
2 Linearity of expectation

2.1 Setup and basic examples
Often, a random variable X can be written as

X = c1X1 + c2X2 + · · ·+ cnXn,

where ci are constants and Xi are random variables, not necessarily independent. In these cases, we know that

E[X] = c1E[X1] + · · ·+ cnE[Xn].

However, it is not necessarily true that E[XY ] = E[X]E[Y ].

Example 2.1

Given a random permutation of [n], how many fixed points do we expect it to have?

Solution. Let Ai be the indicator variable for i being a fixed point: σ(i) = i . Since i is a fixed point with probability
1
n , the expected value of Ai is 1n , so the expected number of overall fixed points is just n · 1n = 1.

Let’s take a look at a basic graph theory problem:

Definition 2.2

A tournament is a complete graph with each edge directed (from one endpoint to the other). A Hamiltonian
path is a directed path through a graph which passes through all vertices.

Theorem 2.3 (Szele, 1943)

For all n, there exists a tournament on n vertices with at least n!2−n+1 Hamiltonian paths.

Proof. Start with Kn and randomly orient each edge. Then for each permutation of the edges, the probability that

the edges are all directed correctly to form a Hamiltonian cycle in that order is 2−n+1 (since there are only two

orientations). Thus, by linearity of expectation, the expected number of Hamiltonian paths is n!2−n+1, and thus there

exists a tournament with at least that many Hamiltonian paths.

Alon proved in 1990 that the maximum number is asympotically of that magnitude: we can have at most n!
(2−o(1))n

Hamiltonian paths.

Let’s now start to look at some more complicated applications.

2.2 Sum-free sets

Definition 2.4

A subset A of an abelian group is sum-free if there are no elements a, b, c ∈ A with a + b = c .

An interesting abelian group to consider is the integers:
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Theorem 2.5

Every set of n nonzero integers contains a sum-free subset of size at least n3 .

Proof. Let A be a set of nonzero integers with |A| = n. Pick a real nmber θ ∈ [0, 1], and let

Aθ =

{
a ∈ A | {aθ} ∈

(
1

3
,
2

3

)}
(in other words, Aθ contains all points with fractional part of aθ in the middle third). Note that Aθ is always sum-free,

since no two elements with fractional part in the middle third can add to a third. Now uniformly pick θ from 0 to 1:

since the probability any a is in Aθ is always 13 (since aθ ranges from 0 to a), the expected number of points in Aθ is
n
3 , and therefore there is some sum-free subset Aθ with size at least n3 , as desired.

The best we can do currently is n+23 , and it’s been shown that
(
1
3 + c

)
n is not possible asymptotically for any

c > 0. However, the constant c ′ in 1
3n + c

′ is still open!

2.3 Cliques

Theorem 2.6 (Ramsey multiplicity)

There exists a 2-coloring of the edges of Kn with a “relatively small number” of t-cliques: there are at most

21−(
t
2
)(n
t

)
monochromatic copies of Kt .

Proof. Color all the edges randomly. The expected number of monochromatic Kts is, by linearity of expectation,(
n

t

)
21−(

t
2
)

since each t vertices we pick has
(
t
2

)
edges and there are only 2 ways to color them to form a monochromatic Kt .

Thus, there is a positive probability that the number of monochromatic Kt is at most this number.

Definition 2.7

Let ct be the maximum constant such that every 2-edge coloring of Kn has at least (ct+o(1))
(
n
t

)
monochromatic

t-cliques.

In other words, ct is the best fractional bound on the number of t-cliques, and we’ve just found that ct ≤ 21−(
t
2
).

Can we do better and find a smaller ct?

It is known that this is tight for t = 3: Goodman’s theorem implies that we indeed have c3 = 1
4 . (Proving this is a

good exercise in double counting.) We’d initially suspect that equality can also be achieved for t = 4, but it was found

by Thomason in 1989 that c4 < 1
33 <

1
25 . Likewise, the bound has been shown to be not tight for all t > 4. In fact,

the exact value of c4 is still an open problem.

But can we prove any kind of lower bound for ct? Specifically, what techniques do we have to proving positive lower

bounds? In other words, we’re trying to show that there’s a lot of t-cliques, and that sounds vaguely like Ramsey’s

theorem. One thing we could do is find a copy, delete a vertex, and repeat, but this gives a linear number of t-cliques

for n2 edges, which isn’t enough for a positive constant. Instead, we’ll use the sampling trick!
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Theorem 2.8

Every 2-coloring of Kn with n ≥ R(t, t) contains ≥
(
R(t,t)
t

)−1
·
(
n
t

)
monochromatic Kts.

Proof. Suppose there are M monochromatic Kts in our coloring. Let X be any t-clique: then it has a probability of
M

(n
t
)

of being monochromatic.

But instead, let’s pick the same X in a different way. First, pick a random R(t, t) clique, where R(t, t) is the

Ramsey number, and then pick a t-vertex subclique of that. (For this trick to work, we need to be able to pick a

random R(t, t) clique.) This second procedure has two random steps, but by Ramsey’s theorem, there is at least one

monochromatic t-clique in this second step! So X is monochromatic with probability at least
(
R(t,t)
t

)−1
.

So putting these together,
M(
n
t

) ≥ (R(t, t)
t

)−1
.

This is likely far from optimal, but at least it gives us a nonzero lower bound on ct :

Corollary 2.9

For all positive integers t,

ct ≥
(
R(t, t)

t

)−1
.

2.4 Independent sets
Let’s turn to a new question: what is the maximum number of edges in an n-vertex Kt-free graph? Note that cliques

in a graph G are the same as independent sets in G (the graph’s complement), so this is a very similar idea to what

we’ve been already been discussing.

Theorem 2.10 (Caro-Wei)

Every graph G contains an independent set I of size

|I| ≥
∑
v∈G

1

1 + d(v)
.

In particular, we should expect large independent sets out of graphs with low degrees, which is convenient for us.

Proof by Alon and Spencer. Consider a random ordering of V , and let I be the set of vertices that appear before all

of its neighbors in the graph.

I is an independent set, since no edge can connect two vertices in I (one comes before another). How big is I? By

linearity of expectation,

E[|I|] =
∑
v∈V
P(v ∈ I).

The probability that a vertex v is in I is 1
1+d(v) , since there are d(v) + 1 total vertices to consider here, v and all of

its neighbors, and v must be the one in front. So there’s a nonzero probability that an independent set of size at least∑
v

1
1+d(v) exists.
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Now, let’s take the complement of Caro-Wei. Independent sets become cliques and vice versa, which yields the

following:

Corollary 2.11

Every graph G contains a clique of size

S ≥
∑
v∈G

1

(n − 1− d(v)) + 1 =
∑
v∈G

1

n − d(v) .

Note that if we hold the number of degrees fixed, so
∑
d(v) = 2|E|, the sum is minimized when the d(v)s are as

close as possible.

So where’s the equality case of Caro-Wei (and the corollary after it)? To have maximal independent set size and

largest multiplicity, we want something like the following:

Definition 2.12

A Turán graph Tn,r has n vertices and is an r -partite complete graph, such that each part has either
⌊
n
r

⌋
or⌊

n
r

⌋
+ 1 vertices.

Note that this graph is Kr+1-free, and it turns out this is the extreme example:

Theorem 2.13 (Turán’s theorem)

Given a graph G with n vertices that is Kr+1 free,

|E(G)| ≤ |E(Tn,r )| ≤
(
1−
1

r

)
n2

2
,

where the inequalities are tight if r |n.

For simplicity, we’ll show a slightly weaker result where we skip the middle part of the inequality.

Proof. Since G is Kr+1 free, by the complement of Caro-Wei,

r ≥
∑
v∈V

1

n − d(v) ≥
n

n − d

by convexity, where d is the average degree of the vertices. Since the average degree is 2|E|n , rearranging gives the

result.

We just have to be a bit more careful in the case where r doesn’t divide n, but it’s not too much more difficult.

2.5 Crossing numbers
The next example may seem a bit less familiar in terms of the techniques it uses. Given a graph G, we can draw it on

the plane; it may or may not be planar. A graph is planar if we can draw it in a way such that all edges are continuous

curves and only intersect at vertices.

Fact 2.14 (“Common folklore knowledge” and Kuratowski’s theorem)

K4 is planar, but K5 and K3,3 are not. It turns out these are the only two minimal examples of nonplanar graphs:

any nonplanar graph contains a subgraph that is topologically equivalent to K5 or K3,3.
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The idea is that if we see a graph with a lot of edges, it should have a lot of crossings. How many such crossing

must Kn or Kn,n have? In fact, what’s the bound for any G with some large number of edges?

The exact answers to Kn and Kn,n are famous open questions, but there are conjectures: they’re called Hill’s

conjecture and the Zarankiewicz conjecture, respectively.

Remark (Historical note). The problem of drawing the complete bipartite graph with the minimum number of crossings

is also called Turán’s brick factory problem. During World War II, Turán was forced to work in a brick factory pushing

wagons of bricks along rail tracks. The wagons are harder to push when the rail tracks cross. This experience inspired

Turán to think about how to design the layout of the tracks in order to minimize the number of crossings.

The conjecture for Kn,n is to either place points antipodal on a sphere and connect geodesics, or put one set on

the x-axis and the other on the y -axis. That makes this problem hard: two very different constructions do equally

well.

Definition 2.15

The crossing number cr(G) is the minimum number of crossings in a planar drawing of G.

Are there any bounds we can place on this? It seems like we should expect O(n4) crossings, since any 4 points

potentially create a crossing. Is that at least correct up to a constant factor?

We’ll start by considering some facts in graph theory:

Proposition 2.16 (Euler’s formula)

Given a connected planar graph with V vertices, E edges, and F faces,

V − E + F = 2.

The next few sentences are easy to get wrong, so we’re going to be careful.

Proposition 2.17

Every connected planar graph with at least one cycle (not just a tree) has 3|F | ≤ 2|E|.

This is true because every face is surrounded by at least 3 edges, and every edge touches exactly 2 faces.

Plugging this into Euler’s formula, we also find that |E| ≤ 3|V | − 6 for all connected planar graphs with at least

one cycle. There are some graphs that do not satisfy the conditions above, but that’s okay - from similar arguments,

we can still deduce that all planar graphs satisfy |E| ≤ 3|V |.
So if there are too many edges, we want to be able to say that there are lots of crossings. Basically, every edge

beyond the threshold of 3|V | could add a crossing, so if we delete one edge per crossing, we get a planar graph. Thus

|E| − cr(G) ≤ 3|V |, or

cr(G) ≥ |E| − 3|V |.

But this gives O(n2) crossings for an n-vertex graph, and we’re trying to show that O(n4) crossings exist. Here’s

where the probabilistic method comes in: we’re going to sample like we did with the Ramsey number to get a better

answer.

Theorem 2.18 (Crossing number inequality)

Given a graph G with |E| ≥ 4|V |,
cr(G) & |E|3/|V |2.
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Proof. Let p ∈ [0, 1] be a number that we will decide later, and let G′ be obtained from G by randomly picking each

vertex with probability p. In other words, randomly delete each vertex (and the edges connected to it) with probability

1− p.
Our graph G′ should satisfy

cr(G′) ≥ |E′| − 3|V ′|,

and now take expectations of both sides:

E[cr(G′)] ≥ E[|E′|]− 3E[|V ′|]

If we start with a drawing of G, each crossing has 4 vertices that contribute to it. This crossing remains with probability

p4, but note that after we delete some vertices and edges, we can potentially redraw the diagram to have less crossings.

So the left hand side has an inequality of the form

E[cr(G′)] ≤ p4cr(G).

The right hand side is easier:

E[|E′|] = p2|E|,E[|V ′|] = p|V |.

Moving the p4 to the other side now, we have a new bound:

cr(G) ≥ p−2|E| − 3p−3|V |

From here, we set p so that we have 4p−3|V | ≤ p−2|E|, but note that this only works if |E| ≥ 4|V |, since our probability

needs to be between 0 and 1. This gives the result that we want:

Notably, if |V | = n and |E| & n2 (is quadratic in n), then cr(G) & n4: the crossing number is quartic in n, as

desired!

2.6 Application to incidence geometry

Problem 2.19

Given n points and n lines, what’s the maximum number of incidences between them?

Let’s formulate this more rigorously:

Definition 2.20

Let P be a set of points and L be a set of lines. Define

I(P,L) = {(p, `) ∈ P × L : p ∈ `}

to be the set of intersections between a point in P and a line in L.

We wish to maximize |I(P,L)|.
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Example 2.21

Let P be the lattice grid [k ] × [2k2], and let L be the lines with small integer slope: L = {y = mx + b,m ∈
[k ], b ∈ [k2]. Then every line in L contains k points, so

|I(P,L)| = k4,

which gives O(n4/3) incidences.

The natural question to ask is whether this is optimal, and the answer is yes. To prove this, let’s start trying to

find some upper bounds. Assume temporarily that every line has at least two incidences: clearly, there is a bound

I(P,L) ≤ |P||L|,

which is weak if there are at least 2 points or 2 lines. But let’s use the fact that there is at most one line through each

pair of points: to do this, we’ll double count the number of triples (p, p′, `) ∈ P × P × L with p 6= p′ and p, p′ ∈ `.
On one hand, given two points, we’ve determined the line, so there are at most |P|2 such triples. On the other hand,

if we count the incidences in terms of lines, the number of triples is∑
`∈L
|P ∩ `|(|P ∩ `| − 1) ≥

I(P,L)2

|L| − I(P,L)

where we’ve done bounding by Cauchy-Schwarz. Putting these together,

I(P,L) . |P||L|1/2 + |L|.

By point-line duality, we can also find an analogous statement if we flip L and P . Either way, for n lines and n points,

we’re getting O(n3/2), which is not as strong as O(n4/3).

Remark. We can make this bound that we found tight in some situations, though: it turns out this is the right number

of incidences over a finite field F2q if we take all Θ(q2) lines and all q2 points.

Back to the Euclidean plane. To make the bound tight, we invoke the topology of Euclidean space and the

crossing number theorem. Assume, again, that every line has at least 2 incidences. Draw a graph based on the

point-line configuration, where the points are vertices and consecutive points on a line form an edge. So each line

gets chopped up into some number of segments.

How many edges and vertices are there? The points are vertices, so |V | = |P|. A line with k incidences (and

k ≥ 2) has k − 1 ≥ k
2 edges, so the number of edges is at least

|E| ≥
I(P,L)
2
.

Two lines can cross at most once, so

cr(G) ≤ |L|2.

Provided that the number of incidences is at least 8 times the number of points, we can invoke the crossing number

inequality:

|L2| ≥ cr(G) &
|E|3

|V |2 &
|I(P,L)|3

|P|2 .

Rearranging, this gives us

I(P,L) . |P|2/3|L|2/3,
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but this only works if we have a sufficiently large number of incidences, so we need to add a linear |P| term. We also

need to correct for the fact that we’re assuming that there are at least 2 incidences per line, which adds a linear |L|
term:

Theorem 2.22 (Szemerédi-Trotter theorem)

For any set of points and lines,

I(P,L) . |P|2/3|L|2/3 + |P|+ |L|.

This is sharp up to constant factors! As a corollary, n points and n lines always have O(n4/3) incidences.

2.7 Derandomization: balancing vectors
We’ll start by solving a problem with familiar techniques:

Theorem 2.23

Given v1, · · · , vn ∈ Rn unit vectors, there exists ε1, ε2, · · · , εn ∈ {−1, 1} such that

|ε1v1 + · · ·+ εnvn| ≤
√
n.

This is motivated by considering v1, · · · , vn to be a standard basis: our choices can’t get the length of the vector

any smaller than
√
n. As a sidenote, we can also show that we can pick the εis to make the length at least

√
n.

We want to use linearity of expectation, but we have a small problem: we have an expectation of an absolute value.

The easiest way to get around this is to square both sides of our equation!

Proof. Let

X = |ε1v1 + · · ·+ εnvn|2,

and pick each εi independently and randomly between {−1, 1}. X expands out to the sum

X =

n∑
i ,j=1

εiεj (vi · vj)

and now that the absolute values are gone, we can just use linearity of expectation: for i 6= j , the expectation is 0,

and for i = j , we get a contribution of 1 · |vi |2 = 1 from each term. So the expected value of X is n, so with some

positive probability X ≤ n (and also X ≥ n).

We can also do this all deterministically: in this case, we don’t actually have to use the probabilistic method.

Finding the εis algorithmically. We’re going to pick our εis sequentially and greedily. At each step, we pick the εi that

minimizes the expected value conditional on the previous choices.

For example, if we pick ε1, · · · , εk−1, let w = ε1v1 + · · ·+ εk−1vk−1. Then our conditional probability

E [X | ε1, · · · , εk ] = E
[
|w + εkvk + εnvn|2 | ε1, · · · , εk

]
,

and expanding out the square again, this becomes the expected value of

|w |2 + 2εk(w · vk) + (n − k − 1).

To minimize this value, we pick εk = 1 if and only if w · vk ≤ 0.
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Why couldn’t we do something like this for the Ramsey number proof, too? The idea is that we can’t compute

the number of cliques of other subsets easily! (It is “expensive” to do so.) This idea of turning probabilistic proofs into

deterministic ones is called derandomization.

2.8 Unbalancing lights

Problem 2.24

Consider a grid of n×n lights, where we only have light switches for each row and column. How can we maximize

the number of lightbulbs turned on given some starting configuration?

Represent this as an array of ±1 numbers. Let ai j ∈ {−1, 1} for all 1 ≤ i , j ≤ n, and let’s say that our light

switches are labeled x1, · · · , xn, y1, · · · , yn ∈ {−1, 1}. Our goal is then to maximize the quantity

n∑
i ,j=1

ai jxiyj ,

since only the parity of how many times we flip each switch matters (not even the order).

Well, there are n2 variables, so if we do our probabilistic method naively at random, we can guarantee a linear

answer in n, since
√
n2 = n. But we can do better than that:

Theorem 2.25

Given fixed ai j ∈ {−1, 1}, we can pick x1, · · · , xn, y1, · · · , yn ∈ {−1, 1}, such that

n∑
i ,j=1

ai jxiyj ≥

(√
2

π
+ o(1)

)
n3/2.

Proof. Choose y1, · · · , yn ∈ {−1, 1} randomly: this means that we pick a random way to flip our columns. Now, for

each row, we can choose xi such that the ith row sum is nonnegative (in other words, flip a row if the sum is negative).

Each row sum is

Ri =

n∑
j=1

ai jyj ,

and our final sum is just R =
∑n
i=1 |Ri |. Here we use linearity of expectation: the expected value of each Ri is the

same, and each Ri is a sum of ±1s. This gives a binomial distribution: we can use the Central Limit Theorem, since

our quantity

E
(
|R1|√
n

)
→ E|X| =

√
2

π
.

(Alternatively, we can directly compute

E[|R1|] = n21−n
(
n − 1⌊
n−1
2

⌋)
and use Stirling’s formula.) Regardless, each row has expected value

(√
2
π + o(1)

)√
n, which is what we want.

2.9 2-colorings of a hypergraph
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Theorem 2.26

Let a k-uniform hypergraph have a vertex set V partitioned as

V = V1 ∪ · · · ∪ Vk ,

where |Vi | = n for all i . Suppose the edges of the complete k-uniform hypergraph on V are colored red and blue

such that every edge that intersects all of V1, · · · , Vk is colored blue. Then there exists a subset of the vertices

S ⊂ V such that

|# blue edges−# red edges| ≥ cknk

for some constant k .

For example, if k = 2, we’re looking at a 2-coloring of a complete graph where all of the cross-edges between

two halves are blue: our goal is to get a large difference in the number of red and blue edges. Similarly, if k = 3, we

partition 3n vertices into three parts and draw triangles. All the triangles that intersect all three parts are blue, but

everything else can be red or blue.

Proof. The idea here is to choose S by including each vertex in a given Vi with probability pi . We’ll leave p1, p2, · · · , pk
undetermined for now.

Let’s do the proof for k = 3 for illustration, but this generalizes to any k . Let axyz be the difference in the number

of blue and red edges in Vx × Vy × Vz . When we randomly pick our vertices, by linearity of expectation, the expected

number of blue minus red edges is

n3p1p2p3 +
∑
x≤y≤z

not all different

axyzpxpypz .

The first term here comes from the forced blue triangles between all Vis. Our goal is to show this absolute value of

this expression is (at least) cubic, and then we’ll be done by linearity of expectation.

We haven’t chosen our pis yet, and for each specific choice, we might end up with expected values that are pretty

close to 0. So there is always a graph that beats a specific set of pi , but we just want to find p1, p2, p3 that work

given a graph. This is now just an analysis problem:

Lemma 2.27

Let Pk denote the set of polynomials of the form g(p1, · · · , pk) with degree at least k and coefficients having

absolute value at most 1, where the coefficient of p1p2 · · · pk is exactly 1. Then there exists a constant ck such

that for all polynomials in Pk , there exists p1, · · · , pk ∈ [0, 1]k such that

g(p1, p2, · · · , pk) ≥ ck .

The proof of this is short: let M(g) be the supremum

sup
p1,··· ,pk∈[0,1]k

|g(p1, · · · , pk)|

By continuity and compactness, this is actually an achieved maximum, and it is always positive, since all polynomials

are nonzero. Furthermore, this map M : Pk → R is continuous on a compact domain, so it must achieve its minimum,

which is nonzero.

This doesn’t give a concrete value of ck , but it tells us that one exists! And now we’re done with the linearity of

expectation argument, since all ai jk < n3.
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The main take-away here is that we decide probabilities for our random process in the last step, since no probabilities

will work for every configuration.

2.10 High-dimensional sphere packings

Problem 2.28

What is the densest possible packing of unit balls in Rn?

This has been solved for n = 1 (trivial), n = 2 (a rigorous proof wasn’t found until the middle of the 20th century),

and n = 3 (Kepler’s conjecture; proved with computer assistance in the 1990s, and a formal computer proof was

recently completed).

Recently, there was a breakthrough that found the answer for n = 8 and n = 24 as well; those answers come from

the E8 and Leech lattices respectively. However, the problem is open in all other dimensions.

The definition of “density” can be thought of pretty intuitively:

Definition 2.29

Let ∆n be the maximum fraction of space occupied by non-overlapping unit balls in a large box in Rn as the volume

of the box goes to infinity.

We wish to understand bounds on ∆n. What are examples of good sphere-packings with high density?

Example 2.30

Consider a packing where we pack greedily: we keep throwing balls in wherever there is space. Alternatively, take

any maximal packing: basically, find one where we can’t fit any additional balls in Rn anymore without overlap.

What can we say about the density of such a maximal sphere packing? Well, double the radii of every ball, and

suppose there is a spot not covered. Then we could just put a unit ball centered at that spot which doesn’t intersect

any of our initial balls, contradicting maximality of our packing. Thus, we must be able to cover all of Rn with doubled

radii, and thus

2n∆n ≥ 1, so ∆n ≥ 2−n.

For comparison, what’s the packing for Zn? We can put a ball with radius 12 at every lattice point, and the density

is just the volume of a ball of radius 12 . This is a pretty standard formula: it’s

V =
2−nπn/2

(n/2)!
< n−cn,

so the integer lattice does very poorly compared to the “random” lattice. Are there better ways to construct lattices

in higher dimensions? Here’s the best bound we know at the moment:

Theorem 2.31 (Kabatiansky–Levenshtein, 1978)

The sphere-packing density in Rn is at most 2−(0.599···+o(1))n.

Where does the probabilistic method come into our picture? Although we can’t prove the above fact, we want to

at least get a better bound than 2−n.
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Definition 2.32

A lattice is the Z-span of a basis in Rn: given v1, v2, · · · , vn, we can write a matrix with basis vectors as columns.

A lattice is unimodular if the covolume (volume of the fundamental domain) is 1, which means the matrix has

determinant ±1.

Let’s consider matrices A such that detA = 1, so A ∈ SLn(R). On the other hand, given a lattice, there’s

different ways to represent it with a basis: we could always pick (v1 + v2, v2, · · · , vn) instead of (v1, v2, · · · , vn). Any

such transformation is matrix multiplication of B ∈ SLn(Z).
So the whole point is that lattices are matrices in SLn(R)/SLn(Z) through row reduction. Our question: is there

a way to pick a random lattice here?

Fact 2.33

The space has a finite Haar measure, so there exists a (normalized) probability Haar measure on SLn(R)/SLn(Z),
which allows us to choose a random point in the space. That random point will be our random lattice.

Theorem 2.34 (Siegel mean value theorem)

If L is a random unimodular lattice in Rn (chosen as above according to the Haar probability measure), and if S

is any measurable subset of Rn, then

E (|L ∩ (S \ {0})|) = vol(S).

The idea is that the average point density is 1, so the number of nonzero lattice points is the volume. We exclude

0 because it’s always in the lattice.

Proof sketch. Observe that the function S → E (|L ∩ (S \ {0})|) is additive, so it is a measure. Because of how we

chose our lattice, it is SLn(R)-invariant, so the measure is also SLn(R) invariant. Therefore, the only measures that

work are constant multiples of the Lebesgue measure.

Now imagine we take a very large ball, much larger than the size of our lattice: then the expected value is the

volume minus some boundary errors. So |S ∩ L| ∼ vol S and the normalizing constant must be 1.

How do we use this to find dense lattices?

Proposition 2.35

There exist lattices with sphere packing density greater than 2−n.

Proof. Let S be a ball of volume 1 centered at the origin, and pick a random lattice. By the Siegel mean value

theorem, the expected number of nonzero lattice points of L that are in S is 1 (think of this as 1− ε). We can show,

then, that there must exist L such that L has no nonzero lattice points in S, since there is a positive probability that

there is more than 1 lattice point.

So now put 12S around every point of L; this gives us a packing with density 2−n. But notice that the nonzero

lattice points come in pairs {x,−x}! In other words, we can take S to be a ball of volume 2. Then we can guarantee

the expected number of nonzero lattice points is 2, and we can’t have exactly 1 lattice point, so we have the same

conclusion as before. This yields a sphere packing with density 21−n, and this improvement is due to Minkowski.
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Can we do better? There’s a lot of connections to the geometry of numbers here. There was a long sequence of

improvements made, all of the form ∆n ≥ cn2−n, over a few decades. c went from 1
2 to about 2, but then Venkatesh

realized that we can gain factors of k if we have additional symmetry in our lattices: number theory gives such lattices

with k-fold symmetry!

For example, consider the lattice corresponding to a cyclotomic field: that is, look at the lattice spanned by a kth

root of unity ω. This has a k-fold action, which is multiplication by ω. The end result is that a “random lattice” can

be extended to a random unimodular lattice in dimensions n = 2φ(k), with k-fold symmetry, also satisfying the Siegel

mean value theorem conditions. So now k-fold symmetry gives density

∆n ≥ k · 2−n,

and this turns out to maximize the gain when k = p1p2 · · · pn, where pi is the ith prime. Number theoretic calculations

give the following result:

Theorem 2.36 (Venkatesh, 2012)

There exists a lattice packing of unit balls of density

∆n ≥ cn log log n · 2−n

for infinitely many values of n and some c > 0.

These values of n are very sparse, but this is the state-of-the-art bound. Venkatesh also used a different method

to show that (for all sufficiently large n)

∆n ≥ 60000n · 2−n.

It’s an open problem whether or not we can get sphere packings of exponentially better density than this, though!
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