## 18.335 Midterm, Fall 2012

#### Problem 1: (25 points)

- (a) Your friend Alyssa P. Hacker claims that the function  $f(x) = \sin x$  can be computed accurately (small forward relative error) near x = 0, but not near  $x = 2\pi$ , despite the fact that the function is periodic in exact arithmetic. True or false? Why?
- (b) Matlab provides a function log1p(x) that computes ln(1+x). What is the point of providing such a function, as opposed to just letting the user compute ln(1+x) herself? (Hint: not performance.) Outline a possible implementation of log1p(x) [rough pseudocode is fine].
- (c) Matlab provides a function gamma(x) that computes the "Gamma" function  $\Gamma(x) = \int_0^\infty e^{-t}t^{x-1}dt$ , which is a generalization of factorials, since  $\Gamma(n+1) = n!$ . Matlab also provides a function gammaln(x) that computes  $\ln[\Gamma(x)]$ . What is the point of providing a separate gammaln function? (Hint: not performance.)

### **Problem 2: (5+10+10 points)**

Recall that a floating-point implementation  $\hat{f}(x)$  of a function f(x) (between two normed vector spaces) is said to be *backwards stable* if, for every x, there exists some  $\tilde{x}$  such that  $\tilde{f}(x) = f(\tilde{x})$  for  $\|\tilde{x} - x\| = \|x\|O(\varepsilon_{\text{machine}})$ . Consider how you would apply this definition to a function f(x,y) of *two* arguments x and y. Two possibilities are:

- First: The most direct application of the original definition would be to define a single vector space on pairs v = (x,y) in the obvious way  $[(x_1,y_1)+(x_2,y_2)=(x_1+x_2,y_1+y_2)$  and  $\alpha \cdot (x,y)=(\alpha x,\alpha y)]$ , with some norm  $\|(x,y)\|$  on pairs. Then  $\tilde{f}$  is backwards stable if for every (x,y) there exist  $(\tilde{x},\tilde{y})$  with  $\tilde{f}(x,y)=f(\tilde{x},\tilde{y})$  and  $\|(\tilde{x},\tilde{y})-(x,y)\|=\|(x,y)\|O(\varepsilon_{\text{machine}})$ .
- Second: Alternatively, we could say  $\tilde{f}$  is backwards stable if for every x,y there exist  $\tilde{x},\tilde{y}$  with  $\tilde{f}(x,y) = f(\tilde{x},\tilde{y})$  and  $\|\tilde{x}-x\| = \|x\|O(\varepsilon_{\text{machine}})$  and  $\|\tilde{y}-y\| = \|y\|O(\varepsilon_{\text{machine}})$ .
- (a) Given norms ||x|| and ||y|| on x and y, give an example of a valid norm ||(x,y)|| on the vector space of pairs (x,y).

- (b) Does First ⇒ Second, or Second ⇒ First, or both, or neither? Why?
- (c) In class, we proved that summation of n floating-point numbers, in some sequential order, is backwards stable. Suppose we sum m+n floating point numbers  $x \in \mathbb{R}^m$  and  $y \in \mathbb{R}^n$  by  $\tilde{f}(x,y) = x_1 \oplus x_2 \oplus x_3 \oplus \cdots \oplus x_m \oplus y_1 \oplus y_2 \oplus \cdots \oplus y_n$ , doing the floating-point additions  $(\oplus)$  sequentially from left to right. Is this backwards stable in the First sense? In the Second sense? (No complicated proof required, but give a brief justification if true and a counterexample if false.)

#### Problem 3: (25 points)

Say A is an  $m \times m$  diagonalizable matrix with eigenvectors  $x_1, x_2, \ldots, x_m$  (normalized to  $||x_k||_2 = 1$  for convenience) and distinct-magnitude eigenvalues  $\lambda_k$  such that  $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_m|$ . In class, we showed that n steps of the QR algorithm produce a matrix  $A_n = Q^{(n)*}AQ^{(n)}$  where  $Q^{(n)}$  is equivalent (in exact arithmetic) to QR factorizing  $A^n = Q^{(n)}R^{(n)}$ . This proof was general for all A. For the specific case of  $A = A^*$  where the eigenvectors are orthonormal, we concluded that as  $n \to \infty$  we obtain  $Q^{(n)} \to$  eigenvectors  $(x_1 \cdots x_m)$  and  $A_n \to \Lambda =$  diag $(\lambda_1, \ldots, \lambda_m)$ .

**Show** that if  $A \neq A^*$  (so that the eigenvectors  $x_k$  are no longer in generally orthogonal), the QR algorithm approaches  $A_n \to T$  and  $Q^{(n)} \to Q$  where  $T = Q^*AQ$  is the **Schur factorization** of A. (Hint: show that  $q_k = Q^{(n)}e_k$ , the k-th column of  $Q^{(n)}$ , is in the span  $\langle x_1, x_2, \ldots, x_k \rangle$  as  $n \to \infty$ , by considering  $v_k = A^n e_k$ , the k-th column of  $A^n$ . Similar to class, think about the power method  $A^n e_k$ , and what Gram-Schmidt does to this.)

MIT OpenCourseWare <a href="https://ocw.mit.edu">https://ocw.mit.edu</a>

# 18.335J Introduction to Numerical Methods Spring 2019

For information about citing these materials or our Terms of Use, visit: <a href="https://ocw.mit.edu/terms">https://ocw.mit.edu/terms</a>.