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Figure 1-8

Sequence of events in four-stroke spark-ignition engine operating cycle.
Cylinder pressure p (solid line, firing cycle; dashed line, motored cycle),
cylinder volume V/V,,,, and mass fraction burned x, are plotted against
crank angle.
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Pressure-volume diagram

/ Peak pressure at 14-17° atdc for MBT
35 T T -
4

T T T T T T T
30 + —
5 4

20 -

L) 10 / b
Optimal spark timing /

is a function of
operating condition 0 D Y

ylinder pressure,. p/p;

0.0 0.2 0.4 0.6 0.8 1.0

Cylinder volume/V,

max

Fig. 5-1 Pressure-volume diagram of firing Sl engine; compression ratio=8.4, 3500 rpm,
intake pressure = 0.4 bar, Net IMEP = 2.9 bar
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Ideal models of engine processes

Table 5.1
Process Assumptions
Compression (1-2) 1. Adiabatic and reversible (hence isentropic)
Combustion (2-3) 1. Adiabatic

2. Combustion occurs at
(a) Constant volume
(b) Constant pressure
(¢) Part at constant volume and part at constant
pressure (called limited pressure)

3. Combustion is complete (n_ = 1)
Expansion (3-4) 1. Adiabatic and reversible (hence isentropic)
Exhaust (4-5-6) 1. Adiabatic
and 2. Valve evenls occur at top- and bottom-center
intake (6-7-1) 3. No change in cylinder volume as pressure

differences across open valves drop to zero
. Inlet and exhaust pressures constant
. Velocity effects negligible
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Different ideal cycles
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Fig 5.2 Pressure-volume diagrams of ideal cycles
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Ideal constant volume combustion cycle
fuel conversion efficiency
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y = specific heat ratio
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Factors affecting fuel conversion efficiency

These ideal engine cycle analysis results show that expansion
ratio r, and gas composition (through y the ratio of specific
heats) both affect the cycle’s fuel conversion efficiency because:

1. The expansion ratio (which may or may not equal to the
compression ratio) determines how much work is
extracted over the expansion stroke.

2. The higher the value of y the more the temperature falls
during expansion, the larger the energy change and hence
the larger the expansion stroke work.

3. The compression stroke work is of order one-sixth of the
expansion stroke work so expansion stroke work effects
dominate.
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Miller cycle

 Late intake valve closing
— Effective compression ratio is less than
expansion ratio p
+ Advantages 3
— Lower compression
temperature
» Better knock
tolerance
» Lower NOx

emission

» Drawback
— Reduced trapped charge mass: loss in max power
— Compensated for by turbo-charging or hybrid operation

Effects of compression ratio

+ Theoretical efficiency n; increases with CR

» Sl engine CR limited by knocking to 12 (13 with direct
injection

 Practical n; values decreases at high CR
—Heattransfereffect
— Crevice effect
— Dissociation effect
— Friction

» Other considerations for diesel engines
— Peak pressure
— NOx emissions
— Startability

Practical diesel engines have CR between 14 and 22




Effect of compression ratio
on fuel conversion efficiency
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