
1 In Pd, help patches are asso-
ciated with their abstraction by
saving the former to a .pd file
whose name is identical to that
of the latter, except that it has -
help appended to the common
base name (e.g., mypatch.pd and
mypatch-help.pd). If Pd finds a
help patch of this name in its
search path, it will open it au-
tomatically whenever the user
right-clicks and selects Help

21M.380 Music and Technology
Sound Design

Pd assignment 2 (pd2)
Abstractions
Due: Monday, February 29, 2016, 9:30am
Submit to: MIT Learning Modules

on
an instance of the abstraction.
You can also prepend help- to the
base name, but I do not recom-
mend it, since doing so will result
in abstraction and help patch not
being shown next to each other
in alphabetically sorted lists (e.g.,
file browsers).

Assignments
5% of total grade

1 Instructions

Write the following abstractions in Pd according to the specifica-
tions provided. Each abstraction must be accompanied by its own
help patch.1 Submit your assignment as a single .zip archive that
includes no directories, one .pd file for each abstraction and one
for each help patch.

1.1 BPM-to-ms converter

Names to be used

• Abstraction: bpm2ms.pd

• Help patch: bpm2ms-help.pd

Desired functionality Translates a BPM (beats per minute) value
to a time interval between two beats in ms (suitable for setting the
[metro] object in a sequencer).

Creation argument

• $1 represents the initial BPM value. Decimal points should be
ignored.

Inlets

• The right inlet accepts integers to override the initial BPM value
set by $1. Again, any decimal points should be ignored. Chang-
ing this inlet should not yield any output immediately (cold
inlet).

• A [bang(message to the left inlet should result in the current
conversion result being output at the outlet.

1 of 5

21M.380, pd2 assignment

𝐴(𝑡)

𝑡

Figure 1. Sawtooth wave (up)

𝐴(𝑡)

𝑡

Outlet

• The abstraction’s only outlet should produce the time interval
in ms that corresponds to the current BPM value whenever it
receives a [bang(at its left inlet. In addition, it should once
output the ms value that corresponds to the initial BPM value
specified by $1 directly after the abstraction is loaded. If no $1
has been specified, no ms value should be output at load. Under
no circumstances should the abstraction generate any output
while the current BPM value is equal to zero.

1.2 Sawtooth oscillator

Names to be used

• Abstraction: saw~.pd

• Help patch: saw~-help.pd

Desired functionality Provides a sawtooth waveform at audio
rate that oscillates between and . Note that this is similar
to, but different from [phasor~]

−1

+1
, which

+1

0
provides a sawtooth signal

that oscillates between and .

Creation arguments

• $1
440
specifies the oscillator’s initial frequency in Hz and defaults

to if not provided.

• $2 should be either of two symbols (strings), up or down, which
specifies the direction of the sawtooth as shown in figures 1 and
2. The waveform shape should default to up if no argument is
povided, or if the argument matches neither up nor down. In
either case, an informative warning message should be printed
to the main Pd window.

Inlet

• The abstraction’s only inlet should allow to override the initial
frequency specified by $1.

Figure 2. Sawtooth wave (down)

Outlet

• The abstraction’s only outlet should provide the sawtooth signal.

2 of 5

21M.380, pd2 assignment

1.3 Sine object at audio signal rate

Pd vanilla includes a [cos~] object that
2𝜋

calculates the cosine of the
incoming audio signal multiplied by . A corresponding [sin~]
object is absent from Pd vanilla, but can easily be derived, which is
your task for this abstraction. You can confirm that your abstraction
works by plugging it into the patch by Farnell (2010) that is shown
in figure 17.5 of the book.

Names to be used

• Abstraction: sin~.pd

• Help patch: sin~-help.pd

Desired functionality Calculates the sine of an incoming audio
signal times 2𝜋, analogous to the [cos~] object.

Creation arguments This abstraction does not have any creation
arguments.

Inlet

• The abstraction’s only inlet is the input audio signal.

Outlet

• The abstraction’s only outlet should provide the audio signal
that represents the result of the calculation.

2 Assessment criteria

Functionality How closely do your abstractions stick to the speci-
fications outlined above? Do they behave as expected?

Readability of abstraction How easy is it to understand the inter-
nals of your abstractions by looking at their code? Have you
visually organized the patch in a clean manner? Are there
comments to clarify the patch’s behavior?

Quality of help patch How well does the help patch illustrate the
usage of the respective abstraction? Can the user understand
what the abstraction does from a quick glance at the help
patch? Is the entire functionality of the abstraction explained
in the help patch, including all inlets, outlets, and creation

3 of 5

21M.380, pd2 assignment

arguments, and the latters’ defaults? Can a user actually try
all of these different behaviors in practice through the help
patch without having to edit it?

3 Code documentation guidelines

Students are sometimes confused as to what kind of documenta-
tion and comments should go in the help patch, and what in the
abstraction itself. Here are some recommendations.

The help patch accompanying an abstraction should showcase the
abstraction as a ‘black box’ to a user who need not be con-
cerned with the details of its actual implementation. It can
also serve you as a testbed for debugging purposes as you
develop your abstraction.

Documentation inside the abstraction itself should target devel-
opers who do need to understand the details of the abstrac-
tion’s implementation for the purpose of debugging, fixing,
or extending its behavior. Often this will include yourself,
and it is worth including such documentation inside an ab-
straction even if you will remain its only developer. Do not
underestimate how quickly you will forget how exactly you
solved a specific problem!

These recommendations have some more specific implications:

• The help patch should include a verbal description of the ab-
straction’s behavior (very much like the specifications provided
above), but it should also allow the user to test all aspects of
this behavior in actual practice. For this you may well want
to include multiple instances of the relevant abstraction, e.g.,
once with and once without a creation argument, in order to
demonstrate default values.

• By extension, the abstraction itself should not include any code
that merely serves demonstration or debugging purposes. In
most cases, such code will just unnecessarily burn additional
CPU cycles once your abstraction is put into action. Remove any
such superfluous code before you complete and submit your
abstraction.

• That being said, it is still meaningful to document the abstraction
itself through comments that explain the nuts and bolts that a
more casual user is not interested in, but a developer will be.

4 of 5

21M.380, pd2 assignment

For example, you might implement a mathematical equation in
your abstraction, which can become hard to read once given as
Pd code. In these situations, it is meaningful to spell out the
equation as a comment, even if just to remind yourself of it.

• As you develop an abstraction, you will typically want to embed
an instance of it into a parent patch for debugging and testing
purposes. So why not turn this into your future help patch right
from the beginning? I recommend that you create a help patch
with any abstraction that you start to design. This is much more
rewarding than considering the help patch an afterthought.

• Do not duplicate code from the abstraction’s internals in the help
patch. The help patch’s purpose is to showcase its behavior, not
how this behavior is implemented.

• Do not write help patches that output any audio. However, if
you have a good reason to let your help patch output audio, do
not write help patches that output audio at full-scale level and
make sure they do not output audio automatically whenever
they are loaded.2 2 Imagine a public live-coding

performance in which you need
to check an object’s help patch,

References and useful resources and boom… you just sent a
100 dB tone at 1 kHz to the PA sys-

Farnell, Andy (2010). Designing Sound. Cambridge, MA and Lon- tem.

don: MIT Press. 688 pp. isbn: 978-0-262-01441-0. mit library:
001782567. Hardcopy and electronic resource.

5 of 5

https://library.mit.edu/item/001782567

MIT OpenCourseWare
http://ocw.mit.edu

21M.380 Music and Technology: Sound Design
Spring 2016

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Instructions
	BPM-to-ms converter
	Sawtooth oscillator
	Sine object at audio signal rate

	Assessment criteria
	Code documentation guidelines

