
8 Martingale convergence and Azuma’s inequality

8.1 Setup: what is a martingale?

Definition 8.1

A martingale is a sequence of random variables Z0, Z1, · · · , such that for every n, E|Zn| <∞ (this is a technical

assumption), and

E[Zn+1|Z0, · · · , Zn] = Zn.

This comes up in a lot of different ways:

Example 8.2

Consider a random walk X1, X2, · · · of independent steps, each with mean 0. Then we can define the martingale

Zn =
∑
i≤n
Xi ,

which fits the definition because we always expect our average position after step n + 1 to be the same as where

we just were after step n.

Example 8.3 (Betting strategy)

Let’s say we go to a casino, and all bets are “fair” (have expectation 0). For example, we may bet on fair odds

against a coin flip. Our strategy can adapt over time based on the outcomes: let Zn be our balance after n

rounds. This is still a martingale!

This is more general than just a random walk, because now we don’t need the steps to be independent.

Example 8.4

Let’s say my goal is to win 1 dollar. I adapt the following strategy:

• Bet a dollar; if I win, stop.
• Otherwise, double the wager and repeat.

This is a martingale, because all betting strategies are martingales. With probability 1, we must always win at some

point, so we end up with 1 dollar at the end! This sounds like free money, but we have a finite amount of money (so

this would never occur in real life).

Remark. This is called the “martingale betting strategy,” and it’s where the name comes from!

Definition 8.5 (Doob or exposure martingale)

Suppose we have some (not necessarily independent) random variables X1, · · · , Xn, and we have a function

f (x1, · · · , xn). Then let

Zi = E[f (x1, · · · , xn)|X1, · · · , Xi ].
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Basically, we “expose” the first i outputs to create Zi . It’s good to check that this is actually a martingale: show

that

E[Zi |Z0, · · · , Zi−1] = Zi−1.

Note that f may also be some random variable: for example, it could be the chromatic number of the graph, and

Xi are indicator variables of the edges. Then Z0 is E[f ], Z1 is a revised mean after we learn about the status of an

edge, and so on. This is called an edge-exposure martingale.

Let’s discuss that more explicitly: we reveal the edges of G(n, p) one at a time. For example, let’s say we want

χ(G(3, 12)). There are eight possible graphs, with equal probabilities, and six of them have chromatic number 2, one

has chromatic number 3, and one has chromatic number 1. The average is Z0 = 2.

Now, the chromatic number is either 2.25 or 1.75, depending on on whether the bottom edge is present or not.

This average is 2, and then we can keep going: Z2 is either 2.5 or 2 if Z1 = 2.25, and 2 or 1.5 if Z1 = 1.75. The idea

is that each Zn+1’s expected value is dependent on the previous mean.

Alternatively, we can have a vertex-exposure martingale: at the ith step, expose all edges (j, i) with j < i . So

there are different ways of constructing this martingale, and which one to use depends on the application!

8.2 Azuma’s inequality
Why are martingales useful? Here’s an important inequality that’s actually not too hard to prove:

Theorem 8.6 (Azuma’s inequality)

Given a martingale Z0, · · · , Zn with bounded differences

|Zi − Zi−1| ≤ 1∀i ∈ [n],

we have a tail bound for all λ:

Pr(Zn − Z0 ≥ λ
√
n) ≤ e−λ2/2.

More generally, though, if we have |Zi − Zi−1| ≤ ci for all i ∈ [n], then for all a > 0,

Pr(Zn − Z0 ≥ a) ≤ exp
(

−a2

2
∑n
i=1 c

2
i

)
.

(This is sometimes also known as Azuma-Hoeffding.) We’ve seen this before from our discussion of Chernoff

bounds, which is a special case by making the martingale a sum of independent random variables! This is not a

coincidence - we’ll notice similarities in the proof.

This theorem is useful when none of the martingale steps have big differences. It is generally more difficult to prove

any sort of concentration when we don’t have bounded differences in our martingale, though.

Proof. We can shift the martingale so that Z0 = 0. Let Xi = Zi − Zi−1 be the martingale differences: these Xis do

not need to be independent, but they must always have mean 0.

Lemma 8.7

If X is a random variable with E[X] = 0 and |x | ≤ c , then

E[eX ] ≤
ec + e−c

2
≤ ec2/2

by looking at Taylor expansion and comparing coefficients.
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Proof of lemma. Basically, we maximize eX by having a ±c Bernoulli variable - this is true because of convexity!

Specifically, we can upper-bound eX by the line connecting the endpoints:

ex ≤
ec + e−c

2
+
ec − e−c

2c
x,

and now take expectations of the statement when x = X.

So now let t ≥ 0, and consider the moment generating function E[etZn ]. We’ll split this up as

E[etZn ] = E[et(Xn+Zn−1)] = E
[
E
[
etXn | Zn−1

]
etZn−1

]
By definition, the inner expectation is the moment generating function of a mean-zero random variable bounded by

tcn, and thus

E[etZn ] ≤ et2c2n /2E[etZn−1 ].

Repeating this calculation or using induction, we find that the expectation of etZn is bounded by

≤ exp
[
t2

2
(c2n + c

2
n−1 + · · ·+ c21 )

]
.

To finish the proof, we repeat the logic of the Chernoff bound proof: by Markov’s inequality on the moment generating

function,

Pr(Zn ≥ a) ≤ e−taE[etZn ] ≤ e−ta+t
2(c21+···+c2n )/2.

We can now set t to be whatever want: taking t = a∑
i c
2
i

yields the result.

The main difference from Chernoff is that we do one step at a time, and this crucially requires that we have

bounded differences. We can also get a lower tail for Zn in the exact same way, and putting these together yields the

following:

Corollary 8.8

Let Zn be a martingale where |Zi − Zi−1| ≤ ci for all i ∈ [n], as in Theorem 8.6. Then for all a > 0,

Pr(|Zn − Z0| ≥ a) ≤ 2 exp
(
−a2

2
∑
i c
2
i

)
.

Basically, we can’t walk very far in either direction in a martingale with an interval of
√
n, even when our choices

can depend on previous events.

8.3 Basic applications of this inequality
The most common way Azuma is used is to show concentration for Lipschitz functions (on a domain of many variables).
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Theorem 8.9

Consider a function

f : Ω1 ×Ω2 × · · · ×Ωn → R

such that |f (x) − f (y)| ≤ 1 whenever x and y are vectors that differ in exactly 1 coordinate. (This is known as

being 1-Lipschitz with respect to Hamming distance.) Then if Z = f (X1, · · · , Xn) is a function of independent
random variables Xi ∈ Ωi , we have high concentration:

Pr(Z − E[Z] ≥ λ
√
n) ≤ e−λ2/2.

Proof. Consider the Doob martingale

Zi = E[Z|X1, · · · , Xi ].

Note that |Zi − Zi−1| ≤ 1, because revealing 1 coordinate cannot change the value of our function by more than 1.

But now Z0 is the expected value of our original function Z, since we have no additional information: thus, Z0 = E[Z].
Meanwhile, Zn means we have all information about our function, so this is just Z. Plugging these into the Azuma

inequality yields the result.

It’s important to note that the |Zi − Zi−1| ≤ 1 step only works if we have independence between our random

variables - that step is a bit subtle.

Example 8.10 (Coupon collecting)

Let’s say we want to collect an entire stack of coupons: we sample s1, · · · , sn ∈ [n]. Can we describe X, the

number of missed coupons?

Explicitly, we can write out

X = |[n] \ {s1, · · · , sn}| .

It’s not hard to calculate the expected value of X: by linearity of expectation, each coupon is missed with probability(
1− 1

n

)n
, so

E[X] = n
(
1−
1

n

)n
.

This value is between n−1e and ne . Typically, how close are we to this number? Changing one of the sis can only change

X by at most 1 (we can only gain or lose up to one coupon). So by the concentration inequality,

Pr
(∣∣∣X − n

e

∣∣∣ ≥ λ√n + 1) ≤ Pr(|X − E[X]| ≥ λ√n) ≤ 2e−λ2/2,
where the +1 is for the approximation of 1e we made. So the number of coupons we miss is pretty concentrated! This

would have been more difficult to solve without Azuma’s inequality, because whether or not two different coupons are

collected are dependent variables.

Theorem 8.11

Let ε1, ε2, · · · , εn ∈ {−1, 1}n be uniformly and independently chosen. Fix vectors v1, · · · , vn in some norm space

(Euclidean if we’d like) such that all vectors |vi | ≤ 1. Then X = ||ε1v1+ · · ·+εnvn|| is pretty concentrated around

its mean:

Pr(|X − E[X]| ≥ λ
√
n) ≤ 2e−λ2/2.
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Even if we can’t compute the mean of this variable, we can still get concentration! Note that if the vis all point

along the same axis, then we essentially end up with the Chernoff bound.

Proof. Our Ωis are {−1, 1}, and we have a function defined as

f (ε1, · · · , εn) = ||ε1v1 + · · ·+ εnvn||.

If we change a coordinate of f , the norm can change by at most 2 by the triangle inequality, because each vi has norm

at least 1. Plugging this into Azuma, we find that

Pr(|X − E[X]| ≥ λ
√
n) ≤ 2e−λ2/8.

This is usually good enough (the exponent is of the right order), but with a little more care, we can change the

constant in our exponent from 1
8 to 1

2 . Let’s go back to the exposure martingale, and let Yi be the expected value of

our function f after having ε1, . . . , εi revealed: we claim that |Yi − Yi−1| ≤ 1.
Why is this the case? If we’ve revealed the first i − 1 coordinates, let ~ε and ~ε′ be two vectors in {−1, 1}ε differing

only in the ith coordinate. Then

Yi−1(~ε) =
Yi(~ε) + Yi(~ε′)

2
:

we should average over what happens in the ith coordinate if we already know what happens in the ith coordinate. So

now plugging in,

|Yi(ε)− Yi−1(ε)| =
1

2
|Yi(~ε)− Yi(~ε′)| ≤

1

2
· 2||vi || ≤ 1,

and now Azuma gives us the desired constant!

8.4 Concentration of the chromatic number
Last time, we derived (using Janson’s inequality) an estimate for the chromatic number of a random graph, and this

took some work. But it turns out that we can prove concentration of the chromatic number without knowing the

mean:

Theorem 8.12

Let G = G(n, p) be a random graph. Then

Pr
(
|χ(G)− E[χ(G)]| ≤ λ

√
n − 1

)
≤ 2e−λ2/2.

To prove this, let’s think about the process of finding the chromatic number as a martingale. This does not even

require us knowing that χ(G) is about n
2 log2 n

: proving concentration is somehow easier than finding the mean here!

Proof. There are many ways to expose the edges of a graph: sometimes we need to choose between edge and vertex

exposure. Here, we’ll do the latter.

Consider the vertex-exposure martingale. Basically, we’re given the status of all edges connected to one of the

first i vertices, and then we try to figure out the estimate from there. Note that |Zi −Zi−1| ≤ 1: we could always just

give the ith vertex a new color to preserve proper coloring, so the expected chromatic numbers can’t differ by more

than 1. But now we’re done by applying Azuma’s inequality.

Let’s try seeing what happens if we used the edge-exposure martingale instead. We have more steps: there are(
n
2

)
edges to reveal, so we should get about Θ(n)-size deviation. That’s already not so good, since we’re trying to

find chromatic number (which is size n). We can’t even bound |Zi − Zi−1| any better than before!
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Remark. It’s important to note that in general, it’s not always better to use the vertex or edge exposure martingale.

Instead, our method really depends on what the maximum differences are between subsequent steps.

As a final note, can we also set up a Lipschitz function to rephrase the setting of this problem? Our random

variable spaces in the vertex-exposure martingale, Ωi , aren’t edges but batches of edges: at step i , we want {0, 1}i−1,
the edges going “left” from vertex i . So the vertex-exposure partitions our edge and exposes groups at a time: if we

do the batching appropriately, we get a better gain than naively having our probability spaces just be {0, 1} for each

edge. So the Ωis are fairly general, but they must still be independent.

The idea of a tail bound is the same as a confidence interval: Azuma tells us that we can take an interval with

width on the order of
√
n, and at least some constant fraction of our random graphs will give chromatic number in

that interval. This might be overly generous, though: it’s a major open problem to know the actual fluctuation of the

chromatic number of a random graph!

8.5 Four-point concentration?
Interestingly, we can get even better concentration if we have sufficiently small p:

Theorem 8.13

Let α > 5
6 be a fixed constant. If p < n−α, then the chromatic number χ(G(n, p)) is concentrated among four

values with high probability. Specifically, there exist a function u = u(n, p) such that as n →∞,

Pr(u ≤ χ(G(n, p)) ≤ u + 3) = 1− o(1).

In other words, sparser graphs are easier to estimate. Because the probability of an edge appearing here is relatively

small, we can get more concentration than with our earlier calculations.

Proof. It suffices to show that for any fixed ε > 0, we can find a sequence u = u(n, p, ε) such that as n →∞,

Pr(u ≤ χ(G(n, p)) ≤ u + 3) > 1− ε− o(1).

Pick u to be the smallest positive integer such that Pr(χ(G(n, p)) ≤ u) > ε. (This is deterministic, even if we may

not know how to evaluate it.) Then the probability that χ(G) < u is at most ε, and we just want to show that

χ(G) > u + 3 with probability o(1).

The next step is very clever: let Y = Y (G) be the minimum size of a subset of the vertices S ⊂ V (G) such that

G − S may be properly colored with u colors. Basically, we color as well as we can, and Y tells us how close we are to

success.

Now Y is 1-Lipschitz with respect to the vertex-exposure martingale: if we change a vertex in G, then Y (G)

changes by at most 1. So by Azuma’s inequality,

Pr(Y ≤ E[Y ]− λ
√
n) ≤ e−λ2/2,

Pr(Y ≥ E[Y ] + λ
√
n) ≤ e−λ2/2,

This trick will come up a lot: we’ll use both the upper and lower tail separately. We don’t need to know the

expectation to find concentration, but we’ll use the lower-tail bound to bound E[Y ]. With probability at least ε, G is

u-colorable. That’s equivalent to saying that Y = 0, which occurs with probability

ε < Pr(Y ≤ E[Y ]− E[Y ]) ≤ exp
(
−
E[Y ]2

2n

)
.
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Simplifying this, this already gives us a bound (for some λ, which is a function of ε)

E[Y ] ≤

√
2 log

(
1

ε

)
n = λ

√
n,

which is what we should expect from a martingale of this form. Similarly, we can do an upper-tail bound to show that

Y is rarely too big relative to the mean:

Pr(Y ≥ 2λ
√
n) ≤ Pr(Y ≥ E[Y ] + λ

√
n) ≤ e−λ2/2 = ε

by the definition of λ. So the number of uncolored vertices is not too big: by the definition of Y , we now know that

with probability at least 1 − ε, we can color all but 2λ
√
n vertices. Here’s the key step: We’ll show that with high

probability, we can color the remaining vertices with just 3 colors.

Lemma 8.14

Fix α > 5
6 as before, as well as a constant C, and let p < n−α. Then with high probability, every subset of size at

most C
√
n vertices in G(n, p) can be properly 3-colored.

We want to union bound the bad probabilities, but we must be a bit careful here. Suppose the lemma were false

for some graph G (that is, we’re in one of the bad cases). Choose a minimal size T ⊂ V (G) that is not 3-colorable.

Consider the induced subgraph G[T ] (taking only the edges between the vertices in T ). This has minimum degree 3,

because if there’s a vertex x with degT (x) < 3, then T − x is also not 3-colorable, which contradicts the minimality

of T .

So G[T ] has at least 3|T |/2 edges, and now we can just bound the probability that there exists some T (of size

at least 4, since that’s the only way for it to be not 3-colorable) with |T | ≤ C
√
n that contains at least 3|T |/2 edges:

union bounding, this is at most

≤
C
√
n∑

t=4

(
n

t

)( (t
2

)
3t/2

)
p3t/2.

Now we just need to show that this quantity is o(1) (as n goes to ∞): this simplifies to

≤
C
√
n∑

t=4

(ne
t

)t ( te
3

)3t/2
n−3tα/2 =

c
√
n∑

t=4

(
O(n1−3α/2+1/t)

)t
= o(1)

if α > 5
6 .

So in summary, we know that once we have all but C
√
n of the points colored with u colors with 1−o(1) probability,

we have 1 − o(1) probability of coloring the rest in at most 3 colors. Now just take ε arbitrarily small to show the

result.

The hardest part of this proof is finding an informative random variable that is Lipschitz! It turns out that better

bounds are known: we actually have two-point concentration for all α > 1
2 , and the proof comes from refinements of

this technique.

8.6 Revisiting an earlier chromatic number lemma
Remember that when we discussed Janson’s inequality, we considered the following key claim from Bollobás’ paper,

helpful for taking out large indepndent sets:
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Lemma 8.15

Let ω(G) be the number of vertices in the largest clique of G(n, p), and let k0 be the minimum positive integer

such that
(
n
k0

)
2−(

k0
2
) ≥ 1. Then if k = k0 − 3 (here k ∼ 2 log2 n),

Pr

(
ω

(
G

(
n,
1

2

))
< k

)
= e−n

2−o(1)
.

(This is also Lemma 7.20.) Here’s an alternative proof.

Proof. Let Y be the maximum number of edge-disjoint sets of k-cliques in G. Y is not 1-Lipschitz with respect to

vertex-exposure: for example, my graph could have a bunch of cliques connected to only one point. However, it is

1-Lipschitz with respect to edge-exposure (since each edge can only be part of one k-clique anyway).

So now the probability that ω(G) < k is the probability Y = 0 (there are no cliques). Using the lower tail Azuma’s

inequality,

Pr(Y = 0) = Pr(Y ≤ E[Y ]− E[Y ]) ≤ exp

(
−
E[Y ]2

2
(
n
2

) ) .
It now remains to show that E[Y ] is large: if we can show that the expected value is n2−o(1), then lower tail estimates

tell us that it is very rare for Y to be 0.

So we have this graph G
(
n, 12

)
, and we’re asking how many k-cliques we can pack into it. Remember the problem

set: the trick is to create an auxiliary graph H whose vertices are k-cliques of G. Then two cliques S, T are adjacent

in H if they overlap in at least two vertices, so they have a common edge.

Now Y = α(H) is the size of the largest independent set in H: by Caro-Wei, it suffices to show that H has lots of

vertices and not that many edges, since we get the convexity bound

α(H) ≥
∑ 1

1 + d(v)
≥
|V (H)|
1 + d

.

By the second moment method, |V (H)|, the number of k-cliques in G, is concentrated with high probability around

its mean, which is
(
n
k

)
2−(

k
2
) by linearity of expectation. By definition of k0, this is at least n3−o(1), and on the other

hand, the expected number of edges in H is concentrated around E[|V (H)|]
2k4

2n2 = n4+o(1). So by Caro-Wei, the expected

value of Y is

E[Y ] = E[α(H)] ≥ E
[

|V (H)|2

|V (H)|+ 2|E(H)|

]
≥ n2−o(1),

as desired. But here’s another way to reach that conclusion, which we’ve seen a few times: the sampling technique!

Choose a q-random subset of k-cliques in G (each clique with probability q). We’ll just get rid of one clique from

each overlapping pair to get a large α(H). We expect to get E[q|V (H)|] cliques, but E[q2|E(H)|] overlapping pairs

(since H is random as well). Now pick q to maximize: q = |V (H)|
2|E(H)| , and this means that the expected size of our

independent set is at least E|V (H)|
2

2E|E(H)| and we’re done.

81



  
 

 
  

            

 
 

 
  

         

MIT OpenCourseWare 
https://ocw.mit.edu 

18.218 Probabilistic Method in Combinatorics
Spring 2019 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu
https://ocw.mit.edu/terms

	Martingale convergence and Azuma's inequality
	Setup: what is a martingale?
	Azuma's inequality
	Basic applications of this inequality
	Concentration of the chromatic number
	Four-point concentration?
	Revisiting an earlier chromatic number lemma




