18.335 Midterm Solutions

Problem 1: Schur, backsubstitution, complexity (20 points)

You are given matrices A $(m \times m)$, B $(n \times n)$, and C $(m \times n)$, and want to solve for an unknown matrix X $(m \times n)$ solving:

$$AX - XB = C$$
.

We will do this using the Schur decompositions of A and B. (Recall that any square matrix S can be factorized in the Schur form $S = QUQ^*$ for some unitary matrix Q and some upper-triangular matrix U.)

(a) $AX - XB = C = Q_A U_A Q_A^* X - X Q_B U_B Q_B^*$, and hence (multiplying on the left by Q_A^* and on the right by Q_B), we obtain

$$U_A Q_A^* X Q_B - Q_A^* X Q_B U_B = Q_A^* C Q_B$$

so
$$A' = U_A$$
, $B' = U_B$, $C' = Q_A^* C Q_B$, and $X' = Q_A^* X Q_B$. To get X from X' , we obtain $X = Q_A X' Q_B^*$.

(b) The last row of A'X' - X'B' = C', since A' is upper-triangular, is:

$$A'_{mm}X'_{m.:} - X'_{m.:}B' = C'_{m.:} = X'_{m.:}(A'_{mm}I - B'),$$

which is only in terms of the last row $X'_{m,:}$ of X'. To find this last row, then, we merely need to solve the system of equations above—since $A'_{mm}I - B'$ is upper-triangular, we can do this by backsubstitution in $O(n^2)$ operations. Or, I guess, technically, this is "forward" substitution because you start with the first column of B' and move right, but whatever—it's the same thing under a permutation. [Although this is a row-vector problem, we can obviously transpose to get the familiar column-vector problem, in which case $(A'_{mm}I - B')^T$ is lower-triangular.]

(c) More generally, the *j*-th row of A'X' - X'B' = C' can be written purely in terms of the *j*-th and later rows of X', since A' is upper-triangular:

$$A'_{jj}X'_{j,:} + \sum_{i>j} A'_{ji}X'_{i,:} - X'_{j,:}B' = C'_{j,:}$$

and hence

$$X'_{j,:}(A'_{jj}I - B') = C'_{j,:} - \sum_{i>j} A'_{ji}X'_{i,:},$$

which is again an upper-triangular system of equations. It takes 2(m-j)n operations to construct the right-hand side, and $O(n^2)$ operations to solve by backsubstitution.

(d) We have to solve for m rows. Each of them requires an $O(n^2)$ backsubstitution, for $O(mn^2)$ operations. There are also $\approx \sum_{j=1}^m 2(m-j)n = O(m^2n)$ flops to compute the right-hand sides. Finally, to compute $X = Q_A X' Q_B^*$ requires two matrix multiplies, for $2m^2n + 2mn^2$ flops. So, the total complexity is $O(m^2n) + O(mn^2)$, not including the $O(m^3) + O(n^3)$ time for the Schur factorizations.

Problem 2: Stability (20 points)

Since it is backwards stable (with respect to A and/or b), we obtain an $x + \delta x$ such that $(A + \delta A)(x + \delta x) = b + \delta b \approx A(x + \delta x) + \delta A x$, where $\|\delta A\| = O(\varepsilon_{\text{machine}})\|A\|$ and $\|\delta b\| = O(\varepsilon_{\text{machine}})\|b\|$. That means that the residual, computed in exact arithmetic, would $r = b - A(x + \delta x) = A\delta x = \delta A x - \delta b$. The norm of this is $\leq \|\delta A x\| + \|\delta b\| \leq \|\delta A\| \|x\| + \|\delta b\| = [\|A\| \|x\| + \|b\|]O(\varepsilon_{\text{machine}})$. But $\|x\| = \|A^{-1}b\| \leq \|A^{-1}\| \|b\|$, and so we obtain $\|r\| \leq [\kappa(A) + 1]\|b\|O(\varepsilon_{\text{machine}})$. However, I didn't specify whether the backwards stability was with respect to A or b; if you only assumed the latter you wouldn't have gotten the $\kappa(A)$ term.

This is still not quite right, however, if the residual r itself is computed in floating-point arithmetic. In particular, the computation of b - Ay in floating-point for any y is also backwards stable with respect

to y, so in computing $b - A(x + \delta x)$ we obtain $b - A(x + \delta x + \delta x')$ where $\|\delta x'\| = \|x\| O(\varepsilon_{\text{machine}}) \le \|A^{-1}\| \|b\| O(\varepsilon_{\text{machine}})$. Hence, this gives us an additional term $A\delta x'$ in the residual, which has magnitude $\le \|A\| \|\delta x'\| \le \kappa(A) \|b\| O(\varepsilon_{\text{machine}})$.

Adding these two sources of error, we obtain a residual whose magnitude proportional to $\kappa(A) ||b|| O(\varepsilon_{\text{machine}})$.

Problem 3: Conjugate gradient (20 points)

(a) CG does not change the component of x_n in the nullspace (the span of the zero- λ eigenvectors).

Proof: If we expand $x_j = \sum_i \gamma_i^{(j)} q_i$ in the eigenvectors q_i with some coefficients $\gamma_i^{(j)}$, we see immediately that $Ax_j = \sum_{i>k} \lambda_i \gamma_i^{(j)} q_i$ is in the span of the nonzero- λ eigenvectors of A; equivalently, it is perpendicular to the nullspace. Hence, the residual $r_j = b - Ax_j$ (which we compute by recurrence in the CG algorithm) is also perpendicular to the nullspace. Since all the residuals are perpendicular to the nullspace, and since the directions d_j are linear combinations of the residuals (via Gram-Schmidt), the directions d_j are also perpendicular to the nullspace. Hence, when we compute $x_n = x_{n-1} + \alpha_n d_{n-1}$, we do not change the components of x in the nullspace, and $\gamma_i^{(n)} = \gamma_i^{(n-1)}$ for $i \leq k$.

- (b) Because CG only changes x_n in directions perpendicular to the nullspace, it is equivalent to doing CG on the *nonsingular* problem of Ax = b acting within the column space of A. Since $x_0 = 0$, it initially has no (nonzero) component in the nullspace and hence x_n has no component in the nullspace. Hence, if $b = \sum_{i>k} \beta_i q_i$ for some coefficients β_i , it converges to $x_n \to \sum_{i>k} \frac{\beta_i}{\lambda_i} q_i$. The rate of convergence is determined by the square root of the condition number of A within this subspace, i.e. at worst the convergence requires $O(\sqrt{\lambda_m/\lambda_{k+1}})$ iterations, assuming we have sorted the λ_j 's in increasing order. (Not including possible superlinear convergence depending on the eigenvalue distribution.)
- (c) If we choose the initial guess $x_0 \neq 0$, it will still converge, but it may just converge to a different solution—the component of x_0 in the nullspace has no effect on CG at all, and the component in the column space is just a different starting guess for the nonsingular CG in the subspace. That is, since the component $\sum_{i \leq k} \gamma_i q_i$ of x_0 in the nullspace is not changed by CG, we will get (in the notation above) $x_n \to \sum_{i \leq k} \gamma_i q_i + \sum_{i > k} \frac{\beta_i}{\lambda_i} q_i$.
- (d) Just set b = 0 and pick x_0 to be a random vector, and from above it will converge to a vector in the nullspace in $O(\sqrt{\lambda_m/\lambda_{k+1}})$ iterations at worst.

Problem 4: Rayleigh quotients (20 points)

Let the smallest- λ eigensolution of B be $B\lambda_1 = \lambda_1 q_1$ where $q_1^*q_1 = 1$. Let $x = \begin{pmatrix} q_1 \\ 0 \end{pmatrix}$, in which case the Rayleigh quotient is $r(x) = \lambda_1$ by inspection, and since this is an upper bound for the smallest eigenvalue of A, we are done.

Problem 5: Norms and SVDs (20 points)

If B were just a real number b, this would be a 2×2 matrix $A = \begin{pmatrix} 1 & b \\ b & 1 \end{pmatrix}$, which has eigenvalues $1 \pm b$ for eigenvectors $\begin{pmatrix} 1 \\ \pm 1 \end{pmatrix}$. We would immediately obtained the desired result since $\|B\| = |b|$ and $\|A\|_2$ is the ratio of the maximum to the minimum eigenvalue. Now, we just want to use a similar strategy for the general case where B is $m \times n$, where from the SVD we can write:

$$A = \left(\begin{array}{cc} I & B \\ B^* & I \end{array} \right) = \left(\begin{array}{cc} I & U \Sigma V^* \\ V \Sigma^T U^* & I \end{array} \right).$$

That is, we expect to get \pm combinations of eigenvectors of B.

For simplicity, let's start with the case where B is square $m \times m$, in which case $\Sigma = \Sigma^T$ (diagonal) and U and V are all $m \times m$. In this case, consider the vectors corresponding to the columns of $X_{\pm} = \begin{pmatrix} U \\ \pm V \end{pmatrix}$. In this case,

$$AX_{\pm} = \left(\begin{array}{cc} I & U\Sigma V^* \\ V\Sigma U^* & I \end{array}\right) \left(\begin{array}{c} U \\ \pm V \end{array}\right) = \left(\begin{array}{c} U\pm U\Sigma \\ V\Sigma \pm V \end{array}\right) = X_{\pm}(I\pm \Sigma),$$

Since the matrix at right is diagonal, this means that the columns of X_{\pm} are eigenvectors of A, with eigenvalues $1 \pm \sigma_i$ where σ_i are the singular values of B (possibly including some zeros from the diagonal of Σ if B is not full rank). These are, moreover, all of the 2m eigenvalues of A. Since A is Hermitian, eigenvalues are the same thing as the singular values, and hence the maximum singular value of A is $1 + \max \sigma_i$ and the minimum is $1 - \max \sigma_i$ (since we are given that $||B||_2 < 1$ and hence $\sigma_i < 1$), and hence $\kappa(A) = (1 + \max \sigma_i)/(1 - \max \sigma_i) = (1 + ||B||_2)/(1 - ||B||_2)$. Q.E.D.

What about the case where B is not square? Suppose m > n, in which case U is bigger than V so it doesn't make sense to write X_{\pm} as above. However, there is a simple fix. In the definition of X_{\pm} , just pad V with m-n columns of zeros to make an $n \times m$ matrix V_0 . Then V^*V_0 is the $n \times n$ identity matrix plus m-n columns of zeros. Then we get

$$AX_{\pm} = \left(\begin{array}{cc} I & U\Sigma V^* \\ V\Sigma^T U^* & I \end{array}\right) \left(\begin{array}{c} U \\ \pm V_0 \end{array}\right) = \left(\begin{array}{c} U\pm U\Sigma_0 \\ V\Sigma^T \pm V_0 \end{array}\right) = X_{\pm}(I\pm \Sigma_0),$$

where Σ_0 is Σ padded with m-n columns of zeros to make a diagonal $m \times m$ matrix, noting that $V\Sigma^T = V_0\Sigma_0^T = V_0\Sigma_0$. The result follows as above. If m < n, the analysis is similar except that we pad U with n-m columns of zeros.

Problem 6: Least-squares problems (20 points)

We want to minimize $(Ax - b)^*W(Ax - b)$. The best thing to do is to turn this into a regular least-squares problem by breaking W in "halves" and putting half on the left and half on the right. For example, we can compute the Cholesky factorization $W = R^*R$, and then we are minimizing $(RAx - Rb)^*(RAx - Rb)$, which is equivalent to solving the least-squares problem for RA and Rb. This we could do, e.g., by computing the QR factorization RA = Q'R', and then solve $R'x = Q'^*Rb$ by backsubstitution. None of these steps has any particular accuracy problems.

Of course, there are plenty of other ways to do it. You could also compute \sqrt{W} by diagonalizing $W = Q\Lambda Q^*$ and then using $\sqrt{W} = Q\sqrt{\Lambda}Q^*$. This might be a bit more obvious if you have forgotten about Cholesky. Again solving the least-squares problem with $\sqrt{W}A$ and $\sqrt{W}b$, this works, but is a bit less efficient because eigenproblems take many more operations than Cholesky factorization.

We could also write down the normal equations $A^*WAx = A^*Wb$, derived from the gradient of $(Ax - b)^*W(Ax - b)$ with respect to x. However, solving these directly sacrifices some accuracy because (as usual) it squares the condition number of A.

MIT OpenCourseWare https://ocw.mit.edu

18.335J Introduction to Numerical Methods Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.