18.335 Midterm, Fall 2013

Each problem has equal weight. You have 1 hour and 55 minutes.

Problem 1: GMRES (20 points)

From class, the GMRES algorithm iteratively builds up an orthonormal basis Q_n for the Krylov space $\mathcal{K}_n = \operatorname{span}\langle b, Ab, \dots, A^{n-1}b\rangle$ and then uses this basis to solve $\min_{x \in \mathcal{K}_n} ||Ax - b||_2$.

- (a) We normally assume that each iteration n gives us a linearly independent vector, i.e. that A^nb is not in \mathcal{K}_n . What happens if this is false, i.e. $A^nb \in \mathcal{K}_n$ ("breakdown")? Show that in the (unlikely) event that this occurs, it is a *good* thing, not a bad thing, for solving Ax = b.
- (b) Given an $m \times m A$ (which you can assume to be diagonalizable), how would you (theoretically) construct a b such that breakdown occurs after n < m steps (in exact arithmetic)?

For reference, the GMRES algorithm is listed below.

```
\begin{array}{l} q_1 = b/\|b\|_2 \\ \text{for } n = 1, 2, \dots \\ \\ v = Aq_n \\ \text{for } j = 1, 2, \dots, n \\ \\ h_{jn} = q_j^* v \\ \\ v = v - h_{jn} q_j \\ \\ h_{n+1,n} = \|v\|_2 \\ \\ q_{n+1} = v/h_{n+1,n} \\ \\ \text{solve } \min_{x \in \mathscr{K}_n} \|Ax - b\|_2 \implies \min_{y \in \mathbb{C}^n} \|\tilde{H}_n y - e_1\|b\|_2 \ _2 \implies x_{n+1} = Q_n y \end{array}
```

Problem 2: Conditioning (20 points)

The following parts can be solved *independently*.

- (a) Suppose that A is an $m \times n$ matrix (of rank n < m). In some applications, only certain elements C_{ij} of $C = (A^*A)^{-1}$ are required. If you are given a few desired i and j, outline an efficient, well-conditioned algorithm to compute those C_{ij} . (You can use as subroutines any of the algorithms described in class...you need not reproduce their details here.)
- (b) Compare the condition numbers of f(x) = Ax and f(A) = Ax (for $A \in \mathbb{C}^{m \times n}$ and $x \in \mathbb{C}^n$), using the L_2 norm (and an L_2 induced norm for matrices).
 - Recall that, for a differentiable function g(z) mapping $z \in \mathbb{C}^p$ to $g(z) \in \mathbb{C}^q$, the condition number is $\kappa(z) = \frac{\|J\|}{\|g(z)\|/\|z\|}$ where $\|J\|$ is the induced norm $(\sup_{z \neq 0} \frac{\|Jz\|}{\|z\|})$ of the Jacobian matrix $J_{ij} = \frac{\partial g_i}{\partial z_i}$.

Problem 3: QR updating (20 points).

Suppose you are given the QR factorization A = QR of an $m \times n$ matrix A (rank n < m). Describe an efficient $O(m^2 + n^2) = O(m^2)$ algorithm to compute the QR factorization of a rank-1 update to A, that is to factorize $A + uv^* = Q'R'$ for some vectors $u \in \mathbb{C}^m$ and $v \in \mathbb{C}^n$, following these steps:

(a) Show that $Q'R' = Q(R + zv^*)$ for some z that can be computed in $O(m^2)$ operations. Therefore, we just need to find a unitary matrix that (acting on the left) re-triangularizes $R + zv^*$ to get R' (and Q', which may be stored implicitly in terms of a sequence of rotations).

- (b) Every column of zv^* is proportional to the same vector z. Using this fact, explain how we can apply Givens rotations (from the bottom row to the top) which rotate z into a multiple of e_1 , in order to convert $R + zv^*$ into **upper-Hessenberg** form using $O(n^2)$ operations. Recall from homework that a Givens rotation is a 2×2 unitary matrix that rotates $\begin{pmatrix} a \\ b \end{pmatrix} \rightarrow \begin{pmatrix} \# \\ 0 \end{pmatrix}$.
- (c) From the upper-Hessenberg form in the previous part, explain how we can unitarily convert back to upper-triangular form in $O(n^2)$ operations.

MIT OpenCourseWare https://ocw.mit.edu

18.335J Introduction to Numerical Methods Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.