular, we will assunfiéthatis
signifigantly different from zero only for smatlandy and goes to zero for largeandy.
Then we can talk about the position of the “opening” that produces the beam ~hAga£ 0.

We can think of this problem as a forced oscillation problem. It is much easier to an-
alyze the physics if we ignore polarization, so we will discuss scalar waves. For example,
we could consider the transverse waves on a flexible membrane or pressure waves in a gas.
Equivalently, we could consider light waves that depend only on two dimensianslz,
and polarized in thg direction. We will not worry about these niceties too much, because as
usual, the basic properties of the wave phenomena will be determined by translation invari-
ance properties that are independent of what it is that is waving!

13.2.2 Caveats

It is worth noting that there are other approaches to the diffraction problem besides the ones
we discuss here. The physical setup we are considering is slightly different from the standard
setup of Huygens-Fresnel-Kirchhoff diffraction, because we are studying a different problem.
In Huygens-Fresnel-Kirchhoff diffractichyou consider the diffraction of a plane wave from

a finite object, whereas, our opaque screen is infinite ir-thglane. In the Huygens-Fresnel

case, the appropriate boundary condition is that there are no incgphiegcal wavessom-

ing back in from infinity toward the object that is doing the diffracting. The diffraction
produces outgoing spherical waves only. We will not discuss this alternative physical setup

2For example, see Hecht, chapter 10.
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in detail because it leads deeper into Bessel funétitias we (and probably the reader as
well) are eager to go. The advantage of our formulation is that we can set it up entirely with
the plane wave solutions that we have already discussed. We will simply indicate the differ
ences between our treatment and Huygens-Fresnel diffraction. For diffraction in the forward
region, at large and not very far from the axis, the diffraction is the same in the two cases.

The reader should also notice that we have not explained exactly how the oscillation,
(13.15),

f(z,y)e ™t (13.15)

in thez = 0 plane is produced. This is by no means a trivial problem, but we will not discuss
it in detail. We are concentrating on the physicszfar 0. This will be quite interesting
enough.

13.2.3 The Boundary at oo

To determine the form of the waves in the region- 0 (beyond the barrier), we need

boundary conditions both at= 0 and atz = co. At z = 0, there is an oscillating amplitude

given by (13.15%. At z = oo, we must impose the condition that there are no waves traveling

in the — direction (back toward the barrier) and that the solutions are well behaxed at
The normal modes have the form

eiE~F—iwt (1317)
wherek satisfies the dispersion relation
w? =02 k2. (13.18)

Thus given two components bf we can find the third using (13!18). So we can write the
solution as

W 1) = / dkydk, C ks, ky) 7= for 2 > 0 (13.19)

where

ke = \Jw? /02 — k2 — k2. (13.20)

Note that/(13.20) does not determine the sigh.oBut the boundary condition ab does.
If k&, is real, it must be positive in order to describe a wave traveling to the right, away from

the barrier. Ik, is complex, its imaginary part must be positive, otherwi&& would blow
up asz goes too. Thus,

if Im k&, = 0, thenRe k., > 0; otherwiselm k. > 0. (13.21)

3See the discussion starting on page 314.

“Note that in a real physical situation, the boundary conditions are often much more complicated than (13.16),
because the physics of the boundary matters. However, this often means that diffraction in a real situation is even
larger.
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We discussed the physical signifigance of the boundary condition,|(13.21), in our discus-
sion of tunneling starting on page 278here is real physics in the boundary condition at
infinity. For example, consider the relation between this analysis and the discussion of path
lengths in the previous section. In the language of the last chapter, we cannot describe the
effects of the waves with imaginaky. However, the boundary condition, (13.21), ensures
that these components of the wave will go to zero rapidly for large

13.2.4 The Boundary atz=0

All we need to do to determine the form of the wavezfor 0 is to findC(k, k,). To do
that, we implement the boundary conditiorz at 0 by using((13.19)

W(F 1) = / dkodky C(ky, ky) eF7=t for 2 > 0 (13.19)

and setting ‘
()] mg = fl,y) e (13.22)
to get (13.15). Taking out the common factor ot this condition is

flz,y) = / dkydk, C kg, ky) ¢ Fat+hum) (13.23)

If f(x,y) is well behaved at infinity (as it certainly is if, as we have assumed, it goes to zero
for largex andy), then only reak, andk, can contribute in (13.23). A compléx would
produce a contribution that blows up eitherfor> +o0o or x — —oo. Thus the integrals in
(23.23) run over red from —oo to co.

(13.23)is just a two-dimensional Fourier transform. Using arguments analogous to those
we used in our discussion of signals, we can invert it todind

C(ky, ky) = 4%2 / dady f(x,y)e  Famhyy) (13.24)

Inserting [(13.24) intc (13.19) with (13.20) ahd (13.21)
ke = \Jw2/v? — k2 — k2 (13.20)
if Im k&, = 0, then Rek, > 0; otherwiselm k., > 0 (13.21)

gives the result for the wave(7, t), for z > 0. This result is really very general. It holds for
any reasonablé(z,y).

13.3 Small and Large =

But what do we do with it? The integral in (13.19) is too complicated to do analytically. Be-
low, we will give some examples of how it works by doing the integral numerically. However,
for smallz and for largez, the integral simplifies in different ways.
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13.3.1 Small z

For sufficiently smalk, we would expect on physical grounds that we really have produced
a beam and projected an image of the functi¢m, y). To see this explicitly, we will use the
fact that for a particular (well behavefi):, v), the Fourier transfor@'(k,, k) is a function

that goes to zero for
k=\/kZ+Ekl>1/L (13.25)

for someL much larger than the wavelength. The distahedetermined by the smoothness

of f(z,y). Typically, L is the size of the smallest important featur¢g (m, y), the smallest
distance over whiclf (z,y) changes appreciably. We saw this in our discussion of Fourier
transforms in connection with signals in Chapter 10. We will see more examples below. We
can expand, z in the exponential in a Taylor expansion,

k,z= z\/w2/v2 — k2 —kzg

2 (12 4 k2
_Ew \/1 _ M (13.26)
v w
~ Zw Zv(kg—f—kg)
v 2w '

Because of (13.25), the largest valug @c + kg that we need in the integrel, (13.19)
W) = / dkydk, C ks, ky) 7= for 2 > 0 (13.19)

is of orderl /L. For much larger values, the integrand is zero. Thus the largest possible value
of the second term in the expansion (13.26) that matters in the integral, (13.19) is of the order

of
A

2wL?”’
Therefore, ifL is finite andz is small & wL?/v), the second term is small and we can keep
only the first termzw/v. Then putting this back into the integral, (13.19), we have

(13.27)

W(Ft) = / dkydky C kg, ky) €70
~ / dk’xdk‘y C(k‘x, ky) ei(kxa:-&-kyy—l—zw/v—wt) (13.28)
= / dkydky, C(ky, ky) eikartkyy) Ji(zw/v—wt) f(z,y) eiw(z—vt) /v

This is just what we expect — a beam with the shape of the original function, propagating in
the z direction with velocityv.
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The result[(13.28) begins to break down when the next term in the Taylor Series, (13.26),
becomes important. That is when

zv (ki +k2) B

~1. (13.29)
w
Thus ) )
sl 2l (13.30)
v A

marks the transition from a simple beam to the onset of important diffraction effects.

If L = 0, which is the situtation in the example of a single slit of witlththat we
will analyze in detail later, important diffraction effects start immediately because the slit
has sharp edges. However, the beam maintains some semblance of its original size until
z = a?/\.

For z larger thanwL? /v, the k, and k, dependence from the*=* factor cannot be
ignored. In general, the evaluation of the integral, (13.19), is very hard. However, for very
largez, z > L, we can use a physical argument to find the result of the intégral,/ (13.19).

13.3.2 Large z
Suppose that you are very far away, at a pﬁiﬁi (XY, Z),
(z,y,2) = (X,Y, Z) for Z > wL?/v. (13.31)

Then you cannot see the details of the shape of the opening or other detailsyof only
its position. The wave you detect at some far-away point must have come from the opening
and if you are far enough away, it is almost a plane wave. This is called “Fraunhofer” or
“far-field” diffraction. If this condition is not satisfied, the problem is called “Fresnel” or
“near-field” diffraction. For the light to actually reach your eye in the far-field situation,
the propagation vector must point from the opening to you. The situation is depicted in the
diagram in figure 13.3. In the near-field region, the spreading due to diffraction is of the same
order as the size of the opening. For much laigen the far-field region, thie vector must
point back to the opening.

Thus the only contribution to the integral, (13.19),

WP t) = / dkodky C(ky, ky) F7=t for 2 > 0 (13.19)

that counts is that proportional 0 F wherek points from the opening to your eyBe-
cause the integrand in(13.19) has a factor @f(k,, k,), the amplitude of the wave is
proportional to C(k,, k,) where

(ko by ) = (k ey, \J? [0 — k:2> ~ (X,Y,2). (13.32)
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far-field
diffraction
(Fraunhofer)

near-field
diffraction
(Fresnel)

Figure 13.3: The basic diffraction problem — making a beam.

The amplitude is also inversely proportional to
X24+Y2+ 272, (13.33)

because the intensity must fall off Bs2, as in a spherical wave, by energy conservation.
There are other factors that contribute to the variation of the amplitude besides, )
(we will see one below). However, typically, all the other factors are very slowly varying and
can be ignored. Thus we expect that the intensity for l&ngeapproximately
Cky, ky)|?
[C ez, ky) I 7 v , (13.34)

wherek andR are related by (13.32).

(ko by i) = <kxky Ny k:?) ~ (X,Y,Z) (13.32)

which implies

ke ky k. k w/u
XY Z B R (13.33)
of kX kY
hy = 0 gy = 13.36
R Y R ( )
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Now here is the point!inserting (13.36) intd (13.24)
C(ks, ky) /dwdyf x, y)e R thyy) (13.24)

gives the integral in (13.14) that came from our physical argument about interference!

/dl‘ /dyf x y zk (R+AYL) sz/d:L, /dyf x y —i(zX+yY)k/R (1314)

Thus our description of the wave for> 0 as a forced oscillation problem contains the same
factor that describes the interference of all the paths that the wave can take from the opening
to R. The advantage of our present approach is that it is a real derivation.
We can also write this result in terms of angles:
X kgo

sinf, = — = —, sinf, =
R w '’ 4

Y  kyv
— = 13.37
=, ( )
whered, andd, are the angles of the vectdifrom theX = y = 0 line in thez andy
directions. Or equivalently,
Z ky Z

X = i , Y= Ry . (13.38)

\/wQ/UQ—k%—kg \/wQ/UQ—kg—kg

This is illustrated in the diagram in figure 13.4.

13.3.3 * Stationary Phase
Mathematically,/(13.32)

(ks iy, ) = <kx,ky, Ny k:2) ~ (X,Y.Z) (13.32)
arises for larg&Z because the phase of the exponential in (13.19)

W7, 1) = / dhydky, C(ky, ky) €F 7= for 2 > 0 (13.19)
is very rapidly varying as a function éf andk, except for special values ok, and k,

where the derivatives of the phase with respect th, and k, vanish. If the function is
centered at = y = 0 and is smootA,the k derivatives ofC(k,, k,) are of ordet and are

®See, however, the discussion on fage 383.
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9)
Oz
k Kz
k.
Figure 13.4:
irrelevant. Thus the contribution comes frém k,, such that
Z ks
0 (X kot Yhy+ Z\Jw?/02 — k2 —k2) = X — =0
Ok Y w?/v? — k2 — k:g
0 Zk
_— 2/0m2 _ 1.2 _ 1.2\ —V _ y _
oy (X ko + Yy + Z \Ju?/02 — k2~ k2) =¥ Ve 0

(13.39)
which is equivalent t013.3§. A careful evaluation of the integral, taking account ofithe
andk, dependence in the neighborhood of the critical value determin&®8i8§(yields an
additional factor in the amplitude of the wave of

Z _ cost (13.40)

r2 r

whered is the angle of the vectaito thez axis. We expected the/r factor because of the
spreading of the diffracted wave with distance. The factoo<f is actually the only place
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where the details of the boundary condition at infinity, (13.21), enter into our expression for
the diffracted wave. This factor guarantees that the diffracted wave vanishes as we go to the
surface of the opaque screen far from the opening. This is analogous to the “obliquity” factor
(1 4+ cos®)/2, in the Fresnel-Kirchhoff diffraction theory. The difference between the two

is due to the different boundary conditions (our infinite flat barrier versus the lack of incom-
ing spherical waves). We will usually ignore this factor, and indeed it generally does not
make much difference where diffraction is important in the forward direction. The important
thing is that everything else about the diffraction in the far-field region is determined just by
linearity, translation invariance and local interactions.

13.3.4 Spot Size

A useful way to think about the transition from near-field (Fresnel) to far-field (Fraunhofer)
diffraction is to consider the size of the spot formed by the beam of figure 13.3 as a function
of z. This is a competition between two effects. Increasing the size of the opening makes the
spot size larger at small However, decreasing the size of the opening increases the spread
in k., thus increasing the diffraction, and making the spot size larger at:laFge a given

z, the best you can do is to choose the size of your opening so that these two effects are of
the same order of magnitude. Suppose that the size of your opehinihen the spread in

k. is of order2wr/¢. At largez, the beam spreads into a cone with an opening angle of order

S
%

(13.41)

~| >

Thus when

| >
Q
SN

, (13.42)

the spreading of the spot due to diffraction is of the same order of magnitude as the size of
the opening. We conclude that to minimize the spot size for a gjwgu should choose an
opening of size

=~z (13.43)

The relation,[(13.41), up to factorsmfis what defines the region of Fresnel diffraction
in figure 13.3. Another way of summarizing the result of this discussion is that for

52
X )
the spreading due to diffraction is much larger than the spreading due to the size of the
opening. This defines the region of far-field, or Fraunhofer diffraction.

Z> (13.44)
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13.3.5 Angles

What happens if the plane wavelin (13.15) is coming in toward the opaque barrier at an angle,
rather than head on? To be specific, suppose th&tubetor of the wave makes an angle
with the perpendicular in the-z plane, so that

k,=kcos@, k,==ksinf. (13.45)

Then it is reasonable to assume that the analog of (13.15), the amplitude of the wave in the
z = 0 plane, i8 o
fo(z,y) = f(z,y) e™hsin? (13.46)

where the additionat dependence has simply been inherited fromrtdependence of the
incoming wave. We can write the Fourier transfornf,oih terms of that off as follows:

fe(m7 y) = / dkx dky C(kJ:’ kjy) ei(kszFkyy) eimksin@
| (13.47)
= [ b iy Ol — ksin, ) 6+

which implies

Co(ky, ky) = C(ky — ksinb, ky) . (13.48)
This is entirely reasonable. If the maximumcif,, k,) occurs ak, ~ 0, the maximum of
Cy(k,, ky) occurs ak, = ksinf. Thus the diffraction pattern appears where a line through
the opening in the direction of the incoming plane wave crosses the screen, just as we would
expect from a skew beam.

13.4 Examples

13.4.1 The Single Slit

Suppose

1 for —a<z<a
fx,y) = (13.49)
0 for |z| > a

independent of. This is really a two-dimensional problem, because we canigeeq and
ignore it (except for a factor @fr, that we won't worry about) by dropping thg integral
from (13.19).1(13.24)

1 4
Clks,ky) = 5 / dady f(z,y)e  Farthyy) (13.24)

8Again, this is simplistic, ignoring complications from the boundaries in the same way as (13.15).
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becomes (with ther corrected to make it one-dimensiodal)

1 }
C(ky) = — dx f(z) e e
L e 2m /<>f (13.50)

= — dpe ket — = —ikex|® _ S ks
21 J_q —2imky

—-a kg
Thus we expect that the intensity of the wave at larigeproportional tdC'(k,)|?,

sin?(k,a)

I(z,y) < —3 (13.51)
where L L
X x T
T 13.52
r  k  wfv ( )
or "
ky=——. (13.53)
vr

Thus if we measure the intensity of the diffracted beam, a distainom the opening, the

intensity goes as follow’:

sin?(2rax /1))
$2

where \is the wavelength of the light. A plot éfas a function of is shown in figure 13.5.

This is called a diffraction pattern. In the important case of light passing through a small

aperture, the diffraction pattern can be easily observed by projecting the diffracted beam onto

a screen. The features of this pattern worth noting are the large maximuem 8t with

twice the width of all the other maxima, and the periodic zeros fernr\/2a. Note also

that as the widthy of the slit decreases, the size of the diffraction pattern increases.

I(z,y) (13.54)

Moral: This inverse relation between the size of the slit and the size of the diffraction
pattern is another illustration of the general feature of Fourier transforms discussed in
Chapter 10.

13.4.2 Near-field Diffraction

We will pause here to discuss the region for intermediatéresnel diffraction, where the
diffraction problem is complicated. All we can do is to evaluate the integral, (13.19),-numer
ically, by computer, and find the intensity approximately at various valueg-of example,

suppose that we take

1
= —OO , (13.55)
c A a

w_27r

"Note thatsin ka/k is well-defined £ a) at k= 0.
8Here we are assuming small angles, sodhed ~ tan 6. In our discussion of diffraction gratings below,
we will see what happens when the difference in important.



13.4. EXAMPLES 385

rA  TA

r— 0 2a a

Figure 13.5: The intensity of the diffraction pattern as a functian of

corresponding to a rather small slit, with a width of aorlg/x ~ 32 times the wavelength

of the wave. We will then ug@3.19)to calculate the intensity of the wave at various values
of z, in units ofa. For smallz, the result is shown in figu®3.6. You can see that the
basic beam shape is maintained for a while, as we expecte1f8a28). However, wiggles
develop immediately. The rather large wiggly diffraction is due to the sharp edges. Below,
we will give another example in which the diffraction is much gentler. For intermegdiate
shown in figuré 3.7,the wiggles begin to coalesce and dramatically change the overall shape
of the beam. At the same time, the beam begins to spread out.

! A

J

PP Vi N
A
2 T =

a \_

0 ,

—5a —3a —a a 3a 5Ha

Figure 13.6: The intensity of a wave passing through a slit, for small

Finally, in figure13.8, we show the approach to the largeegions, where diffraction
takes over completely and the far field diffraction pattérn, (13gppears.
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20a

15a J
Sa 1

0

—5a —3a —a a 3a ba
Figure 13.7: The intensity of a wave passing through a slit, for intermediate

1

2:\/\/—\

100a /\/\/\
I EBTAN,
AN

25a T

0 f
—5a —3a —a a 3a  5a

Figure 13.8: The intensity of a wave passing through a slitgass large.

One more example may be interesting. Suppose that instead of being a simple hole in the
opaque screen, the opening is shaded in such a way that the wave disturbaace las
the form
f(z,y) = eIt/ (13.56)

The Fourier transform here was done in Chapter 1009)-(10.55 Substitutingy — k,
and I'— 1/a in (10.56)gives

1 a

This determines the intensity distribution at largeHowever, unlike the previous example,
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this pattern gives very gentle diffraction. For smalthe intensity pattern is shown in fig-
ure/13.9. The sharp point ir{13.56)disappears, but otherwise the change is very gradual
because the initial pattern is very smooth except-at0. For intermediate and large the
intensity patterns are shown in figiré. 10and figurel3.11.

1
z A
3a 1

N

Figure 13.9: The intensity distribution from (13.560) small .

20a —”’/\K
15a ——/k
10a ﬁ
52 | J \\

—5a —3a —a a 3a ba

N —

Figure 13.10: The intensity distribution from (13.56) for intermediate
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100a

75a M\/\\A
50a M//\\M
25a ‘—"f/\x
0 //

—5a —3a —a a 3a ba

Figure 13.11: The intensity distribution from (13.56) for lazge

13.4.3 The Rectangle

Suppose

1 for —a, <z <ayand —ay, <y <ay,
f(x,y) = (13.58)

0 otherwise.

This is the product of a single slit patternzirwith a single slit pattern ig. The Fourier
transform is the product of the one-dimensional Fourier transforms

1 Qg . a .
Clky, ky) = / dxe_m”/ ’ dy e~y

o 47772 —ag ay
sin(kzaz) sin(kyay) (13.59)

kg T ky
Thus the intensity looks approximately like

sin?(2ma,x/rA) sin?(2ra,y/r))

. (13.60)

I
(z,y) o 2 ”

Of course, once again, because of the general properties of the Fourier transform, if the
rectangle is narrow im, the diffraction pattern is spread outkipn and similarly fory.

13.4.4 6 “Functions”

As the slitin(13.49)gets narrower, the diffraction pattern spreads out. Of course, the intensity
also decreases. The intensitycat= 0 is related to the Fourier transform &t zero, which
is just the integral off over allx. As the slit gets narrower, this integral decreases. But
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suppose that we increase the intensity of the incoming beamdasreases, to keep the
intensity of the maximum of the diffraction pattern fixed. Ignoringittdependence, we
require

1
— for —a<z<a,

fa(z) =4 20 (13.61)
0 for |z| > a.

The limit of f, asa — 0 doesn't really exist as a function. It is zero everywhere except
x = 0. But it goes tox very fast atc = 0, so that

lir% dx fo(x) =1. (13.62)

It is extraordinarily convenient to invent an object with these properties, calieftiaction”.
That is,é(z) has the property that it is zero except at 0, and that

/ drs(z) = 1. (13.63)

In fact, this object makes a kind of mathematical sense, so long as yoa stpuare it.o-
functions can be manipulated like ordinary functions, added together, multiplied by constants
or smooth functions —6-functions of different variables can even be multiplied — just don’t
square them! For example, a delta function can be multiplied by an ordinary continuous
function:

fx)d(x) = f(0)d(x) (13.64)

where the equality follows because the delta function vanishes exaept @t so that only
the value off at 0 matters.

Now it should be clear frorf13.63)and(13.64)that the Fourier transform éfx) is just
a constant:

C(k) = % / da ek §(z) = % (13.65)

The diffraction pattern for this thing is thus very boring. There is uniform illumination at all
angles.

Of course, in physics, we can't makdunctions. However, i, in (13.61)is much
smaller than the wavelength of the wave, then it might as welldbimction, because it
only matters what'(k,,) is for k, < k = 27/\. Largerk, correspond to exponential waves
that die off rapidly withz. But for suchk,, the produck,.a is very small, thus

1 sink,a 1

kya)? 1
C(k:x):% T —><1—< )+>z27r (13.66)

2 6

and we still get uniform diffraction over all angles.



390 CHAPTER 13. INTERFERENCE AND DIFFRACTION

Moral: é-functions are simply a convenience. When physicists talk aboutafunction,
they mean (or at least they should mean) a function liké, (x), wherea is smaller than
any physical distance that is important in the problem. Once gets that small, it is often
easier to keep track of the math when you go all the way to the unphysical limit,= 0.

13.4.5 Some Properties of)-Functions
The Fourier transform of &function is a complex exponential:
if f(z) =6(z — a) then k) = e~k (13.67)
The Fourier transform of a complex exponential ésfanction:
if f(z) =e " thenC (k) = d(k — {). (13.68)

A J-function can be reached as a limit in a variety of different ways. For example, from
(13.68), we would expect that as— oo, the Fourier transform of (13.49) should approach a

d-function: -
lim o2 5k, (13.69)

—
a—00 T

13.4.6 One Dimension from Two

Usingd-functions, we can say more elegantly what is meant by the statement we made above
that if f(z,y) does not depend an the problem is one-dimensional. If we look at the limit
of (13.58) as, — oo, it goes over inta (13.49). In other words, when a rectangle is infinitely
long, it is a slit. In this limit, the Fourier transform, (13.59) goes into

sintkeae) g ). (13.70)
kg
This is the real meaning of (13!50). It is one-dimensional in the sendg, tisastuck at 0.
There is no diffraction in the direction.

13.4.7 Many Narrow Slits

An interesting application a¥-functions is to the diffraction pattern for several narrow slits.
We will use this later in various ways. Consider a functfdm, y) of the form

|
—

s 5(z — jb) (13.71)
0

.
Il
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ol

bk, [k

Figure 13.12: If bk/k = nA, the interference is constructive.

—

-3 0 3 6 9
bk, —

Figure 13.13: The diffraction pattern for three narrow slits.

This describes a serieswharrow slitS atz = 0, x = b, z = 2b, etc, up tox = (n — 1)b.
The Fourier transform dfL3.71)is a sum of contributions from the individugfunctions,

%“Narrow” here means narrow compared to the wavelength of the light — see the moral above.
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[

P

—

-3 0 3 6 9
bk, —

Figure 13.14: The diffraction pattern for 6 narrow slits.

from (13.67)and (13.68)

1 n—1 -
o ky) = — —ijbha 13.72
Cl(ks, ky) 5(l<:y)27rjz:%e (13.72)
But the sum is a geometric series that can be done explicitly:
n—1 —inbky
Z o—idbke _ 1 — etk
; 1 — eibka
. =0 . (13.73)
B efznbkz/Q (eznbkz/Z _ efznbkz/2) ine1)bka/2 sin nbkm/Q
T ke 2 (gibka/2 _ o—ibho/2) sinbky /2
Thus the diffraction pattern intensity is proportional to
i 02
S MORe/ % 2”“%/ 2 (13.74)
sin” bk, /2
Forn = 2, (13.74)is just
o bky
4 cos 5 = 2(1 + cos bky,) . (13.75)

This is the problem with which we started the chapter. V8hgn= 2mr for integerm, then
the wave from one slit travels farther than the wave from the othen\bwhere\ = 27 /k

is the wavelength. Thus fék, = 2mm the interference is constructive, as illustrated in
figure13.12.

For largern, we still get constructive interference fgr, = 2mm, but the maxima are
sharper, because with more slits, there are more possibilities for destructive interference at
other angles. In figure 13.8H%d figurell3.14,we plot(13.74)versushk, from (—m to 3w so
that you can see two full periods) for= 3 and 6. Notice the appearancenof 2 secondary
maxima between the primary maxima of the intensity. We will return to these relations when
we discuss diffraction gratings.
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13.5 Convolution

There is a rather simple theorem, know as the convolution theorem, that is extremely useful
in dealing with Fourier transforms. Suppose that we have two functfpfs, and fa(z).
Define the functioryf; o f> as follows:

fiofala) = [ O; dy f1(z — ) Fa(y) (13.76)

This integral will be well defined if(z) and f2(x) fall off fast enough at infinity (and
certainly if they are nonzero only in a finite regione:pf Note thatf; o f5 is a function of a

single variable. It is also symmetric under the exchange of the two functions, because by a
simple change of variableg (& = — v)

frof@ = [ dufie—u) v = [ dyhio) hla—9) = foo hile). @377

Now the theorem is that the Fourier transform of the convolutidn ténes the product of
the Fourier transforms of the two functions. The proof is immediate (all integrals run from
—00 to 0):

Cpon(®) = o [ e fio o(z)

1 (13.78)
ikx
= o [ dze® [ dyfia -y £,
Now we substitute — y + = and write the integral overand 7
1 .
=5 [ dze ) [y fie - ) o)
2 (13.79)

1 . -
=5 / dz e f(2) / dy ™ fo(y) = 27 Cp, (k) Cp, (k).

The two-dimensional analog (#3.79)is a straightforward extension. The two-dimensional
convolution is

fuofalesy) = [ o'y fule — o'y — o) falal ) (13.80)

Chiofs (ks ky) = 412 Oy, (b, ky) Oy (K, Ky) - (13.81)

13.5.1 Repeated Patterns

The convolution theorem can be used to understand many interesting situations. Consider the
following very instructive pattern of two wide slits:

1 for —a<x<a
flr,y)=4 1 for —a<z—-b<a (13.82)

0 otherwise
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for b > 2a. A piece of the pattern is shown in figure 13.15 fer 3.5a.

Figure 13.15: A piece of the opaque barrier with two wide slits.

This can be regarded as the convolution of two functions:

=1/ iofe (13.83)
where
1 for —a<z<a
fila,y) = _ (13.84)
0 otherwise
and
fo(z,y) = 0(z) 6(y) + d(x — b) 3(y) - (13.85)
The corresponding Fourier transforms are, from (13.70)
Cy, (ks k) = sin(kya) 5(ky) (13.86)
kg
and from((13.73)
1 kz  _ipk, /2
Cry (ks by) = 5 cos =" e /2. (13.87)

Now applying the convolution theorem gives

Cflon(kgj7 ky) = COS % e_ibkz/2 M 5(ky) . (1388)

kg
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Becauseé > 2a, this describes a pattern that oscillates rapidly on the scale $é,hyith
an amplitude that varies with the single slit diffraction pattern characterized hy giZ€he
intensity pattern on a distant screen is shown in fitir&6,for b = 3.5a The dotted line is
the pattern for a single wide slit (compaire (13.5)).

rA rA
0 % =

Figure 13.16: The diffraction pattern for two wide slits.

13.6 Periodic f(z,y)
Supposef (z, y) is periodic inz with perioda. That is

flx+ay)=f(zy). (13.89)

ThenC(k,, k) can only be nonzero if

ky = 2T (13.90)
a
To see this, insert (13.89) info (13.24),
1 .
Clks, ky) = ﬁ/ dz dy f(x + a,y) eFemthey) (13.91)
7

If we change variables from— = — a, (13.91) is
1 ) .
Clkasky) = 1 / dudy f(x,y) Vet Reatht) = o=t Ok, ky) - (13.92)
7

because the constant phase factor can be taken outside the ifigq@él)follows because
(13.92) implies that eithe® (k,, k,) = 0 or e~ = 1.



396 CHAPTER 13. INTERFERENCE AND DIFFRACTION

An example of this general principle is (13.74). In the limit that oo, (13.74) goes to
0 except fork,, = 27mm /b for integerm (where it is infinite). This example is simple because
the slits are narrow, so the intensity is independent.dflowever, with repeated wide slits,
or some more complicated pattern, we could use the convolution theorem and (13.74) to see
that (13.90) emerges as— oo. The details of the pattern of each slit will then determine
the relative intensity of the diffraction pattern at different
Thus any infinite regular pattern produces a discrete sequercg dfor example, a
transmission diffraction grating, that consists of lots of equally spaced linesyiditeetion
with  separatiorn on a transparent substrate, producéf/a,, k, ) that is nonzero only for
k, = 0 (because there is nodependence at all) ag = 2nm/a. Then|(13.19) becomes

Z c, ei@nma/atzy/w? [v2—(2nT/a)? —wt) (13.93)

This describes a linear superposition of plane waves fanning out at angles idinbtion
given by

sing, — 27U _ nA (13.94)

aw a

as shown in figure 13.17.

Typically, for a transmission grating, most of the light goes into the central line, which
is to say that you can see right through the grating. Note that the even spadirt, im
(13.94)corresponds to an increasing spacing of the lines projected onto a screen at fixed large
z (for example, a screen like your retina!) because the distance along the screen is determined
by

ni
Va2 —n2X\2’
There is a maximum value af above which no propagating wave is produced (because it
corresponds tgin # > 1 and thus imaginary.,).

Note also the dependence of (13.94) on wavelength. The larger the wavelength of the
light, the larger the angles in the pattern from the diffraction grating. This, of course, is why
the diffraction grating is useful. It can separate light of different frequencies. The different
colors of the rainbow are spread out along a line, for each vabue Tiis is illustrated in
the figure _13.18, for three frequencies, blue light with wavelength i&3g@een light with
wavelength 5200 A and red light with wavelength 6300 A, incident on a diffraction grating
with 10,000 lines per inch. We have shown (13.95pfer —3 to 3 and labeled the colors for
then = 1 secondary maximum. As you see, in a realistic grating, the angles of diffraction
can be large, and it is a very bad idea to use a small angle approximation.

tan 6, = (13.95)

13.6.1 Twisting the Grating

Some interesting examples of the effects discussed in (13.48) occur when the incoming light
wave comes at the grating at an angle with respect to the perpendicular. Starting with the
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Figure 13.17: A transmission diffraction grating splits a beam of a single frequency.

blue green red
\ AR IIERN
-1 tanf — 0 1

Figure 13.18: The pattern of three frequencies of light from a grating.

grating lines in the direction and the grating in they plane, there are two different effects.
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1. Twisting Around the y Axis

Suppose that the light comes in at an afiglérom the perpendicular in thez plane. Then
from (13.48),
Co,, (kz, ky) = C(ky — ksinbin, ky) (13.96)

whereC' is Fourier transform for the perpendicular grating,

2mn

Clky ky) £0 for ky=0, ky= —2. (13.97)
a
Thus
Cy, (ko ky) #£0  for
_ o (13.98)
ky =0, ky = ksin0;, + Y

or I \

sinf = - — sin By, + 2 (13.99)

k a
In other wordssin @ is simply displaced byin 6;,. For example, this means thatdif=
7 /a, the pattern is exactly the same, but the central maximum has moved over, as shown in
figure[13.19.

2: Twisting Around the x Axis

Suppose that the light comes in at an addl®m the perpendicular in thez plane. Then
from (13.48).

Co,, (ky, ky) = C(kg, ky — ksinbyy,). (13.100)
Now instead of being @&, is fixed atk sin 6;,
2
ky = ksinfn, ky= ——. (13.101)
a

Now the diffracted waves make nontrivial angles from the perpendicular hetmnid in y

ky k sin 6,

. _ _ Y _
Sin Hy = \/kz + k,g = \/kj2 — k% - /71 — 7'[,2)\2/(12 (13102)
and
Sing. — k. B ke o nA
TUTVEAR T ook ook (13.103)

Again, as in((13.95), what we see if we project the pattern onto a perpendicular screen at
fixed z are the tangents,
(%, Y)screen = 2 (tan b, tanf,), (13.104)
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m=2

m=1

m=0
m=—1

m=—

Figure 13.19: The pattern for a beam at an afigles arcsin \/a.

where

tand, = %, tanf, = % (13.105)

Thus the diffraction pattern appears curved. What one sees on a screen or a retina is the colors
of the rainbow spread out along a curved line. This is shown in fidgu2€),where we plot

tan 6, versustan ¢, for a light source and grating as(i8.18),above, but witlsin ¢;,, = 0.5.

Note that the pattern has not only curved, it has spread out, comp&t&di&). Here you

really see the three-dimensiokavector in action. Asan 8, increases, for fixed,, tan 6,

increases as well, becausedecreases.

13.6.2 Resolving Power

The discussion so far has assumed that the diffraction grating is truely periodic. But this is
only possible if the grating is infinite! In a finite grating, only the middle is periodic. The
edges break the periodicity. In a grating consisting of only a finite number of grapties,
diffraction peaks are not infinitely sharp. They are not delta functions. However, as discussed
at the beginning of this section, we actually already know what they look like in the finite
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1 -+ sinfy, = 0.5
\ \
| ||
oo 1
tan6y, T
0 : <
-1 tanf, — 0 1

Figure 13.20: The diffraction pattern from a twisted grating.

case because we have solved the problem of diffraction+iresenly spaced narrow slits,

in (13.74). In the general situation faridentical grooves, the intensity looks like (13.74)
multiplied by some slowly varying function that depends on the shape of the grooves (by
the convolution theorem, (13./79)). The important consequence of this is that the shape of a
diffraction peak for am-slit grating is roughly given by (13.74).

The shape of the diffraction peak is important for the following practical question. Sup-
pose that you have a beam of light that consists of a superposition of light of two different
frequencies. How close together do the frequencies have to be before their nontrivial diffrac-
tion peaks melt together, so that you cannot use your diffraction grating to distinguish them?
The larger the number of grooves in the grating, the sharper the diffraction peaks and the
easier it is to distinguish different frequencies.

Rayleigh’s criterion is an historically important way of answering this question. Rayleigh
assumed that it would be possible to distinguish the diffraction maxima from equally intense
waves of slightly different wavelengths if the maximum of one frequency coincides with the
first minimum of the other. For a grating of 6 lines, this criterion is illustrated in figure 13.21.
The solid line is the total intensity of a wave consisting of two slightly different frequencies.
The contributions from the separate frequency components are indicated by the dotted and
dashed lines.

Any such fixed criterion for resolving power should be regarded not as a fact about nature,
but as a conventional definition that facilitates communication between experimenters. It is
always possible to do better than any given definition by accumulating accurate data on the
line shape and modeling the details.



13.7. * X-RAY DIFFRACTION 401

Figure 13.21: Rayleigh’s criterion for a grating with 6 lines.

13.6.3 Blazed Gratings

As a spectroscope, the transmission diffraction grating has a disadvantage compared to a
prism. The difficulty is that, as we noted above, most of the light impinging on the grating
goes right through and is not split into its component frequencies. This is a very serious
problem in devices in which the total amount of light is limited. It is often important to
have the bulk of the light going into a singlenzero value ofn in (13.94). Then nearly

all of the photons can be used for the measurement, rather than being wasted in @he
maximum (which carries no information about the frequency). As we argued above, there is
no theoretical reason why such a thing cannot be done. The general principles of translation
invariance and local interactions determine the possible angles of diffraction, but not how
much light goes to which angle.

In fact, there is a practical and widely used method in reflection gratings. A reflecting
surface with a series of evenly spaced parallel lines scored into it acts as a reflection grating, as
illustrated in figurd 3.22.This shows a reflection grating in which the predominant reflection
of a beam coming in perpendicular to the plane of the grating is also perpendicular. What we
want instead is shown in figui8.23.To construct such a grating, you can shape the grooves
in the grating so that the specular reflection from the individual grooves directs the beam into
the nontrivial diffraction maximum, as shown in figli®24.

To do this, you can choose the angle of the blaze to be half the angle of the first maximum,
01 = 27v/aw, in (13.94), as shown in the blow-up of a groove in fidlB&5.

13.7 * X-ray Diffraction

A beautiful three-dimensional example of diffraction from a periodic function is x-ray diffrac-
tion from crystals. A crystal is a regular array of atoms whose positions can be described by
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\

Y
A

Figure 13.22: A reflection diffraction grating splits a beam of a single frequency.

a periodic function
()= f(r+a) (13.106)

whered is any vector from one point on the lattice to another. Mathematically, we can define
the lattice as the set of all such vectors. Note that the lattice always includes the zero vector,
the point at the origin. The three-dimensional Fourier transforfitigfis nonzeroonly for

wave number vectors of the form

3
2 > nyl (13.107)
j=1

wherel; are the basis vectors for ttdual” or “reciprocal” lattice that satisfies
a- Fj = integer, for alla . (13.108)

The idea here is the same as the one-dimensional discussion of the diffraction grating, that
k., = 2mn/a, (13.90).The derivation of (13.1071} precisely analogous to that of (13.90).

We can visualize the relation between the lattice and the dual lattice more easily for two-
dimensional “crystals.” For example, consider a lattice of the form

a = NgazT + nyayy (13.109)
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Figure 13.23: A blazed grating directs the beam into a nontrivial diffraction maximum.

shown in figure 13.26 (far, = 2a,).
It is clear that vectors of the form
- 1 ~ 1 N
51 = —x, 62 =Y, (13.110)
Qg Ay

satisfy (13.108). Furthermore, a little thought will convince you that these are the shortest
pair of linearly independent vectors with this property. Thus we can(i18kE10)to be the
basis vectors for the dual lattice, so that the dual lattice looks like

dy = (m””x + myy> (13.111)
Gy ay

as shown in figurd3.27. Note that the long and short axes are interchanged, as usual in a
diffraction process.
Now suppose that there is a plane wave passing through the infinite lattice,

eIkt (13.112)
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Figure 13.24: The grooves of a blazed grating.

Figure 13.259 ~ 60, /2.
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Figure 13.26: A crystal lattice.

Figure 13.27: The dual lattice.

The wave that results from the interaction of the plane wave with the lattice then has the form

R =it () (13.113)
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whereg(7) is a periodic function, likg () in (13.106). To find the possible refracted waves,
we must write this in the form:

eil;-v?fiwt Q(F) — Z C,, eiEa-Ff'iwt ] (13.114)
diffracted

waves , o

But we also know from the discussion above that the Fourier transfayns obnzero only
for values ofk of the form[(13.107). Thus (13.114) takes the form

Rl R O R S (13.115)
U

Therefore, thé,, in (13.114) must have the form

ko =k+21Y n;l;. (13.116)
J

But this is only possible %, satisfies the dispersion relation in the material, which means, if
the material is rotation invariant so th&t depends only ofk|?, that

k| = K. (13.117)

Thus we get a diffracted wave only fof such that'(13.117) is satisfied. X-ray diffraction
from a crystal, therefore, can provide direct information about the dual lattice and thus about
the crystal lattice itself.

There is a more physical way of thinking about the dual lattice. Consider any vector in
thedual lattice that is not a multiple of another,

d=>" nil;. (13.118)
J

Now look at the subset of vectors on kattice that satisfy
d-a=0. (13.119)

This subset is the set of lattice points that lie in the plﬁné‘,: 0, that is the plane perpen-
dicular tod passing through the origin. Now consider the subset

d-a=1. (13.120)

This sgbset is the set of lattice points that lie in the pl&ne”, =1, that is parallel to the
planed - ¥ = 0, in the lattice. This plane is also perpendiculad Bmd passes through the
point (which may not be a lattice point)
d
=i (13.121)
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Therefore, the perpendicular distance (that is inftdieection) between the two planes is

. 1
d i =—. (13.122)
|d|

We can continue this discussion to conclude that the subset of lattice points satisfying

—

d - a = m for integerm = —oo to oo (13.123)

is the set of lattice points lying on parallel planes perpendlculd,r woth adjacent planes
separated by/|d|. But this set must be all the lattice pointsIThis is true becauseé- @ is

an integer for all lattice points by the definition of the dual lattice. Thus all lattice points lie
in one of the planes in (13.123).

Figure 13.28: A vector in the dual lattice.

These considerations are illustrated in the two-dimensional crystal in the pictures below.
If the vectord in the dual lattice is as shown in figure 13.28, then the perpendicular planes in
the lattice are shown in figure 13.29.

Now suppose that is one of the special points in the dual lattice that gives rise to a
refracted wave, so that

[k +2rd|? = kP = d- (k+xd) =0. (13.124)

This relation is shown in figure 13/3This shows that th& vector of the refracted wave,
k + 2md, is justk reflected in a plane perpendiculardto We have seen that there are an
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Figure 13.29: The corresponding planes in the lattice.

k k+md k+2nd

4

Figure 13.30: The Bragg scattering condition.
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infinite number of such planes in the lattice, separatedi/pi}. The contribution to the
scattered wave from each of these planes eddstructively to the refracted wave. To see
this, consider the phase difference between the incoming whdei~t and the diffracted
waveeika ™t for k. = & 4+ 27d. Evidently, the phase difference at any poiis

-

ond - 7. (13.125)
This phase difference is an integral multipleefon all the planes
d- = m for integerm = —oo t0 oo . (13.126)

Thus the contribution to scattering from all of the planes of lattice points adds constructively,
because the phase relation between the incoming and diffracted wave is the same on all of
them. Conversely, i #* k + 2rd, then the contribution from different planes will interfere
destructively, and no diffracted wave will result.

This physical interpretation goes with the name “Bragg scattering.” The planes, (13.123)
(or (13.126)) are the Bragg planes of the crystal. Note that as the Jéctdre dual lattice
gets longer, the corresponding Bragg planes get closer together, but they are also less dense,
cgntaining fewer scattering centers per unit area. Generally the scattering is weaker for large
|d].

13.8 Holography

Nothing prevents us from doing the analysis of a diffraction pattern from a more complicated
function, f(z, y), than that discussed in (13.16). A hologram is just such a diffraction pattern.
One of the simplest versions of a hologram is one in which an object is illuminated by a
laser, that provides essentially a plane wave. The reflected light, and a part of the laser
beam (extracted by some beam splitting technique) are incident on a photographic plate at
slightly different angles, as shown schematically in figure 13T8& wave incident on the
photographic plate has the form

et <e““+ / dk dk:yC(k:x,k:y)eiE'F) (13.127)

where
k=lkl=w/v. (13.128)

(13.127)describes the two coherent parts of the light wave incident on the photographic
plate. For simplicity, we will assume that the signal in which we are actually interested, the
reflected wave with Fourier transfor@k,, k,), is small compared to the reference wave

e*%_ This signal is what we would see if the photographic plate were removed and we placed
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reference reflected
beam wave
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Figure 13.31: Making a hologram.

our eyes in the path of the reflected wave, but out of the path of the laser beam, as shown in
figure[13.32.

The photographic plate (we'll assume it'szat 0) records only the intensity of the total
wave, proportional to

1+ 2Re / dky, dky C(ky, ky)etFesthoy) L O(C2) . (13.129)

We will drop the terms of order?, assuming that' is small, although we will be able to see
later that they will not actually not make any difference evéniff large. If we now make a
positive slide from the plate and shine through it a laser beam with the same freguérey,

wave “gets through” where the light intensity on the plate was large and is absorbed where
the intensity was small. Thus we have a forced oscillation problem of exactly the sort that
we discussed above, with (13.129) playing the rolg(of y). The solution foe > 0 (from
(13.19)-(13.29) is

et (ek + / dley dky C(ky, ky) €7 + c.c.) (13.130)
where c.c. is the complex conjugate wave obtained by taking the complex conjugate of the

signal and changing the sign of thdependence to get a wave traveling in thalirection.
The important thing to note about the complex conjugate wave is that it represents a
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beam ;
splitter object

LASER O

reference reflected
beam wave

eye @

Figure 13.32: Viewing the object.

beam traveling in a different direction from either the signal or the reference beam
because the complex conjugation has changed the sigreofik,,.

The resulting system is shown schematically in figure 1388ir eye sees a recon-
structed version of the reflected wave that you would have seen without the photographic
plate, as in (13.32). Note that neither the reference beam nor the complex conjugate beam get
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Figure 13.33: Viewing the holographic image.

in the way of your viewing, because they go off at slightly different angles. This is a holo-
gram. Because it is not a picture but a reconstruction of the actual wave that you would have
seen in(13.32),it has the surprising property of three-dimensionality that makes a hologram
striking.

One might wonder why we choose the angle between the reference beam and the signal
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to be small. A large angle would have the advantage of getting the reference beam farther
out of the way, but it would have an important disadvantage. Consider the intensity pattern
on the photographic plate that records the hologram. It is an oscillating pattern with a typical
wave number given by the typical valuekgfor k,. These are of ordér sin ¢, whered is

the angle between the reference beam and the signal. But the distance between neighboring
maxima on the photographic plate is therefore of order

2w B A
ksinf  sin6

wherel is the wavelength of the light. Singés a very small distance, it pays to pickmall
to spread out the pattern on the photographic plate.

Note, also, that the ord€éi” terms that we dropped really don’t do any harm even if
is not small. Because theirandy dependence is proportional to that of the signal times its
complex conjugate, the typical andk, for these terms is zero and they travel roughly in
the direction of the reference beam. They don't reach your eye in|(13.33).

(13.131)

13.9 Fringes and Zone Plates

13.9.1 The Holographic Image of a Point

One of the simplest of holographic images is the image of a single point. If a plane wave
encounters a very small object in its path, the object will produce a spherical wave. If the
plane wave and the spherical wave then are absorbed by a photographic plate, as shown in
figure/ 13.34, an interference pattern is produced in the form of concentric circles, or fringes.
Specifically, suppose that the plane wave is propagating in theection, the photo-
graphic plate is in the-y plane at: = zg and we put the origin of our coordinate system at
the position of the source of the spherical wave, as shown in figure Tha4.the linear
combination of plane wave plus spherical wave has the form (ignoring polarization)

. B .
Aett® 4 762’“‘ , (13.132)

wherer = /22 + y? + 22. We will assume, for simplicity, that and B are real which
means that the two waves are in phase at the object. The intensity of the wavexton
the photographic plate is therefore

B* 24AB
A% + ) + " cos[k(rg — z0)] (13.133)
0 0

wherery is the distance from the object for a point in the z; plane,

ro =/ + R? (13.134)
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incoming
plane wave

Figure 13.34: Fringes.

and

R=\/22+y2 (13.135)

is the distance from theaxis in thex-y plane. The intensity depends only Bnas it must
because of the symmetry of the system under rotations aroundxie

Usually, we are interested in the region,> R, because, as we will see, the intensity
pattern is most interesting for sm&ll In this region, the distancs, is very nearly equal to
zo. We can ignore the variation gf in the amplitudeB/ry. However, there is interesting
dependence in the cosine term(18.133).In this term, we can expang in a Taylor series

aroundR = zgq, )
1R
_ 2/,2 _ -
ro—zm/l—i—R/zO—zo—i-zzo + . (13.136)

Putting all this together, the intensity is given approximatelyfos R by

B? 2AB  kR?
AP+ =+ Z—cos —. (13.137)
Z() 20 22’0
The intensity pattern(13.137),describes concentric circular “zones” of intensity varia-
tion. The zones can be labeled by the maxima and minima of the cosine, at

KR

— =n7 (13.138)
220
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or
R%? = n)\z (13.139)

wherel is the wavelength of the wave. Foeven, the cosine has a maximum andfodd,
a minimum. The intensity variation is greatest if the plane wave and the spherical wave have
approximately the same amplitude at the plate,

—=A. (13.140)

<0
Then the amplitude actually goes to zero at the minima. The intensity distribution as a func-
tion of R is shown in figurél3.35. The positions of the maxima and minima, or “zones,”
are shown on th& axis. On the photographic plate, this intensity distribution gives rise to
circular fringes.

0 R/VAzo—+v2 V4 V6
Figure 13.35: The intensity distribution.

If the plate is developed and illuminated by a plane wave, the original spherical wave is
reproduced along with another spherical wave moving inward toward a point eraxise
a distancezy beyond the plate, as shown in figir@.36. This wave is the real image of
figurel13.33.When a plane wave (dotted lines) illuminates the photographic plate produced
in figure13.34,diverging (dotted lines) and converging (solid lines) spherical waves are pro-
duced.

13.9.2 Zone Plates

The hologram of figur&3.34can be used to bring part of plane wave to a focus. The con-
verging spherical wave shown in figut8.36is much stronger than the rest of the wave
disturbance at the focus,= 2z, x = y = 0, because the amplitude of this part of the wave
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Figure 13.36: A plane wave illuminating the photographic plate.

increases as it approaches the focus. It has the form

1 .
Pe“" (13.141)

where
v = (2~ 220)2 + 22 + 2. (13.142)

The same effect can be produced with a cartoon version of the photographic plate made
by taking a transparent plate and blacking out the zones for negati&3.138) where the
intensity distribution is less than half the maximum. For example, the first negative zone is
the region\zy/2 < R% < 3)\z/2. The second is the regiizg/2 < R? < TAz/2, etc.

The result is a “zone plate.” An example, produced by blacking out the first 4 negative zones
is shown in figurd3.37. These things are quite useful, because they can be easily produced
and tailored to any wavelength.

Chapter Checklist

You should now be able to:

i. Be able to set up a diffraction problem as a forced oscillation problem and write the
diffracted wave as a Fourier integral;
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Figure 13.37: A zone plate.

ii. Interpretthe Fourier integral in the far-field region and find the diffraction pattern;

iii. Analyze the diffraction patterns in beams made with one or more slits and rectangles;
iv. Use the convolution theorem to simplify the calculation of Fourier transforms;

v. Analyze the scattering from a diffraction grating and x-ray diffraction from crystals;

vi. Interpret a hologram as a diffraction pattern;

vii. Understand how a zone plate can focus a plane wave.

Problems

13.1. Consider the transverse oscillations of a semi-infinite, flexible membrane with
surface tensiofl’s and surface mass densjiy. The membrane is stretched in the= 0
plane fromy = —oo to co and fromz = 0 to co. The membrane is held fixed along the half
lines, = 2=0, a <y<ocandzx =z =0, —© <y < —a. Fory betweera and
—a, the membrane is driven with frequenego that the end at= 0 moves with transverse
displacement

¥(0,y,1) = f(y) et

where

b<1—y> for0<y<a
fly) = b<1—|—y) for —a<y<0
a

0 for ly| > a.
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The transverse displacement is given by
(@51 / dky C(k e (yky+ak(ky)—wt)

wherek(k,) is some function ok, and

i b
ky) =5 / dy f(y) e ¥ = 7rl<:2 (1 —coskya).

Find the functiork(k,).

If the intensity of the wave at= L,y = 0 for largeL is Iy, find the intensity for: = L
and any value of. Hint: Assume that you are in the far field region, and account for all the
relevant factors contributing to the ratio of the intensitjyto

13.2. Consider an opaque barrier in thg plane atz: = 0, with a single slit along the

x axis of width2a, but with regions on either side of the slit each with witdtlwhich are
partially transparent, designed to reduce the intensity by a factor of 2. When this barrier is
illuminated by a plane wave in thedirection, the amplitude of the oscillating field atz0

is

fla,y)e ™
for
1 for lyl < a
flz,y) =4 1/V2 for a< |y < 3a

0 for 3a<lyl.

Near the slit, this just produces a beam which is less intense by a factor of two on the edges.
Far away, however, the diffraction pattern is quite different from that of the single slit. At a
fixed large distanc®& = \/y? + 22 away from the slit, the intensity as a function of

wya

cR

is shown in the graph in figui®E3.38for positive¢. The value of the peak at= 0 is
normalized to 1, but has been suppressed in the graph to show the details of the secondary
maxima.

Find the smallest positive value for which the intensity vanishes.

Find the ratio of the intensity at= 7/2 to that at &= 0

So far we have not mentioned the polarization of the light, assuming that it is irrelevant. In
fact, we get the pattern shown above for any polarization, so long as the shading doesn't effect
the polarization (andg is small). However, if the light is initially polarized in the direction
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Figure 13.38: Problem 13.2.

45° from thez axis, we could reduce the intensity by two by passing it through a perfect
polarizer aligned with thg axis. Suppose that our slit between anda is completely
empty, but between-3a and —a and betweem and3a, we put such a polarizer. Now, as

before, the beam close to the slit just has the intensity on the edges reduced by a factor of 2.
Now, however, the diffraction pattern is quite different. As a functiofy ¢fie intensity at

large fixedR is . 036 2 . 2
() ()

which looks nothing like the pattern above. Explain the difference.

13.3. Consider an opaque barrier in the plane at: = 0, with identical holes centered
at(z,y) = (nga, nya) for all integers:,, andn,. Suppose that the barrier is illuminated from
z < 0 by a plane wave traveling in thedirection with wavelength = a+/3/2.

Forz > 0, the wave has the form

Z C m ei(mzp T+mypy+k.(mgz,my)z—wt)
x vy

Mg, My

wherem, andm,, run over all integers.

Find p.

For largez, only a finite number of terms in the sum are important. How many and how
do you know?

Now suppose that instead of coming in ttdirection, a plane wave with the same wave-
length is moving for < 0 at 45 to thez axis both in thes-z plane, and in thg-z plane.

That is 1 1
T _ MY o _
ka_k‘z_tan45 =1.
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Now for z > 0, the wave has the form

Z Con ei[(mzp+51)m+(myp+£y)y+k‘z(m1,my)z7wt}
z,My

Mg, My

wherem, andm,, run over all integers.

Find¢, and §,.

Again for largez, only a finite number of terms in the sum are important. Which ones —
that is, what values of., andm,,?

13.4. Describe the diffraction pattern that results when a transmission diffraction grating
with line separation distancgis illuminated by a plane wave of monochromatic light with
wavelengthL that is traveling in a direction perpendicular to the grating lines and at an angle
6 to the perpendicular from the surface of the grating.

13.5. An opaque screen with four narrow slitsatt0.6 mm andr=10.4 mm is block-
ing a beam of coherent light with wavelengtlx 10~> cm. Describe the diffraction pattern
that appears on a screen 5 meters away.

13.6. A semi-infinite flexible membrane is stretched in the 0 plane forz > 0 with
surface tensioff; and surface mass denspy. The membrane is clamped downzat 0
along the two semi-infinite lines, = 0,2 = 0,y > candz = 0,z = 0,y < —a. For
—a <y < aand z= 0, the membrane is forced to oscillate with an amplitude of the form
2= Beétcos Y
2a

Draw a diagram of the = 0 half plane forz > 0 and indicate where the average of the
absolute value square of the transverse displacement of the membrane is large (i.e. not much
smaller thanB2a/r, wherer is the distance from the origin). For your diagram, assume that
the distance is about 5 times the wavelength of the waves.

Find the intensity of the disturbance on the membrane produced by this forced oscilla-
tion as a function o = tan=!(y/z) on a large semicircles? + y* = R?, for R? >>
a*w? ps | Ts.

Hint: This is similar to a single slit diffraction problem. Note that even though the
disturbance is a cosine, you will have to do a Fourier integral (although not a difficult one) to
do part b, because the disturbance is confinedut&l y < a at z= 0.

13.7. Suppose that a diffraction grating with line separaditmetched onto the top of a
thick piece of glass with index of refractien If light of frequencyw is incident on the top,
coming in at an anglé from the perpendicular to the face and perpendicular to the grating
lines, find the angles of the components of the wave in the glass.
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13.8. Shown in figurel3.39are 4 diffraction patterns such as might be produced by
shining laser light (nearly a plane wave) through a slit or slits, and projecting the pattern onto a
photographic plate far away. The patterns are each produced by about 500 individual photons
striking the plate with a probability density proportional to the intensity of the diffracted
wave.

B v 3RO E
C:
D

Figure 13.39: Four diffraction patterns.

The four objects that produced these patterns were, in a random order,
i. Asingle slit, 1 mm wide;

ii. A single slit, 0.6 mm wide;

iii. Two slits, each 0.6 mm wide, with centers 1.5 mm apart;

iv. Six slits, each 0.6 mm wide, with adjacent centers 1.5 mm apatrt.

a. Which is which?

b. How do you know?
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Chapter 14

Shocks and Wakes

In this chapter, we apply the tools of the previous chapter to analyze some beautiful and
interesting phenomena — shock waves and the Kelvin boat wake.

Preview

The

i *kkk

14.1 * Boat Wakes

Combining our analysis of the dispersion relation of water and the discussion ofsection 11.5
and of group velocity in section 10.2.1 will allow us to give a simple interpretation of one of
the most beautiful and subtle of all wave phenomena — the Kelvin wake.

14.1.1 Wakes

The general subject of wakes is very complicated. However, in the simplest case of motion
with constant velocity, the symmetry of the system makes it possible to do a linear analysis
rather simply. This will allow us to understand some of the most obvious features of the

wake in a straightforward way, including the angle and the regular waves that appear along
the wake, showing up at sunset like pearls on a string, as in/figué 1%vhile | do not

think that there is much that is original in the treatment here, the approach is a little unusual,

2This is one of many beautiful photographs by lan Alexander-
http://easyweb.easynet.co.uk/ iany/patterns/wake.htm.
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Figure 14.1Wakes at sea.!

© Source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

Figure 14.2A wake at sunset.

© Source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.
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like the approach to diffraction in chapter 13), and I think it gives a useful slant not just on
the wake, but also on the crucial concept of group velocity.

14.1.2 Linear analysis of the Kelvin wake

Consider an infinite ocean in they plane with a boat (duck, whatever) moving with constant
velocity v > 0 along ther axis. The path of the boat divides the surface of the ocean into
two regions, related to one another by reflection in the path. We can therefore without loss
of generality focus on the half-plage> 0. We will not try to describe in detail what goes
on near thg; = 0 line. In many situations, this involves turbulance, and is well beyond
the scope of a beginning waves course. But away ffom 0, it is possible to apply a
linear analysis, and think of the waves for> 0 as linear combinations of plane waves
with appropriate boundary conditions along the: 0 line® We will assume that whatever
happens neay = 0 produces a localized disurbance ongtexis that moves along with the
boat. This is necessarily a wave packet involving a range of frequencies. The integration over
all these frequencies gives rise to the wake. That is the plan. We will do this for some simple
illustrative boundary conditions, and we will argue that much can be understood about the
system that is independent of the details of the boundary condition. The idea is to make use
of the fact that the disturbance is a wave packet, and understand the appropriate analog in this
two dimensional situation of the group velocity by which wave packets move.

This system is invariant under simultaneous translations in space and time.

t—t+rT rT—xT+vT (14.1)

We are looking for a steady-state solution in which the only things going on are the waves
induced by the motion of the boat. This solution should depend only on the combination

r—vt (14-2)

and be invariant under (14.1Yhis means that the wake wave is stationary in a frame of
reference moving along with the boat.

An equivalent (and perhaps more physical) way to say this is that the solution that de-
scribes only the waves produced by the moving boat is a linear combination of plane waves
which are moving along with the boat in thélirection — that is they have, = w/v.

Either way, the general solution looks like

/ dw f(w) e~ tlelt=a/v)~kyy] (14.3)

30ne could, if necessary, look onlyat> a > 0 for some fixedu. This would not change the analysis in any
essential way.
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The functionf (w) describes the wave packet in frequency, and it is determined by the dis-
placement of the wave packetjat 0 and t= 0, through the Fourier transform

Y(x) = / dw f(w) eWr/v = flw) = % / dr w(m')e_im (14.4)

k= /k2 + k2 (14.5)

is given by the dispersion relation for water waves. It will turn out that it is usually a good
approximation to ignore surface tension, so will use a simple approximation in which the
dispersion relation depends only on gravity. We will also assume that the water is deep. Then
the dispersion relation is simply

The relation between and

Wwi=gk (14.6)

The magnitude of the phase velocity is thus

=—== 14.7
vp = = (14.7)
Note that coefficient of the right hand side in the dispersion depends on the details of the
physics, but the overall structure of the relation follows simply from dimensional analysis.
The only combination of and kwith units ofw? is g k.

For (14.3), we have

1/2
k= (kg + kg) / (14.8)
with

kr =w/v (14.9)

Thus
w = g2 (W?v* + k;) (14.10)

1/2

ky = (w4/g2 - wQ/UQ) / (14.112)

where the sign of the square-root is determined by the boundary conditica gtoo. If
k, is real,k,/w is a positive number so that the phase waves in/(14.3) propagate out from
they = 0 line. If k, is imaginary, it is; times a positive number, so that that the amplitude
vanishes ag — +oo for y > 0. These signs are opposite fok 0, but nothing else in the
analysis changes, so the solution is symmetrical apeud, as it must be.

Thus fory > 0, we have

k= (kg ky) = (w/v, (w!/g? - w2/v2)1/2> (14.12)
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and

IS =N
<
©-

= A— =(1/v, (w2/g2 — 1/1)2)1/2 (14.13)
Vg

This is the key to the Kelvin wake. The different frequency components of the wave packet
at y= 0 travel in different directions as they move away from the boat fei0.
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Figure 14.3:A wake constructed numerically from (14.3) for f(w) = e~wv/9,

We note in passing that the vector quanﬁly; is a very important one, and it should
probably have some important sounding name. It is sometimes called the “slowness vector”
in the literature. This is the object that most naturally appears in the description of a plane
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Figure 14.4:Another view of the wake in figure 14.3.

wave with frequency: .
e~ (t=Tk/w) (14.14)

“Slowness vector” does not seem to me to capture adequately the relation of this with the
phase velocity, so | plan to start a campaign tokgallthe “phase segnocity”

—

k
3¢=*

w

(14.15)

from the Latinsegnismeaning slow, because the segnocity increases in magnitude as the
points of constant phase on the wave move more sfowlye phase velocity itself can be
easily constructed from the phase segnocity, (14.13), but it is really /(14.13) that appears
naturally in the equations.

We can calculat¢(w) given a boundary condition &t= y = 0, and then construct the
wake numerically using (14.3). For illustration, consider a Gaugsiay

flw) = el (14.16)

“The inspiration for this comes from paleontologists, who have fossil evidence &eghesaurus “slow
lizard” and also theelocisaurus “fast lizard.”
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which corresponds to a gaussian disturbance ajorg0. The resulting wake pattern is
shown in figures 14.3 and 14.4. This looks like a wake! Thus we seem to have captured some
of the essential physics of the wake in (14.3).

But what we are really interested in are the more general properties that will allow us
to understand the key features of the wake without any numerical integration. We will look
at how the various plane-wave components propagate. (14.11) implies that the wake waves
propagate away from = 0 only for

w? > g% /v? (14.17)

We now need to think carefully about the physics of (14.3)land (14.12)-(14.13). In any
small range olv, the integration ovev will produce some kind of wave packet that moves
along with the boat. Different ranges are associated with wave packets moving out at
different angles from the axis. The envelope of a wave packet in a narrow range of
frequency centered onw will move at the effective group velocity,v,, constructed as

follows .
ok 0 1 2w3/g%—w/v?
5= Ok _ % (L1 /g —wjv (14.18)
ow |t v (wt/g? — w2/v2)1/2

and this determines the angle of the wave packet as a function ©f Again, as with
(14.13, the object in[(14.18) igery important and deserves a fancy name. | am going to
call it the “group segnocity3,, because the envelope of the wave group moves more slowly
ass, increases. Suggestions for better names f@nds, are welcome.

At this point, the reader may (justifiably) wonder why the group velocity is not the con-
ventional group velocity for water waves,

Ow
Vg = % (14.19)
where the relation betweanandk is given by((14.6) so that
g D¢ (14.20)

97 2w 2
This gives a group velocity in the same direction as the phase velocity and just half the mag-
nitude. To understand the difference, we must generalize the the formula for group velocity

in section 10.2/1There we saw that simplest way to understand group velocity is to think
about the superposition of two plane waves that are close together in di:

cos(wit — Ky - 7) + cos(wat — EQ -7

o o (14.21)
(wl ) ki — ko _,) (wl + w2 k1 + ko _»>
= 2cos t— -7 | cos t— -7

2 2 2 2
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If the ws andks are close together, the first factor is a slowly oscillating envelope, like the
envelope of the wave packet, with segnocity vector

k1 — ko
W1 — w2

(14.22)

S_

The second factor describes the more rapidly oscillating carrier wave, with segnocity vector

g, = Mtk (14.23)
w1 + w2
If k, andk; arise from a well defined smooth functibfw),
El = E(wl) and ]22 = E(WQ) (14.24)
then
lim 5 =35, and lim 5, =35, (14.25)

as expected from (14.18But this depends on what is being held fixed betweeand

ko asw changes. The point is the usual one that in one dimension, the dispersion relation
determinest(w) up to a sign. But in more than one dimension, infinitely m?émx}satisfy

the dispersion relation for a givem We must specify exactly how the functié(w) is
determined before the limit in (14.25) is well defined. Thus (14.18) is the general formula
for the group velocity. But what the derivative means (in more than one dimension) depends
on the situation. The conventional physics assumes that all the frequency components of the
wave are in the same direction. Then the direction of:thector does not change with

and (14.18) reduces fo (14.9Rut for a wave driven by the moving boat, what is held fixed

is not the direction of the waves, but rather theomponent of the segnocity vectéy,/w,

because all the components of the wave packet move along with the boat that produces them.
Then the condition (14.9) and the dispersion relation (14.6) taken together force the direction
of the k vector to change as a functionwf Thus we must use the general form, (14.18).

As we will see, this implies that the effective group velocity not only has a very different
magnitude from the conventional (14.20), but also that the effective group velocity and the
phase velocity are not even in the same direction.

The red lines in figure 14.5 show the position of the wave packet corresponding to
1.05g/v. The cyan vectors show the group velocitiesifor 0 andy < 0. These are
perpendicular to the lines of the wave packets. If we take the origin to be the position of the
boat (either instantaneously or by going to a moving coordinate system in which the boat is
stationary at the origin), The poirnt®n the wave packet satisfy

by =0 (14.26)

SIt looks different because in (14118) we are looking at the group segnocity rather than the group velocity, but
it is an elementary exercise in calculus to get from one to the other.
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Figure 14.5Wave packets (red) and phase waves (blue) for w 2 1.05 g/v.

Note also that because of (14.18),

L Ok

" ow
But there is additional structure within the wave packet because of the phase waves. The
phase velocities are shown by the green vectors, and are not in the same direction as the
group velocity. Thus there are oscillations along the wave packet corresponding to maxima
and minima of the phase waves. Assuming that the maximum occurs at the position of the
boat (that we are taking to be the origin), the other maxima occur at

0 (14.27)

Fj-k=—2rj forj=1tooo (14.28)

These maxima represent the interaction of the plane wave with freque@nd moving
along with the boat) and the group wave packet, so we indicate them in the figure by blue
lines of constant phase perpendicuIaE.to

Now we can build up a picture of the wake by putting these together for the range of
importantw. Asw changes, the direction of the red wave packet lines and the blue phase
waves will change according to (14.27) and (14.1)rw ~ g/v, the wave packets are
nearly horizontal and the phase waves are moving nearly horizontally. This is shown in
figure 14.6 fow = 1.001 g/v: Asw increases, the angle of the wave packets increases for a
while, giving a situation like that shown in figure 14.5. But the interesting thing is that there
is a critical value o that gives the maximum angle for the group velocity.

It is particularly simple to analyze (14/18) becadsg/0w is constant. The depen-
dence ofdk, /0w is shown in figure 14.7Because it goes to infinity as — g/v and as
w — oo, Iin these two limits the group velocity goes to zero, and its direction ggeJ ke
minimum of 9k, /0w corresponds to the maximum [of,|, and also to the maximum angle
of the wake wave propagation from theirection. This maximum angle is particularly im-
portant for two reasons. Not only does the maximum angle correspond to the edge of the
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PR

Figure 14.6\Wave packets (red) and phase waves (blue) for w ~ 1.001 g/v.

Ok,
V0w

1.2 1.4 1.6 1.8 2
wu/g —
Figure 14.7:

disturbance produced by the boat, but more importantly, at all smaller angles, the energy is
spread over neighboring angles. At the maximum, because the angle is stationary with re-
spectw, neighboringy contribute constructively and the wave at the edge is generically much
more intense than for smaller angles.

To determine the maximum angle explicitly, we differentitg/Ow again, which gives

ky _ (w?/g%)(2w"/g? — Bw?/v?)

8(4}2 - (w4/g2 _ w2/v2)3/2 (1429)
so the minimum occurs at )
w? = g% (14.30)
corresponding to wave number
= % (14.31)

®This pile-up at a stationary point is the same phenomenon that picks out the angle at which we see the
rainbow.
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2
Vp = \/;v (14.32)

The direction of the phase velocity is is

by = <\/§ \/§> (14.33)

and magnitude of phase velocity

at an angle from the axis of

Opmae = Arcsin (1 /\/5) = 35.26° (14.34)
The wavelength is
2
A= dm (14.35)
39

Even at low speeds like a meter per second (about 2 knots), this wavelength is large compared
to the scale (a few centimeters) at which surface tension becomes important in the dispersion
relation, sol(14.6) is usually a good approximation.

Figure 14.8Wave packets (red) and phase waves (blue) for the critical value w ~ /3/2 g/v.

At the critical angle, our wave packets and phase waves are shown in figure 14.8. Often,
as in the wakes in figure 14.1, the phase waves along the maximum angle are all you see.

Forw larger than,/3/2¢g/v, the wave packet angles starts to decrease again but the phase
waves continue to get closer together, as shown in figure 14.04a g /v.

We can now put these together for a range obm g/v up past the critical value. The
result is shown in figure 14.10.1t may be easier to see what is happening if we do not
draw the wave packets, but just the phase waves. These, after all, show the places where the
oscillation is a maximum. The result is shown in figure 14.This gives nearly the same
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Figure 14.9Wave packets (red) and phase waves (blue) for w ~ 2 g/v.

Figure 14.10Combined wave packets and phase waves for a range of frequencies.

picture as a parametric plot of the points on the waves packets where the phase waves have
there maxima, which is shown in figure 14.1¥ou should be able to recognize the basic
features of figure 14.11 both in our numerical construction, figuré 14.3 and in the beautiful
picture of a real wake from Wikipedia shown in figure 14.13 on page 486.can make this
even more obvious by rotating figure 14.12 in three dimensions, as shown in figure 14.14. In
the wake in figure 14.13, the phase waves are clearly visible both forusitiadl forward-
moving waves in the center) and for latgéthe outward-moving and closely spaced waves
just inside the maximum angle). From figure 14.11 and 14.13 you should be able to see why
the phase waves are sometimes called “featherlet waves.” The phase waves\fé/2g /v
look like delicate feathers on the wing of the wake.

It is worth making one more comment about figure 14Mdu have probably already
noticed that the phase waves fit together into continuous curves. This is not an accident.
Physically, of course, the position at which the oscillation is maximum must certainly vary
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Figure 14.11Combined phase waves for a range of frequencies.

Figure 14.12Parametric plot of the phase maxima.

continuously as a function of. But also, we can see that the tangent to the curve that
describes the maxima is perpendiculakt@and thus our phase waves in the figures are just
these tangents. To see this, note that from (14.27) and (14, 38}isfies

ok

7j-k=—2rj and o (14.36)

Differentiating the first with respect t@and using the second gives
or;

5 k=0 (14.37)
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Figure 14.13Compare figures(14.3],14.11, [14.12 and [14.14 with a real wake.

© Source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

Figure 14.143D Parametric plot of the phase maxima.
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which says that the tangent to the curve described parametricallyuoyis perpendicular
to k and thus parallel to the phase waves.

14.1.3 Shocks versus Wakes

It is interesting to compare the above analysis of the Kelvin wake with the creation of a shock
wave by motion faster than the propagation speed in a dispersionless medium. For simplicity
of comparison, consider a 2-dimensional system like a flexible membrane. Again, we will
put the system in the-y plane and consider the effect of an object moving with constant
velocity v along thex axis. The 3-dimensional extension is straightforward. Once again,
the waves associated with the object Waye- w/v and are described {#4.3). This time,
however,

K=kl +k =w’ /1] (14.38)
whereu is the speed of transverse waves in the membrane. Thekgisralso proportional
to w and the only issue is whethek vy, in which case fis imaginary and all propagation
is in thex direction, orv > 0, in which casé, is real and there is a propagating shockwave.
In either case, the group velocity and the phase velocity are equal because the medium is
dispersionless.

Let's see what (14.3poks like in this case far > vy. Then

ky = fw\/1/v¢ — 1/v? (14.39)
The segnocity vectok/w has the form
(1/1},\/1/08—1/1)2) fory >0
(1/11,—\/1/11%—1/1)2) fory <0

Forv > vy we do not even need to do a Fourier transform. We can just write down the answer
and check that it works. If the displacement orutlaeis is

f(t—z/v) (14.412)

kjw=dg/vg = (14.40)

then the displacement in general is
f(t — 77 ’LA)¢/U0> (14.42)

Thus in contrast to a wake, a shock wave is completely boring. The pattern;pga-tide
axis just gets progagated without change in shape. It looks like the figure inlHgliéor
a Gaussian envelope ang= 5vy/3.

"There is one caveat worth noting here (14.28),we assumed that the phases of the different components
of the wave relative to the boat do not vary withThis is just an approximation, and it might fail seriously for
long (compared to?/g) boats.
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Appendix A

The Programs

The programs are simple moving illustrations, except for a few that are interactive and
allow you to play with the concepts discussed in the text. They are available, along with
many other animations, on my web page, but they need some updating. The best version is
ALLSLOW.EXE - which is linked from Physics of Waves page.

Running ALLSLOW.EXE in a DOS window gives the master menu. You can access any
of the programs from the master menu by typing the program number. To return to the menu
from any program, touch the function key F10.

The PC programs are written in POWER BASIC by Spectra Publishing. A program
works by drawing pictures on an invisible screen while you look at the visible screen. Then
the program switches the two screens and repeats the process. This allows animation of
nonharmonic motion in a simple way.

Description of programs

1-1— pages 9-11— The connection between harmonic motion and uniform circular
motion.

1-2 — pages 14-17 —Multiplication in the complex plane. Move the complex number
z around in the complex plane with the arrow keys.

2-1 — pages 48-49 —A damped forced harmonic oscillator with one degree of freedom.
The driving frequency can be adjusted up or down (with the up or down arrow keys).

3-1 — pages 57-77 —Fwo coupled pendulums.

4-1 — pages 98-99 —Beats in two coupled pendulums.

4-2 — pages 99-103 —The modes of the hacksaw oscillator. This programs shows a
complicated motion of the oscillator, but the individual modes can be seen.

You see the modes by pressing the function keys, as follows:

F1 the moded! + A%;
F2 the moded? + A%;

443
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F3 the moded?;

F4 the moded? — A%,

F5 the moded! — A°;

F6 the mode?;

F9 all modes — full motion;
F10 quits the program.

5-1 — pages 113-114 —Standing waves in a system of coupled pendulums with fixed
ends.

5-2 — pages 119-121 —Standing waves on a beaded string with fixed ends.

5-3 — pages 122-124 —Standing waves on a beaded string with free ends.

6-1 — pages 141-142 —Normal modes of the continuous string with fixed ends, with
k = nm/L forn = 1tooco. The up and down arrow keys increase

6-2 — pages 142-144 —-Normal modes of the continuous string with one fixed end and
one free end, with = n7/L — /2L for n = 1to co. The up and down arrow keys increase
n.

6-3 — pages 144-147 —Fhe Fourier series for the function bf (6.19),

x z<w
() =3 w(l-z) (A.1)
I E— T >w.
1—w
6-4 — pages 148-148 —Plucking an ideal string.
6-5 — pages 148-148 —Same program as 6-4, but with variable inputs.
7-1 — pages 155-156— Longitudinal modes of a continuous spring with fixed ends.
F1-F9 give modes 1-9. F10 quits.
7-2 — pages 156-157 —tongitudinal modes of a continuous spring with one fixed end
and one free end. F1-F9 give modes 1-9. F10 quits.
8-1 — pages 172-172 —A traveling wave with a circle moving along the maximum of
the wave at the phase velocity.
8-2 — pages 173-174 -A traveling wave built out of two standing waves.
8-3 — pages 192-192 -A traveling wave with damping. It peters out as it travels.
8-4 — pages 192-193 -A forced oscillation problem for a continuous string with damp-
ing and one end fixed.
8-5 — pages 192-193 -A forced oscillation problem for a beaded string with damping
and one end fixed.
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8-6 — pages 193-197 —High- and low-frequency cut-offs in a forced oscillation prob-
lem. The up and down arrow keys increase and decrease the frequency. The left and right
arrow keys decrease and increase the increment in

9-1 — page5s 206-207 —kooking at reflected waves. You can see the uneven motion of
a traveling wave with a small reflected amplitude.

9-2 — pages 209-211 —Reflection and transmission from a mass on a string.

10-1 — pages 226-227 -A triangular pulse propagating on a stretched string.

10-2 — page’s 229-231 -&roup velocity (sum of two cosines).

10-3 — pages 239-241 -Scattering of a pulse by a boundary between regions of-differ
entk.

10-4 — pages 241-246 —Scattering of a pulse by a mass on a string.

11-1 — pages 256-257 —Fhe modes of a two-dimensional beaded string. On the PC,
you can change between 1 and 4 with the left and right arrows. You can chalrigetween
1 and 3 with the up and down arrows.

11-2 — pages 263-267 -Snell’s law with no reflection.

11-3 — pages 286-288 —Water sloshing in a rectangular container.

11-4 —pages 324-324— Two immiscible liquids sloshing. Note the mismatch be-
tween the upper and lower liquids in the middle. This is the result of the nonlinearity of the
constraint of incompressibility.

12-1 — pages 334-340 —Polarization in the two-dimensional harmonic oscillator, or
in an electromagnetic wave. This shows the position of a string stretched:iditketion.

The transverse position is shown in thg plane along with the andy components. Al-
ternatively, this can represeht, and E, in the electromagnetic wave propagating in the
direction and the totat field. In the upper left-hand corner is the complex two dimensional

vector,
7= (2)
22
that describes the polarization.

You can change; between 1 and 0 with the left and right arrows. You can chiange
between 1 and 0 with the up and down arrows. F1 and F2 decrease and increase the phase of
uo betweenr and —.

12-2 — pages 342-342 —Fhe wandering of the electric field in unpolarized light. The
electric field direction in the-y plane is indicated by the trace. The color of the line changes
occasionally to make it visible.
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Appendix B

Solitons

Consider a system of nonlinear coupled pendulums. In particular, suppose that there is a rigid
rod along the: axis. At regular intervals;, along the rod, there are masses attached to light
rods of length{, connected to the central rod by a frictionless sleeve, so that each one is free
to rotate around the axis of the central rod in a plane of fix&hch such pendulum looks,
in its z-y plane, like the one shown in figuBes. Now finally, assume that each pendulum
bob is connected to those of its two nearest neighbors by springs with spring cihstadt
a small equilibrium length (much less thadtwhich we will ignore!

The lowest energy state of this system of oscillators is one in which all the pendulum
bobs are hanging straight down, as shown in figute

Figure B.1: A finite portion of the infinite system of coupled pendulums in its lowest energy
state. The coupling springs are shown as dotted lines.

YIn this approximation of ignoring the small equilibrium length of the springs, the system of coupled oscilla-
tors gets a linear restoring force from the springs even for rather large displacements. This is what Crawford call
the “slinky approximation.”

447
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For small oscillations about this equilibrium position, this system is approximately linear
and has the dispersion relation:
29 MK ok
w” = 7 + m Sin 5
Interesting things happen when we push this system into the nonlinear regime. There are
other stable equilibrium configurations of the infinite system besides that shown iBfitjure
As in figureB.1, the pendulums must hang straight down as +oo. However, in between
—o0 and+oo, the system may hawwists. In particular, suppose that as we go frem to
+o00, there is a right-handed twist in the system, as shown in Ridre

(B.1)

Figure B.2: A twist, or soliton, in the system of coupled pendulums. The “sizef’the
soliton is shown.

This object is completely stable. The twist cannot be removed without breaking one on
the springs joining the masses. This twist is called a “soliton,” short for solitary wave. Far
from the center of the twist, the angular displacement of the pendulums from the downward
direction falls off exponentially. The soliton has a sigeindicated in figurd.2, which is
the distance in the direction over which the angular displacement is of order 1. The size,

s, is determined by a competition between two physical effects. Gravity would like to have
as many of the pendulums as possible hanging nearly straight down. This tends to make the
soliton shrink to a smaller length in thedirection. However, as the soliton gets smaller,

the difference in angular displacement between the neighboring pendulums in the soliton get
larger, and thus the coupling springs get more stretched. Thus the effect of the coupling
springs is to make the soliton spread out.

We can make an order of magnitude estimatelf making more explicit estimates of
the energy stored in gravitational potential energy and in the potential energy of the springs.
To do this exactly would require knowing the precise solution for the displacements of the
pendulums in the soliton, which we will not try to work out. But we can estimate the order
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of magnitude rather easily. To get a general idea, we will assume that the angular displace-
ments from one pendulum to the next are roughly equal inside the soliton where the angular
displacements are large.

First, consider the gravitational potential energy. The number of masses that are signifi-
cantly displaced in the twist is of the order

n =

(B.2)

SIS

The masses are raised above their lowest position by betveset2/, depending on where
in the soliton they are. On the average, they are raised by@Bduis the total gravitational
potential energy stored in the soliton is of order

PEq ~ nmgt ~ ™95 (B.3)
a

As we anticipated, the gravitational potential energy grovssmseases.

Now, let us consider the potential energy stored in the springs. The angles of the pendu-
lums change by a total @fr as we go through the soliton. Thus from (B.2) and the assump-
tion that the displacements are approximately uniform, we find that the angular displacement
from one rod to the next is of the order of
_2m _2ma

N (B.4)
n s

Al

The length of the stretched spring is thus

~ Ve AP & \fa? + An2a2]s? (B.5)

The change in the potential energy from the downward position of a single spring is then

1 1
~ §K (a2 + 47r2a2€2/52) — §Ka2 ~ 2Kn?a?0?/s% . (B.6)

The total change in the potential energy instregretched springs is (from (B.2) and (B.6))
PEy ~ 2Kr%al?/s. (B.7)

Again, we anticipated the result. The potential energy stored in the springs decreases as
increases.
The total energy of the soliton, from (B.3) and (B.7), is

mgls

PE ~ + 2Kn%al?/s. (B.8)
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The soliton will adjust itself to minimize this total potential energy. We can find the minimum
by differentiating with respect toand setting the result to zero:

PE
d ~ mgt 2K m2al?/s? (B.9)
ds a
which implies
K
s~ Ta K . (B.10)
mg

The soliton is particularly interesting in the continuum limit. The limit of this system as
a — 0 is a light, elastic ribbon, attached by a flexible sleeve to the rod onakis and
weighted along the other side of the ribbon. The soliton exists for the continuous ribbon.
The size can obtained by taking the continuum limit of (B.10), in the sense of chapter 6. The

result is
TV
s~ —, (B.11)
Py

whereT = Ka is the tension in the elastic ribbon, gnis the linear mass density of the
weighted ribbon.

There is an interesting difference between properties of the soliton in the continuous
and the discrete cases that points up the differences between nonlinear and linear systems.
We have seen in our study of linear systems that the discrete space translation invariance
of a discrete system and the continuous space translation invariance of a continuous system
have very similar implications. Both lead, through the magic of linearity, to modes of the
form e****_ However, for the nonlinear system, there is an important difference between the
discrete and continuous case. In the discrete case, equilibrium soliton solutions exist only
for discrete positions of the center of the soliton. There are an infinite number of possible
positions, separated by multiples @f But in the continuous case, the space translation
invariance of the continuous system ensures that the center of the soliton can sit anywhere
and be equally happy. This implies, in turn, that the soliton can move at constant velocity
along the rod in the direction.

The soliton behaves, in many ways, like a particle. We have seen that this is also true
of a wave packet in a linear system. However, the important difference between a soliton
and a wave packet is that the soliton never dissipates. It is held together indefinitely by the
nonlinear interactions.



Appendix C

Goldstone Bosons

Consider an infinitely long rope, stretched along thaxis fromz = —oo t0 co. We

have seen that this system has space translation invariance for translationsdivebton.
Because the system is linear for small oscillation, this implies, by the arguments chapters 4
and 5, that the normal modes are exponential waves of the form

eii(k’m$wt) . (C 1)

Spontaneous Symmetry Breaking

But the rope system has a much more subtle and even more interesting symmetry. The rope
lives in three-dimensional space, and the laws that govern its motion are invariant under
translations in thg andz direction, as well as the direction. However, the rope, stretched

in thex directions, sits at some definite valuey@ndz. Whereas, for an infinite, featureless

rope, you cannot tell when it movesandirection, you see it moving immediately if it is
moved in the transverse directiopsandz. In a situation like this, thg and z translation
invariance is said to be spontaneously broken.

A symmetry is said to be spontaneously broken if the underlying laws of nature are sym-
metrical, but the lowest energy state of the system is not. A simple example is a pencil
balanced on its tip. This is a system in unstable equilibrium. The slightest nudge in any
direction will cause the pencil to fall. But which way does it fall? The pencil is perfectly
symmetrical under rotation about an axis through the center of its lead. Thus all directions
are equally good. Nevertheless, the pencil does fall. Some random direction is picked out by
the small fluctuations that cause the pencil to fall. Any direction is a good as any other. But
once the direction is picked out, the pencil falls that way and the rotation symmetry of the
unstable state, and of the underlying physical laws is spontaneously broken when the pencil
is lying on its side in a lowest energy state. In the same way, the stretched rope must pick out
some definite value af andz. Any values will do.
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You might think that we could not get any useful information out of a symmetry, like the
y andz translation symmetry of the rope that is spontaneously broken. But despite the fact
that the position of the rope breaks the symmetry, the invariance of the underlying laws of
motion undely andz translations has an important consequence. It implies that the dispersion
relation of the rope has the property that> 0 ask — 0. The point is that we can move
the entire, infinite rope in thgor z direction, with no restoring force, because the symmetry
guarantees that the rope is equally happy to sit at any vajuenaf:. Therefore, as we make
k smaller and smaller in the wave madé(*>F«1)  so that the wavelength of the waves gets
larger and larger, the restoring force, and therefore the angular frequegetp smaller and
smaller, going to zero in the limit— 0.

In other words, the spontaneously broken symmetry actually gives you a different kind
of information. It tells you something important about the dispersion relation:

w—0 as k—0. (C.2)

The rope can carry traveling waves of arbitrarily low frequency. There is no low frequency
cut-off. This is the dynamical consequence of the spontaneously broken translation symme-
try.

In quantum mechanics, these waves correspond to particleg withk andE = hw.
And waves for whiclw — 0 ask — 0 correspond to massless particles which travel at the
speed of light in a relativistic world.

The fact that these massless particles are an inevitable consequence of a spontaneously
broken symmetry in a relativistic theory is called the “Goldstone Theorem,” in honor of one
of the first particle physicists to state it clearly. The massless particles themselves are called
Goldstone bosons.
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