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18.335 Midterm Solutions, Fall 2012 

Problem 1: (25 points) 
Note that your solutions in this problem don’t require you to know how sin, ln, and Γ are calculated on a 
computer, because the answers rely on properties of the functions (and of floating-point arithmetic in general, 
of course), not of the algorithms to compute the functions. (Contrary to what many students assumed, Taylor 
series are not the only way to compute special functions like this, nor are they usually the best way except 
in limiting cases, nor should you generally use the same Taylor series for all x.) 

f 0(x) cosx (a) The condition number of f (x) = sin(x) is κ(x) = = x . As x → 0, κ(x) → 1 (since f (x)/x sinx 
sinx → 1), so it is well conditioned near x = 0 and we should expect an accurate answer is possi-x 
ble even if there is a small (relative) rounding error in x. In particular, the Taylor expansion of sinx 
near x = 0 clearly becomes more and more accurate as x → 0, in which limit sinx ≈ x and the function 
f (x) = x can obviously be computed accurately (with the forward error approaching the relative error 

sinx in x). On the other hand, x → 2π , → 0 and hence κ(x) → ∞: the problem is ill-conditioned near x 
2π and a small forward error may not be possible, depending upon how we define the problem. 

In particular, if x contains a small relative error, e.g. because it was rounded from a non-representable 
real number, then we should not expect a small forward error near 2π: the large condition num-
ber means that a small error in x produces a large error in sinx. For example, for x = 2π + δ with 
δ ∼ εmachine, a roundoff error to x̃ = 2π + δ + εmachine will roughly double the magnitude of 
sin(x), giving a relative error of order 1. 

If the input x is exactly computed in floating point, on the other hand then it is possible to com-
pute an accurate answer. Suppose that we computed sin(x) near x = 2π by first computing y = x − 2π 
and then computing siny. If we naively computed y by y = x fl(2π), we could easily get a large can-
cellation error in computing y since 2π is not exactly representable. However, if we instead computed 
fl(x − 2π) = (x −2π)[1+ O(εmachine)], e.g. by performing the subtraction in a higher precision, then 
we could obtain a small forward error in siny = sinx. 

(b) For |x| < εmachine, 1 + x will be rounded to 1 and hence log(1+x) would give 0 (a relative error of 
1 for x 6= 0!). Therefore, we need a specialzed log1p(x) function if we wish to compute ln(1 + x) 
accurately for small |x|. 

1/y Equivalently, the function ln(y) has a condition number that diverges as y → 1, making it ln(y)/y 

extraordinarily sensitive to rounding errors in computing the argument y = 1 + x, while the function 
1/(1+x) f (x) = ln(1 + x) has condition number → 1 as x → 0. ln(1+x)/x 

2 3 4 
A possible implementation might use the Taylor expansion ln(1 + x) = x − x 

2 + x 
3 − x 

4 + O(x5) for 
small x, and compute ln(1 + x) directly for larger x. e.g. ( � � � ��� 1 1 x 1− x 2 − x 3 − x |x| < 10−3 

log1p(x) = 4 , 
log(1+ x) otherwise 

2 3 4 
(where for extra niceness I evaluated x − x 

2 + x 
3 − x by Horner’s method). This four-term Taylor 4 

series should be accurate to machine precision for |x| < 10−3. 

[The problem is not points near (slightly bigger than) x = −1. If you want to compute ln(1 + x) 
for such x, there is no way around the fact that you need to know 1 + x accurately to know how close 
the argument of the log is to zero, and cancellation errors will force you to lose a lot of significant dig-
its in finding 1+x if x is not exactly representable. A specialized log1p function won’t help. Note also 
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that if fl(x) > −1, we will obtain 1 ⊕ x > 0 in exactly rounded floating-point arithmetic, so rounding 
won’t change the domain of the function.] 

(c) The problem in this case is not roundoff errors, but overflow. Remember that floating-point uses a 
fixed number of digits for its exponent, so it cannot represent arbitrarily large numbers. (In double 
precision, the maximum magnitude is ≈ 10308). The factorial function, and hence the Γ(x) function, 
grows faster than exponentially with x, so for x & 172 it will overflow and simply give ∞. By defin-
ing a separate gammaln(x) function, Matlab allows you to study the magnitude of the Γ function for 
much larger x (up to x ≈ 10305). 

Note that, if it weren’t for overflow, there wouldn’t necessarily be any severe accuracy problem with 
computing lnΓ(x) by computing Γ(x) first. ln(x) is well-conditioned for large x. The condition number 
of Γ(x) does grow with x, but only relatively slowly (≈ x lnx), so it overflows long before it becomes 
badly conditioned. 

Problem 2: (5+10+10 points) 
(a) A simple example would be k(x,y)k+ = kxk + kyk. Another would be k(x,y)kmax = max(kxk,kyk). p 

More examples are k(x,y)kp = p kxkp + kykp for any p ≥ 1. All of these clearly satisfy the positiv-
ity, scaling, and triangle properties of norms, inheriting those properties from the norms on x and y 
(combined with the same properties of the Lp norm). 

(b) Second =⇒ First, but not the other way around. That is, the Second definition is a stronger require-
ment on f̃ . [Note that, from class, equivalence of norms means that we only need to prove this for one 
choice of k(x,y)k and it follows for all other choices of norm.] 

Suppose that f̃  is backwards stable in the Second sense. Then, using e.g. k(x,y)kmax from above, 
we have k ̃x − xk = kxkO(εmachine) ≤ k(x, y)kmaxO(εmachine) and kỹ − yk = kykO(εmachine) ≤ 
k(x, y)kmaxO(εmachine). Hence k(x̃, ỹ)−(x,y)kmax = max(kx̃−xk,kỹ−yk)= k(x,y)kmaxO(εmachine), 
and First follows. 

The converse is not true, essentially because we can have kxk arbitrarily small compared to k(x,y)k by 
choosing kxk � kyk (or vice versa). From kx̃− xk ≤ k( ̃x, ỹ) − (x,y)kmax = k(x,y)kO(εmachine), we 

k(x,y)k obtain kx̃−xk = kxkO(εmachine). However, it does not follow that k ̃  kxk x−xk = kxkO(εmachine), 

because the prefactor k(x,y)k can be arbitrarily large, and we required the constants in O(εmachine) to kxk 
be independent of x (uniform convergence). 

More explicitly, let us construct a counterexample (not required). Consider f (x,A) = bx∗ + A for 
x ∈ Cn , A ∈ Cn×n , and some fixed b ∈ Cn . It is straightforward to show that this is backwards-
stable in the First sense, by letting x̃ = x and Ã = f̃ (x,A) − bx∗ . i.e. Ãi j = (bi ⊗ x j ⊕ Ai j) − bix j = 
[bix j(1 + ε1)+ Ai j](1 + ε2) − bix j = Ai j + bix j[ε1 + O(ε2 

machine)] + Ai jε2, where |ε1,2| ≤ εmachine. 
Hence |Ãi j −Ai j| ≤ (kxk∞ +kAk∞)O(εmachine) (where kAk∞ = maxi, j |Ai j|) and we have kÃ −Ak∞ = 

Hence it is backwards stable in the First sense. On the other hand, it is not k(x, A)k+O(εmachine). 
backwards stable in the Second sense. Consider inputs A = 0, in which case f (x̃,A) is rank 1 for any 
x̃, but f̃ (x,A) will not be rank 1 due to roundoff errors [similar to pset 2 problem 4(b)(ii)], and hence 

0 0 
> we must have Ã 6= A in order to have f (x̃, Ã) = f̃ (x, A). But then kÃ −�A�7k = kÃk > �kA
�kO(εmachine), 

and therefore it cannot satisfy the Second definition. 

(c) Choose k(x,y)k = kxk1 + kyk1, in which case both the norm and the algorithm f̃ (x,y) are exactly 
equivalent to the summation studied and proved backwards stable in class, applied to a column vector � � 

x ∈ Rm+n . So, it is stable in the First sense. y 
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In fact, it is stable in the Second sense as well! Since it is stable in the First sense, construct (x̃, ỹ) 
with f (x̃, ỹ) = f̃ (x,y) and k( ̃x, ỹ)−(x,y)k∞ = k(x,y)k∞O(εmachine) for k(x, y)k∞ = max(kxk∞,kyk∞). 
Suppose kxk∞ ≥ kyk∞, then it follows that kx̃ − xk∞ ≤ k(x̃, ỹ) − (x,y)k∞ = kxk∞O(εmachine), and 
we only need to prove the corresponding property for ỹ − y, but unfortunately this is not true if 

0 0 kyk∞ � kxk∞. Instead, let us construct a new pair (x̃ , ỹ0) with f (x̃ , ỹ0) = f (x̃, ỹ) = f̃ (x,y) by set-
ting ỹ0 = y, and x̃0 i = x̃i + ∑(ỹk

m 
−yk) for i = 1, . . . ,m—that is, we have pushed all of the ỹ− y differences 

into x̃0 , while keeping the sum the same. x0 − xk∞ ≤ Then kỹ0 − yk = 0 = kykO(εmachine) and k ̃  
∑(ỹk−yk) kx̃− xk∞ + ≤ kx̃ − xk∞ + kỹ − yk∞ ≤ 2k(x̃, ỹ) − (x, y)k∞ = kxk∞O(εmachine). Similarly if m 

kxk∞ ≤ kyk∞, except that we push all the x̃− x differences into ỹ0 . Hence it is backwards stable in the 
Second sense. 

You could also use the analysis from pset 2 (or similar) to explicitly construct x̃ and ỹ and thereby 
prove stability in the Second (hence First) sense. 

Problem 3: (25 points) 
First, let us follow the hint and show that qk = Q(n)ek is in the span hx1,x2, . . . ,xki as n → ∞. We will proceed 
by induction on k. Let 

m 

vk = Anek = ∑ ciλi
nxi, 

i=1 

where we have expanded ek = ∑cixi in the basis of the eigenvectors; we can generically assume that ci =6 0 
for all i, so that vk is dominated as n → ∞ by the terms with the biggest |λ |. 

• For k = 1, q1 = v1/kv1k2 (via Gram-Schmidt), and since v1 ≈ c1λ1 
nx1 as n → ∞ we have q1 → x1. 

• Suppose qi ∈ hx1, . . . ,xii for i < k, and prove for k. For large n, 

vk ≈ ∑ ciλi
nxi ∈ hx1, . . . ,xki, 

i≤k 

where we have discarded the i > k terms as negligible. We obtain qk from vk by Gram-Schmidt: 

∗ vk − ∑i<k qiqi vk qk = . 
k· · ·k2 

However, since all of the terms in the numerator are ∈ hx1, . . . ,xki, the result follows. (Note that the 
orthonormality of the q’s means that qk must contain a nonnegligible xk component, as otherwise it 
would be in the span of the qi for i < k.) 

It is instructive (but not strictly necessary!) to look at this more carefully. Since the qi for i < k, 
being independent, necessarily form a basis for the (k − 1) subspace hx1, . . . ,xk−1i, it follows that 
(I −∑i<k qiq ∗ i )x j = 0 for j < k (since we are projecting orthogonal to the whole hx1, . . . ,xki subspace). 
Hence, 

ckλk
n [xk − ∑i<k qiq ∗ i xk] qk ≈ �

� 
∈ hx1, . . . ,xki. k· · ·k2 

So, like in class, qk still picks up contributions only from the λ n term in vk, as all of the larger |λ | k 
terms are cancelled by the projection. (At least, in exact arithmetic, but fortunately the QR iteration 
gives us the same result without the ill-conditioning.) Unlike the Hermitian case in class, however, 
q ∗ i xk 6= 0 in general, so qk generally has nonzero xi components for i < k. 

Now that we have proven this fact, the result is easy. Since qk ∈ hx1, . . . ,xki, it immediately follows that 
Aqk ∈ hx1, . . . , xki = hq1, . . . qki, and thus Ti j = qi 

∗Aqk = 0 for i > k. Hence T = Q∗AQ is upper triangular, 
and we have a Schur factorization of A. 
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