Gas exchange Processes

To move working fluid in and out of engine
» Engine performance is air limited
» Engines are usually optimized for maximum

power at high speed

Considerations

» 4-stroke engine: volumetric efficiency
« 2-stroke engine: scavenging/ trapping efficiency
» Charge motion control; tuning; noise

Typical valve timing diagram

'V? EVC
(-15t0 0 atd?:) (0 to 15° atdc)

Ve EVO

(30 to 50°abdc) ¢ (30 to 50° bbdc)

« Early EVO

— Facilitates exhaust gas
outflow via blow down

— Incomplete expansion
+ Late IVC

— High speed: ram effect
augments induction

— Low speed: air loss by
displacement flow

— Lower effective
compression ratio

Note that for typical passenger car engine, max piston speed is at ~70° from TDC
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Volumetric efficiency: quasi-static effects

* Residual gas
— Affected by:

»Compression ratio

»Exhaust gas temperature

»Exhaust to intake pressure ratio
— Impact:

»Volumetric efficiency

»Charge composition

»Charge temperature
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Volumetric efficiency: quasi-static effects

(cont.)

» Evaporative cooling effect

— Higher charge density increases volumetric
efficiency

— Adiabatic evaporation in air to form A=1
mixture:
»|so-octane: AT =-19°C
>Ethanol: AT =-80°C 7 joucr (i anc iower
»Methanol: AT = -128°C } stoichiometric air/fuel ratio
— In practice, most heat from the wall unless
direct injection is used

Volumetric efficiency: quasi-static effects

(cont.)

 Air displacement by fuel and water vapor

V, is volume inducted
P, is intake pressure
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Fig. 6.3 Equivalence ratio ¢
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Volumetric Efficiency: dynamic effects

Friction
— Component i pressure drop due to
friction:
»Vi = Fluid velocity
> & = Loss coefficient

APi = &Jipviz
Scaling:
A l
Vi oC SP ?T, E-’i oC EI
AP ~ pSi 25 or o pSi é

Flow loss in gas exchange process
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EZ3 valve flow work
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Intake flow loss

Fig. 13-15
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Volumetric Efficiency: dynamic effects
cont.

Ram effect
— Due to fluid inertia
— Intake and exhaust flow both exhibit effect
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Volumetric Efficiency: dynamic effects
cont.

Tuning
— Helmholtz frequency N _a A

=V [
|

- a sound velocity

-/ runner length

-V volume V
» Application:

— V taken as V,/2
— Correction factor k=2

_a A1
“2n\ oV K




Volumetric Efficiency: dynamic effects
cont.

Choking effect
— Velocity becomes sonic at “throat”

(r+1)/[2(+-1)]
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Meoked =A P1 RYF (Y+J
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P1 critical v+ 1

=0.528 for y =1.4; increases with y

P,/P,

Volumetric Efficiency: dynamic effects
cont.

Overlap back flow

— Back flow of burned gas from
exhaust/cylinder to intake port

— Increases residual gas fraction
— Prominent at low speed and load
Heat transfer

— Loss in 1, because intake charge is heated

up by the hot walls

— Prominent at low speed because of longer
time (overrides lower rate)




Volumetric efficiency: summary
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2-Stroke engine gas exchange

Cross Loop Uniflow
scavenging scavenging scavenging

Fig. 6-23 & 24
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Uniflow scavenging
b process
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2-Stroke engine gas exchange

_ Air mass delivered per cycle
Pa,OVD

Air mass retained

Air mass delivered

Delivery ratio A

Trapping efficiency n, =

Air mass retained
ma = pa,OVDAnt

Air mass retained
Trapped charge mass

Scavenging ratio n, =

1 — 4 is the fraction of previous cycle charge that remains




2-stroke engine

HSC gas exchange
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