Diesel injection, ignition, and fuel air mixing

1. Fuel spray phenomena
2. Spontaneous ignition

3. Effects of fuel jet and charge motion on mixing-
controlled combustion

4. Fuel injection hardware
5. Challenges for diesel combustion

DIESEL FUEL INJECTION

The fuel spray serves multiple purposes:
+ Atomization

* Fuel distribution

+ Fuel/air mixing

Typical Diesel fuel injector

* Injection pressure: 1000 to 2200 bar

* 510 20 holes at ~ 0.12 - 0.2 mm diameter

* Drop size 0.1 to 10 um

» For best torque, injection starts at about 20° BTDC
Injection strategies for NOx control

+ Late injection (inj. starts at around TDC)

» Other control strategies:
» Pilot and multiple injections, rate shaping, water emulsion




Diesel Fuel Injection System

(A Major cost of the diesel engine)
* Performs fuel metering
» Provides high injection pressure
+ Distributes fuel effectively
— Spray patterns, atomization etc.
* Provides fluid kinetic energy for charge mixing
Typical systems:
* Pump and distribution system (100 to 1500 bar)
* Common rail system (1000 to 1800 bar)
» Hydraulic pressure amplification
* Unit injectors (1000 to 2200 bar)
» Piezoelectric injectors (1800 bar)
 Electronically controlled

EXAMPLE OF DIESEL INJECTION

(Hino K13C, 6 cylinder, 12.9 L turbo-charged diesel
engine, rated at 294KW@2000 rpm)

* Injection pressure = 1400 bar; duration = 40°CA
« BSFC 200 g/KW-hr

» Fuel delivered per cylinder per injection at rated
condition

— 0.163 gm ~0.21 cc (210 mm3)
» Averaged fuel flow rate during injection
— 64 mm3/ms
* 8 nozzle holes, at 0.2 mm diameter
— Average exit velocity at nozzle ~253 m/s




Typical physical quantities in nozzle flow

* Diesel fuel @ 100°C

& — s.g. ~ 0.78, p~5x10* N-s/m?
L * Nozzle diameter ~0.2 mm
x—. u « L/d~5t0 10
__ « Reynolds No. ~ 105 (turbulent)
d * Pressure drop in nozzle
~30 bar << driving pressure
(~1000 bar)

* Injection velocity

u~ f 24P ~ 500 m/s @ AP of 1000 bar
Ptuel

Fuel Atomization Process

 Liquid break up governed by balance between
aerodynamic force and surface tension

2
u“d
Webber Number (W, )= Pgas

« Critical Webber number: Wy, ..o ~ 30; diesel fuel

surface tension ~ 2.5x10-2 N/m

- Typical W, at nozzle outlet > Wy, ...; fuel shattered

into droplets within ~ one nozzle diameter

» Droplet size distribution in spray depends on further
droplet breakup, coalescence and evaporation




Droplet size distribution

f(D) Size distribution:

f(D)dD = probability of finding
particle with diameter in
the range of (D, D + dD)

1= Tf(D)dD

D
Average diameter Volume distribution
_ = 1dv f(D)D?
D = [f(D)DdD v 2 .
0 j f(D)D%dD
0
Sauter Mean Diameter (SMD)
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0
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Fig. 10.28 Droplet size distribution measured well downstream; numbers on the curves are
radial distances from jet axis. Nozzle opening pressure at 10 MPa; injection into air at 11 bar.
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Droplet Behavior in Spray

Small drops (~ micron size) follow gas stream;
large ones do not

— Relaxation time t « d?

Evaporation time oc d?

— Evaporation time small once charge is ignited
Spray angle depends on nozzle geometry and
gas density : tan(6/2) < V (pgas/Piiquic)

Spray penetration depends on injection

momentum, mixing with charge air, and droplet
evaporation

Spray Penetration: vapor and liquid (rig. 10-20)
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Auto-ignition Process

PHYSICAL PROCESSES (Physical Delay)
» Drop atomization

» Evaporation

» Fuel vapor/air mixing

CHEMICAL PROCESSES (Chemical Delay)
» Chain initiation

» Chain propagation

» Branching reactions

CETANE IMPROVERS
» Alkyl Nitrates
— 0.5% by volume increases CN by ~10

Mixture cooling from heat of vaporization
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Ignition Mechanism: similar to Sl engine knock

CHAIN BRANCHING EXPLOSION

Chemical reactions lead to increasing number of radicals,
which leads to rapidly increasing reaction rates

Formation of Branching Agents

Chain Initiation ROZ +RH = ROOH + R
RH+0; =R+HO; RO, =RCHO+R"0
Chain Propagation Degenerate Branching

R+ O, = ROZ, etc. ROOH = RO+ OH
R'CHO+0, = R'CO + H02

Cetane Rating

(Procedure is similar to Octane Rating for S| Engine; for details,
see10.6.2 of text)

Primary Reference Fuels:

» Normal cetane (C;¢H3,): CN =100

» Hepta-Methyl-Nonane (HMN; C,gH;,): CN =15
(2-2-4-4-6-8-8 Heptamethylnonane)

Rating:

» Operate CFR engine at 900 rpm with fuel

» Injection at 13° BTC

» Adjust compression ratio until ignition at TDC

» Replace fuel by reference fuel blend and change blend proportion to
get same ignition point

» CN = % n-cetane + 0.15 x % HMN




Ignition Delay

Ignition delays measured in a
small four-stroke cycle DI
diesel engine with r.=16.5, as a
function of load at 1980 rpm, at
various cetane number

Ignition delay, ms

(Fig. 10-36)
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Fuel effects on Cetane Number (Fig. 10-20)
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Ignition Delay Calculations

+ Difficulty: do not know local conditions (species concentration
and temperature) to apply kinetics information

Two practical approaches:
+ Use an “instantaneous” delay expression

1(T,P) = P"exp(-EA/ T)

and solve ignition delay (t;4) from

1= ftts.i‘”id ;dt
si T(T(t),P(1))
» Use empirical correlation of t;; based on T, P at an appropriate
charge condition; e.g. Eq. (10.37 of text)

_ 1 1 21.2 0.63
4(CA)=(0.36 +0.22S / Ea(= -
Tid(CA) = ( + p(m/s))exp A(RT(K) 17190))+(P(bar)—12.4)

E, (Joules per mole) = 618,840 / (CN+25)

Diesel Engine Combustion
Air Fuel Mixing Process

* Importance of air utilization
— Smoke-limit A/F ~ 20

* Fuel jet momentum / wall interaction has a larger influence
on the early part of the combustion process

+ Charge motion impacts the later part of the combustion
process (after end-of-injection)

CHARGE MOTION CONTROL

* |Intake created motion: swirl, etc.
— Not effective for low speed large engine

» Piston created motion - squish




Interaction of fuel jet and the chamber wall
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Interaction of fuel jet with air swirl

Nozzle hole

Core Upstream edge

Schematic of fuel jet —
air swirl interaction; ®
is the fuel equivalence
ratio distribution

Fig. 10-22

/\\ // Air swirl

Downstream edge ~ -
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Rate of Heat Release in Diesel Combustion
(Fig. 10.8 of Text)
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DIESEL FUEL INJECTION HARDWARE

» High pressure system

— precision parts for flow control
» Fast action

— high power movements

Expensive system
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FUEL METERING AND INJECTION SYSTEM -
CONCEPT

Plunger Process:
o Fill
* Pressurize
Fuel in Fuel spill | . t
* Injec

- Spill

Fuel injection

Fuel Delivery Control

Fig. 3: Plunger-stroke phases

1 Bottom 2 Prestroke | 3 Retraction |4 Effeclive 5 Residual | 6 Top dead
dead center stroke stroke stroke center
(BDC) (TDC)
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tion pump's | closure of the | the prestroke | of the delivery | of the inlet
fuel gallery inlet port by until the deli- | valve to open-| port to TDC A Total stroke
andintothe | the top edge | very vaive ing of the inlet
high-pressure | of the plunger | opens (oniy if | port by the
chamber of (variable de- | a constant- plunger helix
the plunger- | pending upon | volume valve | {overflow).
and-barrel plunger-and- | is used).
assembly. barret
assembly).
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Fig. 4: Fuel-defivery control .
Using a toothed control rack. a) Zero delivery. b} Partial defivery. c) Maximum delivery.
1 Pump barrel. 2 Intet port. 3 Pump plunger. 4 Helix. 5 Controf rack.

Fuel Rack and In-line
Pump

S
1 MMW‘ \ From Diesel Fuel Injection,
el -

Robert Bosch GmbH, 1994

P

Fig. 1: PES in-line fuel-injection pump

1 Delivery-valve hoider, 2 Filler piece, 3 Delivery-valve spring. 4 Pump barrel, 5 Deiivery valve. 6 Inet port

and spill port, 7 Control helix, 8 Pump plunger, 9 Control sleeve. 10 Plunger control arm, 11 Plunger
oring, 12 Spring seat, 13 Roller tappet. 14 Cam, 15 Control rack.
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— Diesel Injector

z f, / e Fig. 2: Nozzle shapes

1 Throttling pintle nozzle,

—

L U | i 2 Throttling pintle nozzle with flat-cut pintle, 1
P |/ 2a Side view, 2b Front view,
H 3 Hole-type nozzle with conical blind hole,
e 4 Hole-type nozzle with cylindrical blind hole,
o 10 5 Seat-hole nozzle.
3

&l
o i
v

! Fig. 5: Nozzie-and-holder assembly
| With hole-type nozzie.
1 Iniet. 2 Nozzle-holder body, 3 Nozzle-retaining nut.,
¥ j 4 Intermediate element, 5 Injection nozzie.
6 Union nut with high-pressure fine,
7 Edge filter, 8 Leak-off connection,
9 Pressure-adjusting shims, 10 Pressure passage.
11 Pressure spring, 12 Pressure pin,
y 13 Locating pins.
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Electronic Unit Injector
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SAE Paper 891001
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Injection pressure

+ Positive displacement injection system

— Injection pressure adjusted to accommodate plunger
motion
— Injection pressure oc rpm?

* Injection characteristics speed dependent
— Injection pressure too high at high rpm
— Injection pressure too low at low rpm
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Common Rail Fuel Injection System
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Common Rail Injector

Injector (schematic)

a Injector closed 3 Tiggering element 7 Feed orifice,
(at-rest status) (solenoid valve) 8 Valve control chamber,
b Injector opaned 4 Fuel inlet (high pressure) 9 Valve control plunger,
(injection) from the rail, 10 Feed passage
1 Fuel return § Valve ball, 1o the nozzle,
2 Electrical connection, 6 Bieed orifice, 11 Nozzle needle.

Nozzle opening speed controlled by the
flow rate difference between the Bleed (6)
and Feed (7) orifices

st From Bosch: Diesel Engine Management
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Caterpillar Hydraulic Electronic Unit Injector (HEUI)
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Piezoelectric injectors

Piezo actuator module

Coupling module

For both diesel and GDI applications

Up to 180 MPa injection pressure

* 5 injections per cycle

* In vehicle production already

» Suppliers: Bosch; Delphi; Denso; Siemens; ...
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Split Injection (SAE Paper 940668)
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Split injection cfd simulation
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CHALLENGES IN DIESEL COMBUSTION

Heavy Duty Diesel Engines
* NOx emission

Particulate emission

* Power density

* Noise

High Speed Passenger Car Diesel Engines
» All of the above, plus
— Fast burn rate

Cavitation in Injection Nozzle

» Cavitation happens when local pressure is
lower than the fluid vapor pressure
 Effects
— Discharge rate
— Affects the spray angle
— Damage to the nozzle passage
 Factors affecting cavitation
— Combustion chamber pressure
— Local streamline curvature within the nozzle

18



Flow process that leads to cavitation

Pmin
=~ P-AP,+AP;

Cavitation
occurs if
Pmin < fuel
saturation
pressure
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Flow separation
(recirculation region)

Flow reattachment

Bernoulli drop

APy = Y2 pg (us2-uy?)

Y2 pr u? [ (AgfAq)?-1]
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| — further friction drop AP;

Combustion chamber pressure
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