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If we are given two norms k · ka and k · kb on some finite-dimensional vector space V over C, a very 
useful fact is that they are always within a constant factor of one another. Specifically, there exists a 
pair of real numbers 0 < C1 ≤ C2 such that, for all x ∈ V , the following inequality holds: 

C1kxkb ≤ kxka ≤ C2kxkb. 

Note that any finite-dimensional vector space, by definition, is spanned by a basis e1, e2, . . . , en where 
n is the dimension of the vector space. (The basis is often chosen to be orthonormal if we have an 
inner product, but non-orthonormal bases are fine too.) That is, any vector x can be written 

nX 
x = αiei 

i=1 

where the αi are some scalars depending on x. 
Now, we can prove equivalence of norms in four steps, the last of which requires some knowledge 

of analysis. (I have seen other proofs as well, but they all require some theorem of analysis.) 

Step 1: It is suÿcient to consider k · kb = k · k1 (transitivity). 
First, us define an L1-style norm by 

nX 
kxk1 = |αi|. 

0 

i=1 

(It is easy to see this is a norm. The linear independence of any basis {ei} means that x =6 0 ⇐⇒ αj =6 0 

0 

for some j ⇐⇒ kxk1 > 0. The triangle inequality and the scaling property are obvious and follow 
from the usual properties of L1 norms on α ∈ Cn.) 

We will show that it is suÿcient for to prove that k · ka is equivalent to k · k1, because norm 
equivalence is transitive: if two norms are equivalent to k · k1, then they are equivalent to each other. 
In particular, suppose both k · ka and k · ka are equivalent to k · k1 for constants 0 < C1 ≤ C2 and 0 

1 ≤ C2, respectively: 0 < C 

0 0 

C1kxk1 ≤ kxka ≤ C2kxk1, 

1kxk1 ≤ kxka 2kxk1. C ≤ C 0 

It immediately follows that 
0 0 C C 1 kxka ≤ kxka0 ≤ 2 kxka, 

C2 C1 

and hence k · ka and k · ka0 are equivalent. Q.E.D. 
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Step 2: It is suÿcient to consider only x with kxk1 = 1 

We wish to show that 
C1kxk1 ≤ kxka ≤ C2kxk1, 

is true for all x ∈ V for some C1, C2. It is trivially true for x = 0, so we need only consider x =6 0, in 
which case we can divide by kxk1 to obtain the condition 

C1 ≤ kuka ≤ C2, 

where u = x/kxk1 has norm kuk1 = 1. Q.E.D. 

Step 3: Any norm k · ka is continuous under k · k1 

We wish to show that any norm k · ka is a continuous function on V under the topology induced by 
the norm k · k1. That is, we wish to show that for any � > 0, there exists a δ > 0 such that 

kx − x 0k1 < δ =⇒ |kxka − kx 0ka| < �. 

We prove this in two steps. First, by the triangle inequality on k · ka, it follows that 

kxka − kx 0ka = kx 0 + (x − x 0)ka − kx 0ka ≤ kx − x 0ka 

kx 0ka − kxka = kx − (x − x 0)ka − kxka ≤ kx − x 0ka 

and hence 
|kxka − kx 0ka| ≤ kx − x 0ka P P n 0 n 

α0 Second, applying the triangle inequality again, and writing x = αiei and x = iei in our i=1 i=1 
basis, we obtain 

nX � � 
kx − x 0ka ≤ |αi − α0 

i| · keika ≤ kx − x 0k1 max keika . 
i 

i=1 

Therefore, if we choose 
� 

δ = , 
maxi keika 

it immediately follows that 

kx − x 0k1 < δ =⇒ |kxka − kx 0ka| ≤ kx − x 0ka < �. 

Step 4: The maximum and minimum of k · ka on the unit sphere 
It is a standard theorem of analysis, the extreme value theorem, that a continuous function (e.g. k ·ka, 
from step 3) on compact set (e.g. the unit “sphere” defined by {u for kuk1 = 1}, a closed and bounded 
set) must achieve a maximum and minimum value on the set (it cannot merely approach them). Let 

C1 = min kuka, 
kuk1=1 

C2 = max kuka. 
kuk1=1 

Since u 6= 0 for kuk1 = 1, it follows that C2 ≥ C1 > 0 and 

C1 ≤ kuka ≤ C2 

as required by step 2. We are done! 
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