Prof. Yufei Zhao

- 1. Verify the following asymptotic calculations used in Ramsey number lower bounds:
	- (a) For each k, the largest n satisfying $\binom{n}{k} 2^{1-\binom{k}{2}} < 1$ has $n = \left(\frac{1}{e\sqrt{2}} + o(1)\right) k 2^{k/2}$.
	- (b) For each k, the maximum value of $n {n \choose k} 2^{1-{k \choose 2}}$ as n ranges over positive integers is $(\frac{1}{2}+o(1))$

 $\frac{1}{e} + o(1)$ $k2^{k/2}$.

or each k, the largest n satisfying $e\left(\binom{k}{2}\binom{n}{k-2}+1\right)2^{1-\binom{k}{2}} < 1$ satisfies $n = \left(\frac{\sqrt{2}}{e}+o(1)\right)$ (c) For each k, the largest n satisfying $e\left(\binom{k}{2}\binom{n}{k-2}+1\right)2^{1-\binom{k}{2}} < 1$ satisfies $n = \left(\frac{\sqrt{2}}{e}+o(1)\right)k2^{k/2}$. 2. Prove that, if there is a real $p \in [0, 1]$ such that

$$
\binom{n}{k} p^{\binom{k}{2}} + \binom{n}{t} (1-p)^{\binom{t}{2}} < 1
$$

then the Ramsey number $R(k, t)$ satisfies $R(k, t) > n$. Using this show that

$$
R(4, t) \ge c \left(\frac{t}{\log t}\right)^{3/2}
$$

for some constant $c > 0$.

- 3. (Extension of Sperner's theorem) Let F be a collection of subset of $[n]$ that does not contain $k+1$ elements forming a chain: $A_1 \subsetneq \cdots \subsetneq A_{k+1}$. Prove that F is no larger than taking the union of the k levels of the boolean lattice closest to the middle layer.
- ps1 4. Let A_1, \ldots, A_m be r-element sets and B_1, \ldots, B_m be s-element sets. Suppose $A_i \cap B_i = \emptyset$ for each i, and for each $i \neq j$, either $A_i \cap B_j \neq \emptyset$ or $A_j \cap B_i \neq \emptyset$. Prove that $m \leq (r+s)^{r+s}/(r^r s^s)$.
- ps1 \vert 5. Prove that for every positive integer r, there exists an integer K such that the following holds. Let S be a set of rk points evenly spaced on a circle. If we partition $S = S_1 \cup \cdots \cup S_r$ so that $|S_i| = k$ for each i, then, provided $k \geq K$, there exist r congruent triangles where the vertices of the *i*-th triangle lie in S_i , for each $1 \leq i \leq r$.
- ps1 6. Prove that every set of 10 points in the plane can be covered by a union of disjoint unit disks.
- $\overline{\text{ps1}\star}$ 7. Prove that $[n]^d$ cannot be partitioned into fewer than 2^d sets each of the form $A_1 \times \cdots \times A_d$ where $A_i \subsetneq [n]$.
	- 8. Let $k \geq 4$ and H a k-uniform hypergraph with at most $4^{k-1}/3^k$ edges. Prove that there is a coloring of the vertices of H by four colors so that in every edge all four colors are represented.
- ps1 9. Let G be a graph on $n \geq 10$ vertices. Suppose that adding any new edge to G would create a new clique on 10 vertices. Prove that G has at least $8n - 36$ edges. (Hint in white:
	- 10. Prove that there is an absolute constant $c > 0$ so that for every $n \times n$ matrix with distinct real entries, one can permute its rows so that no column in the permuted matrix contains an increasing subsequence of length at least $c\sqrt{n}$. (A subsequence does not need to be selected from consecutive terms. For example, $(1, 2, 3)$ is an increasing subsequence of $(1, 5, 2, 4, 3)$.
	- 11. Let G be a graph with n vertices and m edges. Prove that K_n can be written as a union of $O(n^2(\log n)/m)$ copies of G (not necessarily edge-disjoint).
- ps1 12. Given a set F of subsets of [n] and $A \subseteq [n]$, write $\mathcal{F}|_A := \{S \cap A : S \in \mathcal{F}\}\$ (its projection onto A). Prove that for every n and k, there exists a set F of subsets of $[n]$ with $|\mathcal{F}| = O(k2^k \log n)$ such that for every k-element subset A of $[n], \mathcal{F}|_A$ contains all 2^k subsets of A.
	- 13. Let A be a subset of the unit sphere in \mathbb{R}^3 (centered at the origin) containing no pair of orthogonal points.

- ps1 (a) Prove that A occupies at most $1/3$ of the sphere in terms of surface area.
- $p_{\text{S1}\star}$ (b) Prove an upper bound smaller than 1/3 (give your best bound).
	- 14. Let $\mathbf{r} = (r_1, \ldots, r_k)$ be a vector of nonzero integers whose sum is nonzero. Prove that there exists a real $c > 0$ (depending on r only) such that the following holds: for every finite set A of nonzero reals, there exists a subset $B \subseteq A$ with $|B| \ge c|A|$ such that there do not exist $b_1, ..., b_k \in B$ with $r_1b_1 + ... + r_kb_k = 0$.
- ps1 15. Prove that every set A of n nonzero integers contains two disjoint subsets B_1 and B_2 , such that both B_1 and B_2 are sum-free, and $|B_1| + |B_2| > 2n/3$. Can you do it if A is a set of nonzero reals?
- $\overline{ps1*}$ 16. Prove that every graph with n vertices and $m \geq n^{3/2}$ edges contains a pair of vertex-disjoint and isomorphic subgraphs (not necessarily induced) each with at least $cm^{2/3}$ edges, where $c > 0$ is a constant.
	- 17. Let $M(n)$ denote the maximum number of edges in a 3-uniform hypergraph on n vertices without a clique on 4 vertices.
		- (a) Prove that $M(n+1)/\binom{n+1}{3} \leq M(n)/\binom{n}{3}$ for all n, and conclude that $M(n)/\binom{n}{3}$ approaches some limit α as $n \to \infty$. (This limit is called the Turán density of the hypergraph $K_4^{(3)}$, and its exact value is currently unknown and is a major open problem.)
		- (b) Prove that for every $\delta > 0$, there exists $\epsilon > 0$ and n_0 so that every 3-uniform hypergraph with $n \geq n_0$ vertices and at least $(\alpha + \delta) \binom{n}{3}$ edges must contain at least $\epsilon \binom{n}{4}$ copies of the clique on 4 vertices.
	- 18. Using the alteration method, prove that the Ramsey number $R(4, k)$ satisfies $R(4, k) \geq$ $c(k/\log k)^2$ for some constant $c > 0$.
	- 19. Prove that every 3-uniform hypergraph with *n* vertices and $m \ge n$ edges contains an independent set (i.e., a set of vertices containing no edges) of size at least $cn^{3/2}/\sqrt{m}$, where $c > 0$ is a constant.
	- 20. (Zarankiewicz problem) Prove that for every positive integer $k \geq 2$, there exists a constant $c > 0$ such that for every n, there exists an $n \times n$ matrix with $\{0,1\}$ entries, with at least $cn^{2-2/(k+1)}$ 1's, such that there is no $k \times k$ submatrix consisting of all 1's.
- ps2 21. Fix k. Prove that there exists a constant $c_k > 1$ so that for every sufficiently large n, there exists a collection F of at least c_k^n subsets of $[n]$ such that for every k distinct $F_1, \ldots, F_k \in \mathcal{F}$, all 2^k intersections $\bigcap_{i=1}^k G_i$ are nonempty, where each G_i is either F_i or $[n] \setminus F_i$.
	- 22. Acute sets in \mathbb{R}^n
		- (a) Prove that there exists a family of $\Omega((2/\sqrt{3})^n)$ subsets of [n] containing no three distinct members A, B, C satisfying $A \cap B \subseteq C \subseteq A \cup B$.
(b) Prove that there exists a set of $\Omega((2/\sqrt{3})^n)$ points in \mathbb{R}^n so that all angles determined
		- by three points from the set are acute. Remark: The current best lower and upper bounds for the maximum size of an "acute set" in \mathbb{R}^n (i.e., spanning only acute angles) are $2^{n-1}+1$ and 2^n-1 respectively.
- $\boxed{ps2}$ (c) Prove that there exists a constant $c > 1$ such that for every n, there are at least c^n points in \mathbb{R}^n so that the angle spanned by every three distinct points is at most 61°.

- $p s 2* | 23. \n*Covering complements of sparse graphs by cliques*$
	- (a) Prove that every graph with n vertices and minimum degree $n d$ can be written as a union of $O(d^2 \log n)$ cliques.
	- (b) Prove that every bipartite graph with n vertices on each side of the vertex bipartition and minimum degree $n - d$ can be written as a union of $O(d \log n)$ complete bipartite graphs (assume $d \geq 1$).
- $\overline{ps2*}$ 24. Let $G = (V, E)$ be a graph with n vertices and minimum degree $\delta \geq 2$. Prove that there exists $A \subseteq V$ with $|A| \leq Cn(\log \delta)/\delta$, where $C > 0$ is a constant, so that every vertex in $V \setminus A$ contains at least one neighbor in A and at least one neighbor not in A.
	- 25. Let X be a nonnegative real-valued random variable. Suppose $\mathbb{P}(X=0) < 1$. Prove that

$$
\mathbb{P}(X=0) \le \frac{\text{Var}\,X}{\mathbb{E}[X^2]}.
$$

ps2 26. Let X be a random variable with mean μ and variance σ^2 . Prove that for all $\lambda > 0$,

$$
\mathbb{P}(X \ge \mu + \lambda) \le \frac{\sigma^2}{\sigma^2 + \lambda^2}.
$$

- 27. What is the threshold function for $G(n, p)$ to contain a cycle?
- p_{p} 28. Show that, for each fixed k, there is a sequence p_n such that

 $\mathbb{P}(G(n, p_n)$ has a connected component with exactly k vertices) $\rightarrow 1$ as $n \rightarrow \infty$.

29. Let $p = (\log n + f(n))/n$. Show that, as $n \to \infty$,

$$
\mathbb{P}(G(n,p) \text{ has no isolated vertices}) \to \begin{cases} 0 & \text{if } f(n) \to -\infty, \\ 1 & \text{if } f(n) \to \infty. \end{cases}
$$

- $\overline{\mathsf{ps2}}$ 30. Let $v_1 = (x_1, y_1), \ldots, v_n = (x_n, y_n) \in \mathbb{Z}^2$ with $|x_i|, |y_i| \leq 2^{n/2}/(100\sqrt{n})$ for all $i \in [n]$. Show that there are two disjoint sets $I, J \subseteq [n]$, not both empty, such that $\sum_{i \in I} v_i = \sum_{j \in J} v_j$.
- $\overline{ps2*}$ 31. Prove that there is an absolute constant $c > 0$ so that the following holds. For every prime p and every $A \subseteq \mathbb{Z}/p\mathbb{Z}$ with $|A| = k$, there exists an integer x so that $\{xa : a \in A\}$ intersects every interval of length at least cp/\sqrt{k} in $\mathbb{Z}/p\mathbb{Z}$.
- $\overline{ps2*}$ 32. Let S_1, \ldots, S_k be subsets of [n]. Prove that if $k \leq 1.99n/\log_2 n$ and n is sufficiently large, then there are two distinct subsets $X, Y \subseteq [n]$ such that $|X \cap S_i| = |Y \cap S_i|$ for all $i \in [k]$. In addition, show that there is some constant C such that the claim is false for $k \geq$ $Cn/\log_2 n$. What is the best constant C?
- $\overline{ps2*}$ 33. Let X be a collection of pairwise orthogonal unit vectors in \mathbb{R}^n and suppose that the projection of each of these vectors on the first k coordinates has norm at least ϵ . Show that $|X| \leq k/\epsilon^2$, and show that this is tight if $\epsilon^2 = k/2^r < 1$ for some integer r.
- $\overline{ps2*}$ 34. Prove that there is a constant $c > 0$ so that every hyperplane containing the origin in \mathbb{R}^n intersects at least c-fraction of the 2^n closed unit balls centered at $\{-1,1\}^n$. (Give your best c. Can you get $c \geq 3/8$? It is conjectured that $c = 1/2$ works.)
- \overline{p} ps2 35. Prove that, with probability approaching 1 as $n \to \infty$, $G(n, n^{-1/2})$ has at least $cn^{3/2}$ edgedisjoint triangles, where $c > 0$ is some constant. (Hint in white: $\qquad \qquad$)
- $p\leq 36$. Simple nibble. Prove that for some constant C, with probability approaching 1 as $n \to \infty$, (a) $G(n, Cn^{-2/3})$ has at least $n/100$ vertex-disjoint triangles.
	- (b) $G(n, Cn^{-2/3})$ has at least 0.33n vertex-disjoint triangles (Hint in white:

(You are asked to solve the above problem using the second moment method. Later in the course we will learn a different method to solve this problem.)

37. Let *X* ∼ Binomial (n, p) . Prove that for $0 < q \leq p < 1$,

$$
\mathbb{P}(X \le nq) \le e^{-nH(q||p)} \quad \text{and} \quad \lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}(X \le nq) = -H(||p)
$$

and for $0 < p \leq q < 1$,

$$
\mathbb{P}(X \ge nq) \le e^{-nH(q||p)} \quad \text{and} \quad \lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}(X \ge nq) = -H(||p),
$$

where

$$
H(q||p) := q \log \frac{q}{p} + (1-q) \log \frac{1-q}{1-p}.
$$

is known as the relative entropy or Kullback-Leibler divergence, in this case, between two Bernoulli distributions.

- 38. Prove that there is a constant $C > 0$ so that, with probability $1 o(1)$ as $n \to \infty$, the maximum number of edges in a bipartite subgraph of $G(n, 1/2)$ is at most $n^2/8 + Cn^{3/2}$.
- 39. (a) Prove that there is some constant $c > 1$ so that there exists $S \subset \{0,1\}^n$ with $|S| \ge c^n$ so that every pair of points in S differ in at least $n/4$ coordinates.
	- (b) Prove that there is some constant $c > 1$ so that the the unit sphere in \mathbb{R}^n contains at least c^n points, where each pair of points is at distance at least 1 apart.
- $p s 3 \mid 40$. Planted clique. Give a deterministic polynomial-time algorithm solving the following problem so that it succeeds over the random input with probability approaching 1 as $n \to \infty$: Input: an *n*-vertex unlabeled graph G created as the union of $G(n, 1/2)$ and a clique on vertex subset of size $t = |100\sqrt{n \log n}|$ Output: a clique in G of size t
- $\overline{\text{ps3}}$ 41. Show that it is possible to color the edges of K_n with at most $3\sqrt{n}$ colors so that there are no monochromatic triangles.
	- 42. Prove that there is some constant C so that it is possible to color the vertices of every k uniform k-regular hypergraph using at most $k/\log k$ colors so that every edge has at most $C \log k$ vertices of each color.
- $p s 3 \mid 43$. Prove that there is some constant $c > 0$ so that given a graph and a set of k acceptable colors for each vertex such that every color is acceptable for at most ck neighbors of each vertex, there is always a proper coloring where every vertex is assigned one of its acceptable colors.
- $p\sin\left(44. \text{Prove that there is a constant } C > 0 \text{ so that for every sufficiently small } \epsilon > 0, \text{ one can choose } \epsilon$ exactly one point inside each grid square $[n, n + 1) \times [m, m + 1) \subset \mathbb{R}^2$, $m, n \in \mathbb{Z}$, so that

every rectangle of dimensions ϵ by (C/ϵ) log($1/\epsilon$) in the plane (not necessarily axis-aligned) contains at least one chosen point.

- ps3 45. Prove that, for every $\epsilon > 0$, there exists ℓ_0 and some $(a_1, a_2, ...) \in \{0, 1\}^{\mathbb{N}}$ such that for every $\ell > \ell_0$ and every $i > 1$, the vectors $(a_i, a_{i+1}, \ldots, a_{i+\ell-1})$ and $(a_{i+\ell}, a_{i+\ell+1}, \ldots, a_{i+2\ell-1})$ differ in at least $(\frac{1}{2} - \epsilon)\ell$ coordinates.
- ps3 46. A periodic path in a graph G with respect to a vertex coloring $f: V(G) \to [k]$ is a path $v_1v_2 \ldots v_{2\ell}$ for some positive integer ℓ with $f(v_i) = f(v_{i+\ell})$ for each $i \in [\ell]$ (reminder: no repeated vertices allowed in a path).

Prove that for every Δ , there exists k so that every graph with maximum degree at most Δ has a vertex-coloring using k colors with no periodic paths.

ps3 47. Prove that every graph with maximum degree Δ can be properly edge-colored using $O(\Delta)$ colors so that every cycle contains at least three colors.

(A proper edge-coloring is one where no two adjacent edges receive the same color.)

- $p\in3*$ 48. Prove that for every Δ , there exists g so that every bipartite graph with maximum degree Δ and girth at least g can be properly edge-colored using $\Delta + 1$ colors so that every cycle contains at least three colors.
- p_{53*} 49. Prove that for every positive integer r, there exists C_r so that every graph with maximum degree Δ has a *proper* vertex coloring using at most $C_r\Delta^{1+1/r}$ colors so that every vertex has at most r neighbors of each color.
	- 50. Let $H = (V, E)$ be a hypergraph satisfying, for some $\lambda > 1/2$,

$$
\sum_{f \in E: v \in f} \lambda^{|f|} \le \frac{1}{2} - \frac{1}{4\lambda} \quad \text{for every } v \in V
$$

(here $|f|$ is then number of vertices in the edge f). Prove that H is 2-colorable.

- 51. Prove that there exists k_0 and a red/blue coloring of $\mathbb Z$ without any monochromatic k-term arithmetic progressions with $k \geq k_0$ and common difference less than 1.99^k.
- 52. Vertex-disjoint cycles in digraphs. (Recall that a directed graph is k-regular if all vertices have in-degree and out-degree both equal to k. Also, cycles cannot repeat vertices.)
- ps3 (a) Prove that every k-regular directed graph has at least $ck/\log k$ vertex-disjoint directed cycles, where $c > 0$ is some constant.
- $p_{\text{53}\star}$ (b) Prove that every k-regular directed graph has at least ck vertex-disjoint directed cycles, where $c > 0$ is some constant. (Hint in white:
- p_{S3} 53. Prove that there is a constant $c > 0$ so that every $n \times n$ matrix where no entry appears more than cn times contains cn disjoint Latin transversals. (Hint in white:
	- 54. (a) Generalization of Cayley's formula. Using Prüfer codes, prove the identity

$$
x_1 x_2 \cdots x_n (x_1 + \cdots + x_n)^{n-2} = \sum_T x_1^{d_T(1)} x_2^{d_T(2)} \cdots x_n^{d_T(n)}
$$

where the sum is over all trees T on n vertices labeled by [n] and $d_T(i)$ is the degree of vertex i in T .

- (b) Independence property for uniform spanning tree of K_n . Let F be a forest with vertex set [n], with components having f_1, \ldots, f_s vertices so that $f_1 + \cdots + f_s = n$. Prove that the number of trees on the vertex set [n] that contain F is exactly $n^{n-2} \prod_{i=1}^{s} (f_i/n^{f_i-1})$. Deduce that if H_1 and H_2 are vertex-disjoint subgraphs of K_n , then for a uniformly random spanning tree T of K_n , the events $H_1 \subseteq T$ and $H_2 \subseteq T$ are independent.
- p_{ss} (c) Packing rainbow spanning trees. Prove that there is a constant $c > 0$ so that for every edge-coloring of K_n where each color appears at most cn times, there exist at least cn edge-disjoint spanning trees, where each spanning tree has all its edges colored differently.
- p_{S4} 55. Let $G = (V, E)$ be a graph. Color every edge with red or blue independently and uniformly at random. Let E_0 be the set of red edges and E_1 the set of blue edges. Let $G_i = (V, E_i)$ for each $i = 0, 1$. Prove or disprove:

 $\mathbb{P}(G_0 \text{ and } G_1 \text{ are both connected}) \leq \mathbb{P}(G_0 \text{ is connected})^2.$

- $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ ps4 56. A set family F is intersecting if $A \cap B \neq \emptyset$ for all $A, B \in \mathcal{F}$. Let $\mathcal{F}_1, \ldots, \mathcal{F}_k$ each be a collection of subsets of [n] and suppose that each \mathcal{F}_i is intersecting. Prove that $\left| \bigcup_{i=1}^k \mathcal{F}_i \right|$ $\left|\bigcup_{i=1}^k \mathcal{F}_i\right| \leq 2^n - 2^{n-k}.$
	- 57. Let $G_{m,n}$ be the grid graph on vertex set $[m] \times [n]$ (m vertices wide and n vertices tall). A horizontal crossing is a path that connects some left-most vertex to some right-most vertex. See below for an example of a horizontal crossing in $G_{7,5}$.

Let $H_{m,n}$ denote the random subgraph of $G_{m,n}$ obtained by keeping every edge with probability 1/2 independently.

Let RSW(k) denote the following statement: there exists a constant $c_k > 0$ such that for all positive integers n, $\mathbb{P}(H_{kn,n}$ has a horizontal crossing) $\geq c_k$.

- $\overline{ps4}$ (a) Prove that RSW(2) implies RSW(100).
- $ps4\star$ (b) Prove RSW(1).

(c) (Challenging. Not to be turned in) Prove RSW(2).

- ps4 58. Let U_1 and U_2 be increasing events and D a decreasing event of independent boolean random variables. Suppose U_1 and U_2 are independent. Prove that $\mathbb{P}(U_1|U_2 \cap D) \leq \mathbb{P}(U_1|U_2)$.
- ps4 59. Coupon collector. Let s_1, \ldots, s_m be independent random elements in [n] (not necessarily uniform or identically distributed; chosen with replacement) and $S = \{s_1, \ldots, s_m\}$. Let I and J be disjoint subsets of [n]. Prove that $\mathbb{P}(I \cup J \subseteq S) \leq \mathbb{P}(I \subseteq S)\mathbb{P}(J \subseteq S)$. (Hint in white:
- $\mathsf{ps4}\star$ 60. Prove that there exist $c, \epsilon > 0$ such that if A_1, \ldots, A_k are increasing events of independent boolean random variables with $\mathbb{P}(A_i) \leq \epsilon$ for all i, then, letting X denote the number of events A_i that occur, one has $\mathbb{P}(X = 1) \leq 1 - c$. (Give your largest c.)
- ps4 61. Prove that with probability $1 o(1)$, the size of the largest subset of vertices of $G(n, 1/2)$ inducing a triangle-free subgraph is $\Theta(\log n)$.

62. Lower tails of small subgraph counts. Fix graph H and $\epsilon \in (0,1]$. Let X_H denote the number of copies of H in $G(n, p)$. Prove that for all n and $0 < p < 1/2$,

$$
\mathbb{P}(X_H \le (1 - \epsilon) \mathbb{E}X_H) = e^{-\Theta_{H,\epsilon}(\Phi_H)} \quad \text{where } \Phi_H := \min_{H' \subseteq H: e(H') > 0} n^{v(H')} p^{e(H')}.
$$

Here the hidden constants in $\Theta_{H,\epsilon}$ may depend on H and ϵ (but not on n and p).

- 63. Vertex-disjoint triangles in $G(n, p)$ again. Using Janson inequalities this time, give another solution to Problem [36](#page-3-0) in the following generality.
- ps4 (a) Prove that for every $\epsilon > 0$, there exists $C_{\epsilon} > 0$ such that such that with probability $1 - o(1)$, $G(n, C_{\epsilon} n^{-2/3})$ contains at least $(1/3 - \epsilon)n$ vertex-disjoint triangles.
- \overline{p} (b) Compare the the dependence of the optimal C_{ϵ} on ϵ you obtain using the method in Problem [36](#page-3-0) versus this problem (don't worry about leading constant factors).
- $\overline{\text{ps4}\star}$ 64. Show that $\text{ch}(G(n, 1/2)) = (1 + o(1)) \frac{n}{2 \log_2 n}$ with probability $1 o(1)$. Here $ch(G)$ is the *list-chromatic number* (also called *choosability*) of a graph G and it is defined to the minimum k such that if every vertex of G is assigned a list of k acceptable colors, then there exists a proper coloring of G where every vertex is colored by one of its acceptable colors.
- ps4 65. For each part, prove that there is some constant $c > 0$ so that, for all $\lambda > 0$,

$$
\mathbb{P}(|X - \mathbb{E}X| \ge \lambda \sqrt{\text{Var } X}) \le 2e^{-c\lambda^2}.
$$

(Such families of random variables are called sub-Gaussian.)

- (a) X is the number of triangles in $G(n, 1/2)$.
- (b) X is the number of inversions of a uniform random permutation of $[n]$ (an *inversion* of $\sigma \in S_n$ is a pair (i, j) with $i < j$ and $\sigma(i) > \sigma(j)$.
- p_{S4} 66. Let $k \leq n/2$ be positive integers and G an n-vertex graph with average degree at most n/k . Prove that a uniform random k-element subset of the vertices of G contains an independent set of size at least ck with probability at least $1 - e^{-ck}$, where $c > 0$ is a constant.
- ps5 67. True or False: In the definition of a martingale, the condition $\mathbb{E}[X_n|X_{n-1} = x_{n-1}, \ldots, X_0 =$ x_0] = x_{n-1} may be replaced by simply $\mathbb{E}[X_n | X_{n-1} = x_{n-1}] = x_{n-1}$.
- ps5 68. Prove that for every $\epsilon > 0$ there exists $\delta > 0$ and n_0 such that for all $n \ge n_0$ and $S_1, \ldots, S_m \subset$ [2n] with $m \leq 2^{\delta n}$ and $|S_i| = n$ for all $i \in [m]$, there exists a function $f : [2n] \to [n]$ so that $(1 - e^{-1} - \epsilon)n \le |f(S_i)| \le (1 - e^{-1} + \epsilon)n$ for all $i \in [m]$.
- ps5 69. Simultaneous bisections. Fix Δ . Let G_1, \ldots, G_m with $m = 2^{o(n)}$ be connected graphs of maximum degree at most Δ on the same vertex set V with $|V| = n$. Prove that there exists a partition $V = A \cup B$ so that every G_i has $(1 + o(1))e(G_i)/2$ edges between A and B.
- ps5 70. Show that for every $\epsilon > 0$ there exists $C > 0$ so that every $S \subset [4]^n$ with $|S| \geq \epsilon 4^n$ contains four elements whose pairwise Hamming distance at least $n - C\sqrt{n}$.
- $p55 \times 71$. Tighter concentration of chromatic number
	- (a) Prove that with probability $1 o(1)$, every vertex subset of $G(n, 1/2)$ with at least $n^{1/3}$ vertices contains an independent set of size at least $c \log n$, where $c > 0$ is some constant.
	- (b) Prove that there exists some function $f(n)$ and constant C such that for all $n \geq 2$,

$$
\mathbb{P}(f(n) \le \chi(G(n, 1/2)) \le f(n) + C\sqrt{n}/\log n) \ge 0.99.
$$

ps5* 72. Let $G = (V, E)$ with chromatic number $\chi(G) = k$ and S a uniform random subset of V. Prove that for every $t \geq 0$,

$$
\mathbb{P}(\chi(G[S]) \le k/2 - t) \le e^{-ct^2/k},
$$

where $c > 0$ is a constant and $G[S]$ is the subgraph induced by S.

- p_5 s5* 73. Prove that for all n there exists some $k \sim 2 \log_2 n$ and some n-vertex graph that contains every graph on k vertices as an induced subgraph.
- p_{55*} 74. Prove that there exists a constant $c > 0$ so that the following holds. Let G be a d-regular graph and $v_0 \in V(G)$. Let $m \in \mathbb{N}$ and consider a simple random walk v_0, v_1, \ldots, v_m where each v_{i+1} is a uniform random neighbor of v_i . For each $v \in V(G)$, let X_v be the number times that v appears among v_0, \ldots, v_m . For that for every $v \in V(G)$ and $\lambda > 0$

$$
\mathbb{P}\left(X_v - \frac{1}{d}\sum_{w \in N(v)} X_w \ge \lambda + 1\right) \le 2e^{-c\lambda^2/m}
$$

Here $N(v)$ is the neighborhood of v.

 $_{\text{ps5}\star}$ 75. Let maxcut(G) denote the maximum number of edges in a bipartite subgraph of G. Prove there is a constant $c > 0$ so that maxcut $(G(n, 1/2)) > n^2/8 + cn^{3/2}$ with probability $1 - o(1)$.

For the next three exercises, use Talagrand's inequality

ps5 76. Let Q be a subset of the unit sphere in \mathbb{R}^n . Let $x \in [0,1]^n$ be a random vector with independent coordinates. Let $X = \sup_{q \in Q} \langle x, q \rangle$ and m a median of X. Let $t > 0$. Prove

$$
\mathbb{P}(|X - m| \ge t) \le 4e^{-t^2/4}.
$$

 $\overline{ps5x}$ 77. Prove that there are constants $c, C > 0$ such that if A is a symmetric $n \times n$ matrix with independent entries in [−1, 1], then the second largest eigenvalue $\lambda_2(A)$ satisfies

$$
\mathbb{P}(|\lambda_2(A) - \mathbb{E}\lambda_2(A)| > t) \le Ce^{-ct^2}.
$$

(Hint: use this Courant–Fischer characterization of $\lambda_2(X)$: for every pair of unit vectors $u, v \in \mathbb{R}^n$, there exist $a, b \in \mathbb{R}$ with $a^2 + b^2 = 1$ and $w = au + bv$ satisfying $w^t X w \leq \lambda_2(X)$.)

78. Let $q = q_n \gg n$. Let $\boldsymbol{x} = (x_1, \ldots, x_n)$ and $\boldsymbol{y} = (y_1, \ldots, y_n)$ be two random sequences whose entries are chosen independently and uniformly at random from $[q]$. Let X be the length of the longest common subsequence between x and y (i.e., X is the largest k such that there exist $i_1 < \cdots < i_k$ and $j_1 < \cdots < j_k$ with $x_{i_1} = y_{j_1}, \ldots, x_{i_k} = y_{j_k}$). Show that with probability $1 - o(1)$, X lies within \sqrt{n} of its median.

Entropy methods (You are encouraged to find solutions using entropy)

- 79. (Submodularity) Prove that $H(X, Y, Z) + H(X) \leq H(X, Y) + H(X, Z)$.
- $\overline{ps5*}$ 80. (Uniquely decodable codes) Let $[r]^*$ denote the set of all finite strings of elements in $[r]$. Let A be a finite subset of $[r]^*$ and suppose no two distinct concatenations of sequences in A can produce the same string. Prove that $\sum_{a \in A} r^{-|a|} \leq 1$ where |a| is the length of $a \in A$.
- $\overline{ps5}$ 81. Let G be a family of graphs on vertices labeled by [2n] such that the intersection of every pair of graphs in G contains a perfect matching. Prove that $|\mathcal{G}| \leq 2^{\binom{2n}{2}-n}$.

 $\sqrt{\text{ps5}\star}$ 82. Let X, Y, Z be independent Z-valued random variables. Prove that

$$
2H(X + Y + Z) \le H(X + Y) + H(X + Z) + H(Y + Z).
$$

 $\sqrt{\text{ps5*}}$ 83. Triangles versus vees in a directed graph. Let V be a finite set, $E \subseteq V \times V$, and

$$
\triangle = |\{(x, y, z) \in V^3 : (x, y), (y, z), (z, x) \in E\}|
$$

(i.e., cyclic triangles; note the direction of edges) and

$$
\wedge = \left| \left\{ (x, y, z) \in V^3 : (x, y), (x, z) \in E \right\} \right|.
$$

Prove that $\triangle \leq \wedge.$

MIT OpenCourseWare <https://ocw.mit.edu>

18.218 Probabilistic Method in Combinatorics Spring 2019

For information aboutciting these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.