
18.335 Midterm Solutions 

Problem 1: Schur, backsubstitution, complexity (20 points) 
You are given matrices A (m × m), B (n × n), and C (m × n), and want to solve for an unknown matrix X 
(m × n) solving: 

AX − XB = C. 

We will do this using the Schur decompositions of A and B. (Recall that any square matrix S can be factorized 
in the Schur form S = QUQ∗ for some unitary matrix Q and some upper-triangular matrix U .) 

(a) AX − XB = C = QAUAQ∗ 
AX − XQBUBQ∗ 

B, and hence (multiplying on the left by QA 
∗ and on the right 

by QB), we obtain 
UAQ∗ 

AXQB − Q∗ 
AXQBUB = QA 

∗ CQB, 

′ ′ ′Q∗ so A′ = UA, B′ = UB, C′ = QA 
∗ CQB, and X = Q∗ 

AXQB. To get X from X , we obtain X = QAX B. 

(b) The last row of A′X ′ − X ′B′ = C′, since A′ is upper-triangular, is: 

′ ′ ′ A ′ X m,:B ′ = C ′ = Xm,:(A ′ I − B ′), mm m,: − X m,: mm 

′ ′ which is only in terms of the last row Xm,: of X . To find this last row, then, we merely need to solve the 
system of equations above—since A′ I − B′ is upper-triangular, we can do this by backsubstitution mm 
in O(n2) operations. Or, I guess, technically, this is “forward” substitution because you start with the 
first column of B′ and move right, but whatever—it’s the same thing under a permutation. [Although 
this is a row-vector problem, we can obviously transpose to get the familiar column-vector problem, 
in which case (A′ I − B′)T is lower-triangular.] mm 

(c) More generally, the j-th row of A′X ′ − X ′B′ = C′ can be written purely in terms of the j-th and later 
rows of X ′, since A′ is upper-triangular: 

′ ′ ′ A ′ A ′ = C ′ j jXj,: + ∑ jiXi,: − Xj,:B ′ j,: 
i> j 

and hence 
′ ′ Xj,:(A ′ j jI − B ′) = C ′ j,: − ∑ A ′ jiXi,:, 

i> j 

which is again an upper-triangular system of equations. It takes 2(m − j)n operations to construct the 
right-hand side, and O(n2) operations to solve by backsubstitution. 

(d) We have to solve for m rows. Each of them requires an O(n2) backsubstitution, for O(mn2) operations. 
There are also ≈ ∑m

j=1 2(m − j)n = O(m2n) flops to compute the right-hand sides. Finally, to compute 
′Q∗ 2 X = QAX B requires two matrix multiplies, for 2m n + 2mn2 flops. So, the total complexity is 

2 O(m n)+ O(mn2), not including the O(m3)+ O(n3) time for the Schur factorizations. 

Problem 2: Stability (20 points) 
Since it is backwards stable (with respect to A and/or b), we obtain an x + δ x such that (A + δ A)(x + δ x) = 
b+δ b ≈ A(x+ δ x)+ δ Ax, where ∥δ A∥ = O(εmachine)∥A∥ and ∥δ b∥ = O(εmachine)∥b∥. That means that 
the residual, computed in exact arithmetic, would r = b − A(x + δ x) = Aδ x = δ Ax − δ b. The norm of this is 
≤ ∥δ Ax∥ + ∥δ b∥ ≤ ∥δ A∥∥x∥ + ∥δ b∥ = [∥A∥∥x∥+∥b∥]O(εmachine). But ∥x∥ = ∥A−1b∥ ≤ ∥A−1∥∥b∥, and 
so we obtain ∥r∥ ≤ [κ(A)+ 1]∥b∥O(εmachine). However, I didn’t specify whether the backwards stability 
was with respect to A or b; if you only assumed the latter you wouldn’t have gotten the κ(A) term. 

This is still not quite right, however, if the residual r itself is computed in floating-point arithmetic. 
In particular, the computation of b − Ay in floating-point for any y is also backwards stable with respect 
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to y, so in computing b − A(x + δ x) we obtain b − A(x + δ x + δ x ′) where ∥δ x ′∥ = ∥x∥O(εmachine) ≤ 
∥A−1∥∥b∥O(εmachine). Hence, this gives us an additional term Aδ x ′ in the residual, which has magnitude 
≤ ∥A∥∥δ x ′∥ ≤ κ(A)∥b∥O(εmachine). 

Adding these two sources of error, we obtain a residual whose magnitude proportional to κ(A)∥b∥O(εmachine). 

Problem 3: Conjugate gradient (20 points) 
(a) CG does not change the component of xn in the nullspace (the span of the zero-λ eigenvectors). 

Proof: If we expand x j = ∑i γ
( j)qi in the eigenvectors qi with some coefficients γ( j) , we see im-i i 

mediately that Ax j = ∑i>k λiγ
( j)qi is in the span of the nonzero-λ eigenvectors of A; equivalently, it is i 

perpendicular to the nullspace. Hence, the residual r j = b − Ax j (which we compute by recurrence in 
the CG algorithm) is also perpendicular to the nullspace. Since all the residuals are perpendicular to 
the nullspace, and since the directions d j are linear combinations of the residuals (via Gram-Schmidt), 
the directions d j are also perpendicular to the nullspace. Hence, when we compute xn = xn−1 +αndn−1, 

= γ(n−1) we do not change the components of x in the nullspace, and γ(n) for i ≤ k. i i 

(b) Because CG only changes xn in directions perpendicular to the nullspace, it is equivalent to doing CG 
on the nonsingular problem of Ax = b acting within the column space of A. Since x0 = 0, it initially 
has no (nonzero) component in the nullspace and hence xn has no component in the nullspace. Hence, 

βi if b = ∑i>k βiqi for some coefficients βi, it converges to xn → ∑i>k qi. The rate of convergence is λi 
determined by the square root of the condition number of A within this subspace, i.e. at worst the √ 
convergence requires O( λm/λk+1) iterations, assuming we have sorted the λ j’s in increasing order. 
(Not including possible superlinear convergence depending on the eigenvalue distribution.) 

(c) If we choose the initial guess x0 ̸= 0, it will still converge, but it may just converge to a different 
solution—the component of x0 in the nullspace has no effect on CG at all, and the component in the 
column space is just a different starting guess for the nonsingular CG in the subspace. That is, since 
the component ∑i≤k γiqi of x0 in the nullspace is not changed by CG, we will get (in the notation 

βi above) xn → ∑i≤k γiqi + ∑i>k qi. λi 

(d) Just set b = 0 and pick x0 to be a random vector, and from above it will converge to a vector in the √ 
nullspace in O( λm/λk+1) iterations at worst. 

Problem 4: Rayleigh quotients (20 points) ( ) 
q1 Let the smallest-λ eigensolution of B be Bλ1 = λ1q1 where q1 

∗ q1 = 1. Let x = 0 
, in which case the 

Rayleigh quotient is r(x) = λ1 by inspection, and since this is an upper bound for the smallest eigenvalue of 
A, we are done. 

Problem 5: Norms and SVDs (20 points) ( ) 
1 b 

If B were just a real number b, this would be a 2 × 2 matrix A = , which has eigenvalues 1 ± b b 1 ( ) 
1 

for eigenvectors . We would immediately obtained the desired result since ∥B∥ = |b| and ∥A∥2 is ±1 
the ratio of the maximum to the minimum eigenvalue. Now, we just want to use a similar strategy for the 
general case where B is m × n, where from the SVD we can write: ( ) ( ) 

I B I UΣV ∗ 
A = = . B∗ I V ΣTU∗ I 
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That is, we expect to get ± combinations of eigenvectors of B. 
For simplicity, let’s start with the case where B is square m × m, in which case Σ = ΣT (diagonal) and U ( ) 

U 
and V are all m × m. In this case, consider the vectors corresponding to the columns of X± = . In ±V 
this case, ( )( ) ( ) 

I UΣV ∗ U U ±UΣ 
AX± = = = X±(I ± Σ), V ΣU∗ I ±V V Σ ±V 

Since the matrix at right is diagonal, this means that the columns of X± are eigenvectors of A, with eigen-
values 1 ± σi where σi are the singular values of B (possibly including some zeros from the diagonal of 
Σ if B is not full rank). These are, moreover, all of the 2m eigenvalues of A. Since A is Hermitian, 
eigenvalues are the same thing as the singular values, and hence the maximum singular value of A is 
1 + maxσi and the minimum is 1 − maxσi (since we are given that ∥B∥2 < 1 and hence σi < 1), and hence 
κ(A) = (1 + maxσi)/(1 − maxσi) = (1 + ∥B∥2)/(1 −∥B∥2). Q.E.D. 

What about the case where B is not square? Suppose m > n, in which case U is bigger than V so it 
doesn’t make sense to write X± as above. However, there is a simple fix. In the definition of X±, just pad V 
with m − n columns of zeros to make an n × m matrix V0. Then V ∗V0 is the n × n identity matrix plus m − n 
columns of zeros. Then we get ( )( ) ( ) 

I UΣV ∗ U U ±UΣ0 AX± = = = X±(I ± Σ0), V ΣTU∗ I ±V0 V ΣT ±V0 

where Σ0 is Σ padded with m − n columns of zeros to make a diagonal m × m matrix, noting that V ΣT = 
V0ΣT = V0Σ0. The result follows as above. If m < n, the analysis is similar except that we pad U with n − m 0 
columns of zeros. 

Problem 6: Least-squares problems (20 points) 
We want to minimize (Ax − b)∗W (Ax − b). The best thing to do is to turn this into a regular least-squares 
problem by breaking W in “halves” and putting half on the left and half on the right. For example, we can 
compute the Cholesky factorization W = R∗R, and then we are minimizing (RAx − Rb)∗(RAx − Rb), which 
is equivalent to solving the least-squares problem for RA and Rb. This we could do, e.g., by computing the 
QR factorization RA = Q′R′ , and then solve R′ x = Q′∗Rb by backsubstitution. None of these steps has any 
particular accuracy problems. √ 

Of course, there are plenty of other ways to do it. You could also compute W by diagonalizing √ √ 
W = QΛQ∗ and then using W = Q ΛQ∗ . This might be a bit more obvious if you have forgotten about √ √ 
Cholesky. Again solving the least-squares problem with WA and Wb, this works, but is a bit less efficient 
because eigenproblems take many more operations than Cholesky factorization. 

We could also write down the normal equations A∗WAx = A∗Wb, derived from the gradient of (Ax − 
b)∗W (Ax − b) with respect to x. However, solving these directly sacrifices some accuracy because (as usual) 
it squares the condition number of A. 
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