
18.786 PROBLEM SET 5 

(1) Given an example of an acyclic1 complex that is not homotopy equivalent to the zero 
complex. 

(2) Let � “ �‚ and � “ � ‚ be complexes of abelian groups. We define their tensor 
product as the complex � b � “ p� b � q‚ where: 

�
p� b � q “ ‘ �`�“��

� 
b � � 

with differential: 

�p� b �q :“ �� b � ` p´1q� � b �� 

for � P �� , � P � � , � ` � “ �. 

(a) Show that this actually defines a complex, i.e., that the above formula really 
does a map, and that the resulting differentials square to zero. 

(b) Briefly, why do we need to incorporate the sign above? Use the sign in the tensor 
product to explain why we should have a sign in the shift operator, i.e., why we 
change the sign of the differential when defining �r1s. 

(c) Show that � b � is canonically isomorphic (as a complex) to � b �. 
(d) Suppose that � P �� and � P � � with �� “ 0, �� “ 0. Show that �p� b �q “ 0. 

Deduce that there is a canonical map: 

‘ �`�“��
� 
p�q b ��

p� q Ñ � �
p� b � q. 

Show that this map is an isomorphism if � is a chain complex of Q-vector spaces, 
but provide an example to show that this map is not an isomorphism in general. 

(e) Give an example of a pair of complexes � and � with � acyclic such that � b� 
is not acyclic. 

(3) Let � and � be as above. 
(a) Show that there exists a complex Hom‚

p�, � q “ Homp�, � q characterized by 
the data of isomorphisms:2 

Homp�, Homp�, � qq “ Homp� b �, � q

defined for every chain complex �, with these isomorphisms being functorial in 
�. 

Updated: March 26, 2016. 
1Recall that this means that the cohomology of the complex is zero in each degree. 
2Note that Hom with an underline refers to a certain chain complex, whereas Hom with no underline is 

the set of morphisms of chain complexes. 
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(b) Show that a map of chain complexes � Ñ � is the same as an element � P 
Hom0

p�, � q with �� “ 0. 
(c) For � as above, show that a nullhomotopy of the map �‚ Ñ � ‚ is the same as 

an element ℎ P Hom ´1
p�, � q with �ℎ “ � . 

(d) Deduce that �0pHom‚
p�, � qq is the set of homotopy classes of maps from �‚ 

to � ‚. 
(e) Provide a similar interpretation of � �pHom‚

p�, � qq for all � P Z. 
(f) Suppose that ℎ1 and ℎ2 are each nullhomotopies of some map � : � Ñ � . Define 

a notion of homotopy between ℎ1 and ℎ2. 
(g) Now let � be an associative algebra and suppose that � and � are complexes 

of �-modules. Define complexes of abelian groups � b� � and Hom�p�, � q, 
and show that these are actually complexes of �-modules if � is commutative. 
For �, � and � complexes of �-modules, construct a canonical map: 

Homp�, � q b Homp�, �q Ñ Homp�, �q 

of complexes, and explain how it encodes the composition of morphisms of com-
plexes. 

(4) Let � : � Ñ � be a given morphism of complexes. Recall that in this case, the 
cone (aka homotopy cokernel) hCokerp�q is the complex characterized by the fact 
that giving a map hCokerp�q Ñ � of chain complexes is the same as giving a map 
� Ñ � plus a nullhomotopy of the resulting map � Ñ �. 

Similarly, recall that hKerp�q is the complex characterized by the fact that giving 
a map � Ñ hKerp�q is the same as giving a map � Ñ � plus a nullhomotopy of the 
resulting map � Ñ � . 
(a) Give explicit formulae for these two complexes. Deduce that hCokerp�q “ 

hKerp�qr1s. 

(b) Show that hCokerp� Ý0Ñ 0q “ �r1s. 
(c) Show that there is an exact sequence: 

�0
p�q Ñ �0

p� q Ñ �0
phCokerp�qq. 

(d) Let � denote the map � Ñ hCokerp�q. Show that the canonical map � Ñ 
hKerp�q is a homotopy equivalence. Remark on how different this is from the 
situation with abelian groups (as opposed to complexes of abelian groups). 

(e) Use the above to deduce that there is a long exact sequence: 

. . . Ñ � ´1
phCokerp�qq Ñ �0

p�q Ñ �0
p� q Ñ �0

phCokerp�qq Ñ �1
p�q Ñ . . . 

(f) Suppose that � and � are complexes concentrated in degree 0, i.e., � � “ � � “ 0 
for � ‰ 0. What is the long exact sequence saying in this case? 

(g) Suppose that we have a commutative square: 
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�1 //�1 �1 

�1 �2 

�� ���2 //�2 �2 

of chain complexes. Use universal properties to show that there is a canonical
` ˘ 

isomorphism of chain complexes between hCoker hCokerp�1q Ñ hCokerp�2q
` ˘ 

and hCoker hCokerp�1q Ñ hCokerp�2q . 
(h) Suppose that � : � Ñ � is a morphism of chain complexes that is injective in 

each degree, i.e., each of the given maps � � : � � Ñ � � is injective. Show that 
the canonical map: 

hCokerp�q Ñ � {� 

is a quasi-isomorphism.3 Here the right hand side is the complex that is � �{� � 

is degree �, with differentials induced by the differentials of � . Give an example 
to show that this map need not be a homotopy equivalence. 

(i) Use (4g) to prove the snake lemma. 
(5) Show that � : � Ñ � is a quasi-isomorphism (resp. a homotopy equivalence) if and 

only if hCokerp�q is acyclic (resp. idhCokerp� q is nullhomotopic). 
(6) Suppose that � : � Ñ � is given, and we have a map � : � Ñ � with two 

nullhomotopies ℎ1 and ℎ2 of the induced map � ˝ � : � Ñ �. We obtain two maps 
�1, �2 : hCokerp�q Ñ � corresponding to ℎ1 and ℎ2 respectively. 
(a) Give an example to show that �1 and �2 may not be homotopic. 
(b) Show that a homotopy between ℎ1 and ℎ2 in the sense of (3f) induces a homotopy 

between �1 and �2. 
(7) Let � “ Z{�Z with generator �. For � a �-module, define the Tate complex � �� 

as the chain complex:4 

ř�´1 ř�´1�� �� 
�“0 1´� �“0 1´�

. . . ÝÝÝÝÝÑ � ÝÝÑ � ÝÝÝÝÝÑ � ÝÝÑ . . . 

Recall that Tate cohomology is defined as the cohomology of � �� . 
Given a short exact sequence: 

0 Ñ � Ñ � Ñ � Ñ 0 

of �-modules, show that there is a canonical quasi-isomorphism: 

hCokerp� �� 
Ñ ���

q » � �� . 

Deduce the long exact sequence on Tate cohomology from here. 

3Recall that a map of complexes � : � Ñ � is a quasi-isomorphism if ��p�q : ��p�q Ñ ��p�q is an 
isomorphism for all �. 

4We should normalize the parity so that the differential from the 0th term to the 1st is 1 ́  � (rather than
ř�´1 

�“0 �
�). 
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(8) Go for a long walk (this weather is so wonderful!), and try to reconstruct as many of 
these problems as you can. E.g., recall the basic facts about cones, and reduce the 
construction of long exact sequences to statements you know you could readily check 
if only you’d brought pen and paper. 

4 



  
 

 
 

    
  

 
 
 

              
 

MIT OpenCourseWare 
https://ocw.mit.edu 

18.786 Number Theory II: Class Field Theory 
Spring 2016 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu/terms
http:https://ocw.mit.edu

