
6
Roth’s theorem

In Chapter 3.3, we proved Roth’s theorem using Szemerédi regularity
lemma via the triangle removal lemma. In this chapter, we will be
instead be studying Roth’s original proof of Roth’s Theorem using
Fourier analysis. First, let us recall the statement of Roth’s Theorem.
Let r3([N]) denote the maximum size of a 3-AP-free subset of [N].
Then Roth’s theorem states that r3([N]) = o(N).

One of the drawbacks of using Szemerédi regularity which shows
an upper bound that is something like N

log∗ N . Roth’s Fourier ana-
lytic proof would instead give us an upper bound of something like

N
log log N , which is a much more reasonable bound.

Sanders (2011)
Bloom (2016)

Remark 6.1. The current best upper bound known is r3([N]) ≤
N(log N)1−o(1) and the best lower bound known is r3(N) ≥ Ne−O(

√
log N)

due to the Behrend construction. There is some evidence that seem to
suggest that the lower bound is closer to truth, but closing the gap is
still an open problem.

6.1 Roth’s theorem in finite fields

We will begin by examining a finite field analogue to Roth’s The-
orem. Finite field models are a good sandbox for testing methods
before applying to general integer cases; in particular, it is a good
starting point because a lot of technicalities go away.

Let r3(F
n
3 ) denote the maximum size of 3 AP-free subset of Fn

3 .
Note that given x, y, z in Fn

3 , the following are equivalent:

• x, y, z for a 3 term arithmetic progression

• x− 2y + z = 0

• x + y + z = 0

• x, y, z form a line
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• for all i, the ith coordinate of x, y, z are all distinct or all equal. This is relevant to the game of SET,
which can be thought of as finding 3

APs in F4
3.We will state and prove a version of Roth’s theorem in the finite

field model. The proof is in the same spirit as the general Roth’s
theorem, but is slightly easier.

Meshulam (1995)

Theorem 6.2.

r3(F
n
3 ) = O

(
3n

n

)
The proof using triangle removal lemma copies verbatim so we

can get r3(F
n
3 ) = o (3n) but the above theorem gives a better depen-

dence.
We comment briefly on the history of this problem. In 2004, Edel Edel (2004)

found that r3(F
n
3 ) ≥ 2.21n. It was open for a long time whether

r3(F
n
3 ) = (3− o(1))n. Recently, a surprising breakthrough showed

that r3(F
n
3 ) ≤ 2.76n. Croot, Lev, Pach (2016)

Ellenberg and Gijswijt (2016)We had an energy increment argument during the proof of Sze-
merédi Regularity lemma. The strategy for Roth’s theorem is a vari-
ant of energy increment. Instead, we will consider density increment.
Given A ⊂ Fn

3 , we employ the follow strategy.

1. If A is pseudorandom (which we will see is equivalent to it being
Fourier uniform, which roughly translates to all its Fourier coeffi-
cients are small) then there is a counting lemma which will show
that A has lots of 3-AP.

2. If A is not pseudorandom, then we will show that A has a large
Fourier coefficient. Then we can find a codimension 1 affine sub-
space (i.e. hyperplane) where density of A will increase. Now we
consider A restricted to this hyperplane, and repeat the previous
steps.

3. Each time we repeat, we obtain a density increment. Since density
is bounded above by 1, this gives us a bounded number of steps.

Next, we recall some Fourier analytic ideas that will be important
in our proof. In Fn

3 , we consider the Fourier characters γr : Fn
3 → C,

indexed by r ∈ Fn
3 , which are defined to be γr(x) = ωr·x where ω =

e2πi/3 and r · x = r1x1 + · · ·+ rnxn. We define a Fourier transform.
For f : Fn

3 → C, the Fourier transform is given by f̂ : Fn
3 → C where

f̂ (r) = E
x∈Fn

3

f (x)ω−r·x = 〈 f , γr〉.

Effectively, the fourier transform is the inner product of f and the
Fourier characters.
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Remark 6.3. We use the following convention on normalization: in a
finite group, for a physical space we will use average measure but in
frequency we will always use sum measure.

We note some key properties of the Fourier transform.

Proposition 6.4. • f̂ (0) = E f

• (Plancheral/Parseval) Ex∈Fn
3

f (x)g(x) = ∑r∈Fn
3

f̂ (r)ĝ(r).

• (Inversion) f (x) = ∑r∈Fn
3

f̂ (r)ωr·x

• (Convolution) Define ( f ∗ g)(x) = Ey f (y)g(x− y). Then we claim that

f̂ ∗ g(x) = f̂ (x)ĝ(x).

To prove these properties notice that Fourier characters form an
orthonormal basis. Indeed, we can check

〈γr, γs〉 = E
x

γr(x)γs(x) = E
x

ω−(r−s)·x =

1 if r = s,

0 otherwise.

If we think of Fourier transform as a unitary change of basis, in-
version and Parseval’s follows immediately. To see the formula for
convolution, note that

E
x
( f ∗ g)ωr·x = E

x,y
f (y)g(x− y)ω−r(y+(x−y)) = E

r
f (x)ω−r·x

E
s

g(x)ω−s·x.

The following key identity relates Fourier transform with 3-APs.

Proposition 6.5. If f , g, h : Fn
3 → C, then

E
x,y

f (x)g(x + y)h(x + 2y) = ∑
r

f̂ (r)ĝ(−2r)ĥ(r).

We will give two proofs of this proposition, with the second being
more conceptual.

First proof. We expand the LHS using the formula for Fourier inver-
sion.

LHS = E
x,y

(
∑
r1

f̂ (r1)ω
r1·x
)(

∑
r2

ĝ(r2)ω
r2·(x+y)

)(
∑
r3

ĥ(r3)ω
r3·(x+2y)

)
= ∑

r1,r2,r3

f̂ (r1)ĝ(r2)ĥ(r3)E
x

ωx·(r1+r2+r3) E
y

ωy·(r2+2r3)

= ∑
r

f̂ (r)ĝ(−2r)ĥ(r)

The last equality follows because

E
x

ωx·(r1+r2+r3) =

1 if r1 + r2 + r3 = 0,

0 otherwise
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and

E
y

ωy·(r2+2r3) =

1 if r2 + 2r3 = 0,

0 otherwise.

Second proof. In this proof, we think of the LHS as a convolution.

E
x,y,z:x+y+z=0

f (x)g(y)h(z) = ( f ∗ g ∗ h)(0)

= ∑
r

̂f ∗ g ∗ h(r)

= ∑
r

f̂ (r)ĝ(r)ĥ(r)

In particular, note that if we take f , g, h = 1A where A ⊂ Fn
3 , then

3−2n#{(x, y, z) ∈ A3 : x + y + z = 0} = ∑
r

1̂A(r)3. (6.1)

Remark 6.6. If A = −A then this gives the same formula that counts
closed walks of length 3 in Cayley graphs. In particular, {1̂A(r) = r}
correspond eigenvalues of Cayley(G, A).

Lemma 6.7 (Counting Lemma). If A ⊂ Fn
3 with |A| = α3n, let

Λ3(A) = Ex,y 1A(x)1A(x + y)1A(x + 2y). Then,∣∣∣Λ3(A)− α3
∣∣∣ ≤ α max

r 6=0

∣∣∣1̂A(r)
∣∣∣ .

Proof. By Proposition 6.5,

Λ3(A) = ∑
r

1̂A(r)3 = α3 + ∑
r 6=0

1̂A(r)3.

Therefore,∣∣∣Λ3(A)− α3
∣∣∣ ≤ ∑

r 6=0

∣∣∣1̂A(r)
∣∣∣3

≤ max
r 6=0

∣∣∣1̂A(r)
∣∣∣ ·∑

r

∣∣∣1̂A(r)
∣∣∣2

= max
r 6=0

∣∣∣1̂A(r)
∣∣∣ ·E12

A (Parseval)

= α max
r 6=0

∣∣∣1̂A(r)
∣∣∣ .

Proof of Theorem 6.2. Let N = 3n, the number of elements in Fn
3 .

Step 1. If the set is 3-AP free, then there is a large Fourier coefficient.

Lemma 6.8. If A is 3-AP-free and N ≥ 2α−2, then there is r 6= 0 such that∣∣∣1̂A(r)
∣∣∣ ≥ α2/2.
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Proof. By counting lemma and the fact that Λ3(A) =
|A|
N2 =

α

N
,

α max
r 6=0

∣∣∣1̂A(r)
∣∣∣ ≥ α3 − α

N
≥ α3

2
.

Step 2. Large Fourier coefficient implies density increment on a hyper-
plane.

Lemma 6.9. If
∣∣∣1̂A(r)

∣∣∣ ≥ δ for some r 6= 0, then A has density at least

α + δ
2 when restricted to some hyperplane.

Proof. We have

1̂A(r) = E
x∈Fn

3

1A(x)w−r·x

=
1
3
(α0 + α1w + α2w2)

where α0, α1, α2 are densities of A on the cosets of r⊥. Notice that
α = α0+α1+α2

3 . By triangle inequality,

3δ ≤
∣∣∣α0 + α1w + α2w2

∣∣∣
=
∣∣∣(α0 − α) + (α1 − α)w + (α2 − α)w2

∣∣∣
≤

2

∑
j=0
|αj − α|

≤
2

∑
j=0

(|αj − α|+ (αj − α)).

(This final step is a trick that will be useful in the next section.) Note
that every term in the last summation is non-negative. Consequently,

there exists j such that δ ≤ |αj − α|+ (αj − α). Then, αj ≥ α +
δ

2
.

Step 3 : Iterate density increment.
So far, we have that if A is 3-AP-free and N ≥ 2α−2, then A has

density at least α + α2/4 on some hyperplane. Let our initial density
be α0 = α. At the i-th step, we restrict A to some hyperplane, so that
the restriction of A inside the smaller space has density

αi ≥ αi−1 + α2
i−1/4.

Let Ni = 3n−i. We can continue at step i as long as Ni ≥ 2α−2
i .

We note that the first index i1 such that αi1 ≥ 2α0 satisfies i1 ≤
4
α + 1. This is because αi+1 ≥ α + i α2

4 . Similar calculations shows that
if i` is the first index such that αi` ≥ 2`α0 then

i` ≤
4
α
+ m

2
α
+ · · ·+ 4

2`−1α
+ ` ≤ 8

α
+ log2

1
α

.
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Suppose the process terminates after m steps with density αm.
Then we find that the size of the subspace in the last step is given by
3n−m < 2α−2

m ≤ 2α−2. So

n ≤ 8
α
+ log3

(
2
α2

)
= O

(
1
α

)

Thus
|A|
N

= α = O(1/n). Equivalently, |A| = αN = O
(

3n

n

)
as

desired.

Remark 6.10. This proof is much more difficult in integers, because
there is no subspace to pass down to.

A natural question is whether this technique can be generalized to
bound 4-AP counts. In the regularity-based proof of Roth’s theorem,
we saw that the graph removal lemma was not sufficient, and we
actually needed hypergraph regularity and a hypergraph removal
lemma to govern 4-AP counts. Similarly, while the counting lemma
developed here shows that Fourier coefficients control 3-AP counts,
they do not in fact control 4-AP counts. For example, consider the
set A = {x ∈ Fn

5 : x · x = 0}. One can show that the nonzero
Fourier coefficients corresponding to A are all small. However, one
can also show that A has the wrong number of 4-APs, thus implying
that Fourier coefficients cannot control 4-AP counts. The field of
higher-order Fourier analysis, namely quadratic Fourier analysis,
was developed by Gowers specifically to extend this proof of Roth’s
Theorem to prove Szemeredi’s Theorem for larger APs. An example Gowers (1998)

of quadratic Fourier analysis is given by the following theorem.

Theorem 6.11 (Inverse theorem for quadratic Fourier analysis). For all
δ > 0, there exists a constant c(δ) > 0 such that if A ⊂ Fn

5 has density α,
and |Λ4(A)− α4| > δ, then there exists a non-zero quadratic polynomial
f (x1, . . . , xn) over F5 satisfying

|Ex∈Fn
5
1A(x)ω f (x)| ≥ c(δ).

6.2 Roth’s proof of Roth’s theorem in the integers

In Section 6.1 we saw the proof of Roth’s theorem in the finite field
setting, specifically for the set Fn

3 . We will now extend this analysis to
prove the following bound, which will imply Roth’s theorem in the
integers:

Theorem 6.12. Roth (1953)

r3([N]) = O
(

N
log log N

)
.
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The subsequent proof of this bound is the original one given by
Roth himself. Recall that the proof of Roth’s theorem in finite fields
had the following 3 steps:

1. Show that a 3-AP-free set admits a large Fourier coefficient.

2. Deduce that there must exist a subspace with a density increment.

3. Iterate the density increment to upper bound the size of a 3-AP
free set.

The proof of Roth’s theorem on the integers will follow the same 3

steps. However, the execution will be quite different. The main differ-
ence lies in step 2, where there is no obvious notion of a subspace of
[N].

Previously we defined Fourier analysis in terms of the group Fn
3 .

There is a general theory of Fourier analysis on Abelian groups
which relates a group G to its set of characters Ĝ, also referred to
as its dual group. For now, however, we work with the group Z.

The dual group of Z is Ẑ = R/Z. The Fourier Transform of a
function f : Z→ C is given by the function f̂ : R/Z→ C satisfying

f̂ (θ) = ∑
x∈Z

f (x)e(−xθ),

where e(t) = e2πit. This is commonly referred to as the Fourier series
of f .

As they were in Fn
3 , the following identities are also true in Z.

Their proofs are the same.

• f̂ (0) = ∑x∈Z f (x)

• (Plancherel/Parseval) ∑x∈Z f (x)g(x) =
∫ 1

0 f̂ (θ)ĝ(θ)dθ

• (Inversion) f (x) =
∫ 1

0 f̂ (θ)e(xθ)dθ

• Define Λ( f , g, h) = ∑x,y∈Z f (x)g(x + y)h(x + 2y). Then

Λ( f , g, h) =
∫ 1

0
f̂ (θ)ĝ(−2θ)ĥ(θ)dθ.

In the finite field setting, we defined a counting lemma, which
showed that if two functions had similar Fourier transforms, then
they had a similar number of 3-APs. We can define an analogue to
the counting lemma in Z as well.

Theorem 6.13 (Counting Lemma). Let f , g : Z → C such that
∑n∈Z | f (n)|2, ∑n∈Z |g(n)|2 ≤ M. Define Λ3( f ) = Λ( f , f , f ). Then

|Λ3( f )−Λ3(g)| ≤ 3M
∥∥∥ f̂ − g

∥∥∥
∞

.
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Proof. We can rewrite

Λ3( f )−Λ3(g) = Λ( f − g, f , f ) + Λ(g, f − g, f ) + Λ(g, g, f − g).

We want to show that each of these terms is small when f − g has
small Fourier coefficients. We know that

|Λ( f − g, f , f )| =
∣∣∣∣∫ 1

0
̂( f − g)(θ) f̂ (−2θ) f̂ (θ)dθ

∣∣∣∣
≤
∥∥∥ f̂ − g

∥∥∥
∞

∣∣∣∣∫ 1

0
f̂ (−2θ) f̂ (θ)dθ

∣∣∣∣ (triangle inequality)

≤
∥∥∥ f̂ − g

∥∥∥
∞

(∫ 1

0
| f̂ (−2θ)|2dθ

)1/2 (∫ 1

0
| f̂ (θ)|2dθ

)1/2

(Cauchy-Schwarz)

≤
∥∥∥ f̂ − g

∥∥∥
∞

(
∑

x∈Z

| f (x)|2
)

(Plancherel)

≤ M
∥∥∥ f̂ − g

∥∥∥
∞

.

Bounding the other two terms is identical.

We can now proceed with proving Roth’s Theorem.

Proof of Theorem 6.12. We follow the same 3 steps as in the finite field
setting.

Step 1: 3-AP free sets induce a large Fourier coefficient

Lemma 6.14. Let A ⊂ [N] be a 3-AP free set, |A| = αN, N ≥ 5/α2. Then
there exists θ ∈ R satisfying∣∣∣∣∣ N

∑
n=1

(1A − α)(n)e(θn)

∣∣∣∣∣ ≥ α2

10
N

Proof. Since A has no 3-AP, the quantity 1A(x)1A(x + y)1A(x + 2y) is
nonzero only for trivial APs, i.e. when y = 0. Thus Λ3(1A) = |A| =
αN. Now consider Λ3(1[N]). This counts the number of 3-APs in [N].
We can form a 3-AP by choosing the first and third elements from
[N], assuming they are the same parity. Therefore Λ3(1[N]) ≥ N2/2.
Now, we apply the counting lemma to f = 1A, g = α1[N]

Remark 6.15. The spirit of this whole proof is the theme of structure
versus pseudorandomness, an idea we also saw in our discussion
graph regularity. If A is “pseudorandom”, then we wish to show that
A has small Fourier coefficients. But that would indicate that f and
g have similar Fourier coefficients, implying that A has many 3-AP
counts, which is a contradiction. Thus A cannot be pseudorandom, it
must have some structure.
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Applying Theorem 6.13 yields (where we use the notation f∧ = f̂ )

α3N2

2
− αN ≤ 3αN

∥∥∥(1A − α1[N])
∧
∥∥∥

∞

and thus ∥∥∥(1A − α1[N])
∧
∥∥∥

∞
≥

1
2 α3N2 − αN

3αN

=
1
6

α2N − 1
3

≥ 1
10

α2N,

where in the last inequality we used the fact that N ≥ 5/α2. There-
fore there exists some θ with∣∣∣∣∣ N

∑
n=1

(1A − α)(n)e(θn)

∣∣∣∣∣ = (1A − α1[N])
∧(θ) ≥ 1

10
α2N,

as desired.

Step 2: A large Fourier coefficient produces a density increment.

In the finite field setting our Fourier coefficients corresponded to
hyperplanes. We were then able to show that there was a coset of
a hyperplane with large density. Now, however, θ is a real number.
There is no concept of a hyperplane in [N], so how can we chop up
[N] in order to use the density increment?

On each coset of the hyperplane each character was exactly con-
stant. This motivates us to partition [N] into sub-progressions such
that the character x 7→ e(xθ) is roughly constant on each sub-
progression.

As a simple example, assume that θ is a rational a/b for some
fairly small b. Then x 7→ e(xθ) is constant on arithmetic progres-
sions with common difference b. Thus we could partition [N] into
arithmetic progressions with common difference b.

Before formalizing this idea, we require the following classical
lemma from Dirichlet.

Lemma 6.16. Let θ ∈ R and 0 < δ < 1. Then there exists a positive
integer d ≤ 1/δ such that ‖dθ‖R/Z ≤ δ (here, ‖·‖R/Z is defined as the
distance to the nearest integer).

Proof. Pigeonhole principle. Let m =
⌊

1
δ

⌋
. Consider the m + 1 num-

bers 0, θ, · · · , mθ. By the pigeonhole principle, there exist i, j such that
the fractional parts of iθ and jθ differ by at most δ. Setting d = |i− j|
gives us ‖dθ‖R/Z ≤ δ, as desired.
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The next lemma formalizes our previous intuition for partitioning
[N] into subprogressions such that the map x 7→ e(xθ) is roughly
constant on each progression.

Lemma 6.17. Let 0 < η < 1 and θ ∈ R. Suppose N > Cη−6 (for some
universal constant C). Then one can partition [N] into sub-APs Pi, each
with length N1/3 ≤ |Pi| ≤ 2N1/3, such that supx,y∈Pi

|e(xθ)− e(yθ)| < η

for all i.

Proof. By Lemma 6.16, there exists an integer d ≤ 4πN1/3

η such that

‖dθ‖R/N ≤
η

4πN1/3 . Since N > Cη−6, for C = (4π)6 we get that
d <

√
N. Therefore we can partition [N] into APs with common

difference d, each with lengths between N1/3 and 2N1/3. Then inside
each sub-AP P, we have that

sup
x,y∈P

|e(xθ)− e(yθ)| ≤ |P||e(dθ)− 1| ≤ 2N1/3 · 2π ‖dθ‖R/Z ≤ η,

where we get the inequality |e(dθ)− 1| ≤ 2π ‖dθ‖R/Z from the fact
that the length of a chord is at most the length of the corresponding
arc.

We can now apply this lemma to obtain a density increment.

Lemma 6.18. Let A ⊂ [N] be 3-AP-free, with |A| = αN and N > Cα−12.
Then there exists a sub-AP P ⊂ [N] with |P| ≥ N1/3 and |A ∩ P| ≥
(α + α2/40)|P|.

Proof. By Lemma 6.14, there exists θ satisfying |∑N
x=1(1A− α)(x)e(xθ)| ≥

α2N/10. Next, apply Lemma 6.17 with η = α2/20 to obtain a parti-
tion P1, . . . , Pk of [N] satisfying N1/3 ≤ |Pi| ≤ 2N1/3. We then get
that

α2

10
N ≤

∣∣∣∣∣ N

∑
x=1

(1A − α)(x)e(xθ)

∣∣∣∣∣ ≤ k

∑
i=1

∣∣∣∣∣∑x∈Pi

(1A − α)(x)e(xθ)

∣∣∣∣∣ .

For x, y ∈ Pi, |e(xθ)− e(yθ)| ≤ α2/20. Therefore we have that∣∣∣∣∣∑x∈Pi

(1A − α)(x)e(xθ)

∣∣∣∣∣ ≤
∣∣∣∣∣∑x∈Pi

(1A − α)(x)

∣∣∣∣∣+ α2

20
|Pi|.

Altogether,

α2

10
N ≤

k

∑
i=1

(∣∣∣∣∣∑x∈Pi

(1A − α)(x)

∣∣∣∣∣+ α2

20
|Pi|
)

=
k

∑
i=1

∣∣∣∣∣∑x∈Pi

(1A − α)(x)

∣∣∣∣∣+ α2

20
N
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Thus
α2

20
N ≤

k

∑
i=1

∣∣∣∣∣∑x∈Pi

(1A − α)(x)

∣∣∣∣∣
and hence

α2

20

k

∑
i=1
|Pi| ≤

k

∑
i=1

∣∣|A ∩ Pi| − α|Pi|
∣∣.

We want to show that there exists some Pi such that A has a density
increment when restricted to Pi. Naively bounding the RHS of the
previous sum does not guarantee a density increment, so we use the
following trick

α2

20

k

∑
i=1
|Pi| ≤

k

∑
i=1

∣∣|A ∩ Pi| − α|Pi|
∣∣

=
k

∑
i=1

(∣∣|A ∩ Pi| − α|Pi|
∣∣+ |A ∩ Pi| − α|Pi|

)
.

Thus there exists an i such that

α2

20
|Pi| ≤

∣∣|A ∩ Pi| − α|Pi|
∣∣+ |A ∩ Pi| − α|Pi|.

Since the quantity |x|+ x is always strictly greater than 0, this i must
satisfy |A ∩ Pi| − α|Pi| ≥ 0, and thus we have

α2

20
|Pi| ≤ 2(|A ∩ Pi| − α|Pi|),

which yields

|A ∩ Pi| ≥ (α +
α2

40
)|Pi|.

Thus we have found a subprogression with a density increment, as
desired.

Step 3: Iterate the density increment.

Step 3 is very similar to the finite field case. Let our initial density
be α0 = α, and the density after each iteration be αi. We have that
αi+1 ≥ αi + α2

i /40, and that αi ≤ 1. We double α (i.e. reach T such
that αT ≥ 2α0) after at most 40/α + 1 steps. We double α again (i.e.
go from 2α0 to 4α0) after at most 20/α + 1 steps. In general, the kth
doubling requires at most 40

2k−1α
steps. There are at most log2(1/α) +

1 doublings, as α must remain less than 1. Therefore the total number
of iterations must be O(1/α).

Lemma 6.18 shows that we can pass to a sub-AP and increment
the density whenever Ni > Cα−12. Therefore if the process terminates
at step i, we must have Ni ≤ Cα−12

i ≤ Cα−12. Each iteration reduces
the size of our set by at most a cube root, so

N ≤ N3i

i ≤ (Cα−12)3O(1/α)
= eeO(1/α)

.
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Therefore α = O(1/ log log N) and |A| = αN = O(N/ log log N), as
desired.

Remark 6.19. This is the same proof in spirit as last time. A theme
in additive combinatorics is that the finite field model is a nice play-
ground for most techniques.

Let us compare this proof strategy in both Fn
3 and [N]. We saw

that r3(F
n
3 ) = O(N/ log N). However, the bound for [N] is O(N/ log log N),

which is weaker by a log factor. Where does this stem from? Well, in
the density increment step for Fn

3 , we were able to pass down to a
subset which had size a constant factor of the original one. How-
ever, in [N], each iteration gives us a subprogression which has size
equal to the cube root of the previous subspace. This poses a nat-
ural question—is it possible to pass down to subsprogressions of
[N] which look more like subspaces? It turns out that this is indeed
possible.

For a subset S ⊂ Fn
3 , we can write its orthogonal complement as

US = {x ∈ Fn
3 : x · s = 0 for all s ∈ S}.

In [N], the analogous concept is known as a Bohr set, an idea de-
veloped by Bourgain to transfer the proof in Section 6.1 to Z. This Bourgain, 1999

requires us to work in Z/NZ. For some subset S ⊂ Z/NZ, we can
define its Bohr set as

Bohr(S, ε) = {x ∈ Z/NZ :
∥∥∥ sx

N

∥∥∥ ≤ ε for all s ∈ S}.

This provides a more natural analogy to subspaces, and is the basis
for modern improvements on bounds to Roth’s Theorem. We will
study Bohr sets in relation to Freiman’s Theorem in Chapter 7.

6.3 The polynomial method proof of Roth’s theorem in the finite
field model

Currently, the best known bound for Roth’s Theorem in Fn
3 is the

following:

Theorem 6.20. r3(F
n
3 ) = O(2.76n). Ellenberg and Gijswijt (2017)

This bound improves upon the O(3n/n1+ε) bound (for some
ε > 0) proved earlier by Bateman and Katz. Bateman and Katz Bateman and Katz (2012)

used Fourier-analytic methods to prove their bound, and until very
recently, it was open whether the upper bound could be improved to
a power-saving one (one of the form O(cn) for c < 3), closer to the
lower bound given by Edel of 2.21n. Edel (2004)

Croot–Lev–Pach gave a similar bound for 3-APs over (Z/4Z)n,
proving that the maximum size of a set in (Z/4Z)n with no 4-APs is

https://mathscinet.ams.org/mathscinet-getitem?mr=1726234
https://mathscinet.ams.org/mathscinet-getitem?mr=3583358
https://mathscinet.ams.org/mathscinet-getitem?mr=2869028
https://mathscinet.ams.org/mathscinet-getitem?mr=2031694
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O(3.61n). They used a variant of the polynomial method, and their Croot, Lev, and Pach (2017)

proof was made easier by the fact that there are elements of order
2. Ellenberg and Gijswijt used the Croot–Lev–Pach method, as it is
often referred to in the literature, to prove the bound for Fn

3 .
We will use a formulation that appears on Tao’s blog. Tao (2016)

Let A ⊆ Fn
3 be 3-AP-free (this is sometimes known as a cap set in

the literature). Then we have the identity

δ0(x + y + z) = ∑
a∈A

δa(x)δa(y)δa(z) (6.2)

for x, y, z ∈ A, where δa is the Dirac delta function, defined as fol-
lows:

δa(x) :=

1 if x = a,

0 if x 6= a.

Note that (6.2) holds because x + y + z = 0 if and only if z− y =

y − x in Fn
3 , meaning that x, y, z form an arithmetic progression,

which is only possible if x = y = z = a for some a ∈ Fn
3 .

We will show that the left-hand side of (6.2) is “low-rank" and the
right-hand side is “high-rank" in a sense we explain below.

Recall from linear algebra the classical notion of rank: given a
function F : A × A → F, for a field F, we say F is rank 1 if it is
nonzero and can be written in the form F(x, y) = f (x)g(y) for some
functions f , g : A → F. In general, we define rank F to be the min-
imum number of rank 1 functions required to write F as a linear
combination of rank 1 functions. We can view F as a matrix.

How should we define the rank of a function F : A× A× A → F?
We might try to extend the above notion by defining such a function
F to be rank 1 if F(x, y, z) = f (x)g(y)h(z), known as tensor rank, but
this is not quite what we want. Instead, we say that F has slice-rank
1 if it is nonzero and it can be written in one of the forms f (x)g(y, z),
f (y)g(x, z), or f (z)g(x, y). In general, we say the slice-rank of F is
the minimum number of slice-rank 1 functions required to write F
as a linear combination. For higher powers of A, we generalize this
definition accordingly.

What is the rank of a diagonal function? Recall from linear algebra
that the rank of a diagonal matrix is the number of nonzero entries.
A similar result holds true for the slice-rank.

Lemma 6.21. If F : A× A× A→ F equals

F(x, y, z) = ∑
a∈A

caδa(x)δa(y)δa(z),

then
slice-rank F = |{a ∈ A : ca 6= 0}|.

https://mathscinet.ams.org/mathscinet-getitem?mr=3583357
https://terrytao.wordpress.com/2016/05/18/a-symmetric-formulation-of-the-croot-lev-pach-ellenberg-gijswijt-capset-bound/
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Here the coefficients ca correspond to diagonal entries.

Proof. It is clear that slice-rank F ≤ |{a ∈ A : ca 6= 0}|, as we can write
F as a sum of slice-rank 1 functions by

F(x, y, z) = ∑
a∈A
ca 6=0

caδa(x)(δa(y)δa(z)).

For the other direction, assume that all diagonal entries are nonzero;
if ca = 0 for some a, then we can remove a from A without increasing
the slice-rank. Now suppose slice-rank F < |A|. So we can write

F(x, y, z) = f1(x)g1(y, z) + · · ·+ f`(x)g`(y, z)

+ f`+1(y)g`+1(x, z) + · · ·+ fm(y)gm(x, z)

+ fm+1(z)gm+1(x, y) + · · ·+ f|A|−1(z)g|A|−1(x, y).

Claim 6.22. There exists h : A→ F3 with | supp h| > m such that

∑
z∈A

h(z) fi(z) = 0 (6.3)

for all i = m + 1, . . . , |A| − 1.

Here supp h is the set {z ∈ A : h(z) 6= 0}.

Proof. In the vector space of functions A → F3, the set of h satisfying
(6.3) for all i = m + 1, . . . , |A| − 1 is a subspace of dimension greater
than m. Furthermore, we claim that every subspace of dimension m +

1 has a vector whose support has size at least m + 1. For a subspace
X of dimension m + 1, suppose we write m + 1 vectors forming a
basis of X in an |A| × (m + 1) matrix Y. Then, this matrix has rank
m + 1, so there must be some non-vanishing minor of order m + 1;
that is, we can delete some rows of Y to get an (m + 1) × (m + 1)
matrix with nonzero determinant. If the column of this matrix are
the vectors v1 through vm+1, then these vectors generate all of Fm+1

3 .
In particular, some linear combination of v1, v2, . . . , vm+1 is equal to
the vector of all ones, which has support m + 1. So, taking that linear
combination of the original vectors (the columns of Y) gives a vector
of support at least m + 1.

Pick the h from the claim. We find

∑
z∈A

F(x, y, z)h(z) = ∑
a∈A

∑
z∈A

caδa(x)δa(y)δa(z)h(z) = ∑
a∈A

cah(a)δa(x)δa(y),

but also

∑
z∈A

F(x, y, z)h(z) = f1(x)g̃1(y) + · · ·+ f`(x)g̃`(y)

+ f`+1(y)g̃`+1(x) + · · ·+ fm(y)g̃m(x),
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where g̃i(y) = ∑z∈A gi(y, z)h(z) for 1 ≤ i ≤ `, and
g̃i(x) = ∑z∈A gi(x, z)h(z) for `+ 1 ≤ i ≤ m. Thus

∑
a∈A

cah(a)δa(x)δa(y) = f1(x)g̃1(y) + · · ·+ f`(x)g`(y)

+ f`+1(y)g̃`+1(x) + · · ·+ fm(y)g̃m(x).

Note the left-hand side has more than m diagonal entries (namely the
a where h(a) 6= 0), but the left-hand side has rank at most m, which is
a contradiction as we have reduced to the 2-dimensional case.

Using induction, we can easily generalize (from 3 variables) to any
finite number of variables, the proof of which we omit.

We have thus proved that the slice-rank of the right hand side of
(6.2) is |A|, and is therefore “high-rank.” We now show that the left
hand side has “low-rank.”

Lemma 6.23. Define F : A× A× A→ F3 as follows:

F(x + y + z) := δ0(x + y + z).

Then slice-rank F ≤ 3M, where

M := ∑
a,b,c≥0

a+b+c=n
b+2c≤2n/3

n!
a!b!c!

.

Proof. In F3, one has δ0(x) = 1− x2. Applying this coordinate-wise,

δ0(x + y + z) =
n

∏
i=1

(1− (xi + yi + zi)
2), (6.4)

where the xi are the coordinates of x ∈ Fn
3 , and so on. If we expand

the right-hand side, we obtain a polynomial in 3n variables with
degree 2n. We find a sum of monomials, each of the form

xi1
1 · · · x

in
n yj1

1 · · · y
jn
n zk1

1 · · · z
kn
n ,

where i1, i2, . . . , in, j1, . . . , jn, k1, . . . , kn ∈ {0, 1, 2}. Group these mono-
mials. For each term, by the pigeonhole principle, at least one of
i1 + · · ·+ in, j1 + · · ·+ jn, k1 + · · ·+ kn is at most 2n/3.

We can write (6.4) as a sum of monomials, which we write explic-
itly as

n

∏
i=1

(1− (xi + yi + zi)
2) = ∑

i1,i2,...,in
j1,j2,...,jn

k1,k2,...,kn

ci1,...,in ,j1,...,jn ,k1,...,kn xi1
1 · · · x

in
n yj1

1 · · · y
jn
n zk1

1 · · · z
kn
n

(6.5)



136 the polynomial method proof of roth’s theorem in the finite field model

where ci1,...,in ,j1,...,jn ,k1,...,kn is a coefficient in F3. Then, we can group
terms to write (6.5) as a sum of slice-rank 1 functions in the following
way:

n

∏
i=1

(1− (xi + yi + zi)
2) = ∑

i1+···+in≤ 2n
3

xi1
1 · · · x

in
n fi1,...,in(y, z)

+ ∑
j1+···+jn≤ 2n

3

yj1
1 · · · y

jn
n gj1,...,jn(x, z)

+ ∑
k1+···+kn≤ 2n

3

zk1
1 · · · z

kn
n hk1,...,kn(x, y),

where

fi1,...,in(y, z) = ∑
j1,j2,...,jn

k1,k2,...,kn

ci1,...,in ,j1,...,jn ,k1,...,kn yj1
1 · · · y

jn
n zk1

1 · · · z
kn
n ,

and gj1,...,jn(x, z) and hk1,...,kn(x, y) are similar except missing some
terms to avoid overcounting.

So, each monomial with degree at most 2n/3 contributes to the
slice-rank 3 times, and the number of such monomials is at most M.
Thus the slice-rank is at most 3M.

We would like to estimate M. If we let 0 ≤ x ≤ 1, we see that
Mx2n/3 ≤ (1 + x + x2)n if we expand the right-hand side. Explicitly,

Mx2n/3 ≤ ∑
a,b,c≥0

a+b+c=n
b+2c≤2n/3

xb+2c n!
a!b!c!

≤ (1 + x + x2)n.

So

M ≤ inf
0<x<1

(1 + x + x2)n

x2n/3 ≤ (2.76)n,

where we plug in x = 0.6. Alternatively, we could Stirling’s
formula, which would give the same
bound.

When this proof came out, people were shocked; this was basi-
cally a four-page paper, and demonstrated the power of algebraic
methods. However, these methods seem more fragile compared to
the Fourier-analytic methods we used last time. It is an open prob-
lem to extend this technique to prove a power-saving upper-bound
for the size of a 4-AP-free subset of Fn

5 (in the above arguments, we
can replace F3 with any other finite field, so the choice of field does
not really matter). It is also open to extend the polynomial method
to corner-free sets in Fn

2 × Fn
2 , where corners are sets of the form

{(x, y), (x + d, y), (x, y + d)}, or to the integers.
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6.4 Roth’s theorem with popular differences

After giving a new method for 3-APs in Fn
3 that gave a much better

bound than Fourier analysis, we will now give a different proof that
gives a much worse bound, but has strong consequences.

This theorem involves a “popular common difference."

Theorem 6.24. For all ε > 0, there exists n0 = n0(ε) such that for Green (2005)

n ≥ n0 and every A ⊆ Fn
3 with |A| = α3n, there exists y 6= 0 such that

|{x : x, x + y, x + 2y ∈ A}| ≥ (α3 − ε)3n.

Here y is the popular common difference; this theorem obtains
a lower bound on the number of 3-APs with common difference y
in A. Note that α33n is roughly the expected number of 3-APs with
common difference y if A is a random subset of Fn

3 with size α3n. The
theorem states we can find some y such that the number of 3-APs
with common difference y is close to what we expect in a random set,
and suggests that it is not true that the number of 3-APs is at least
what we would expect in a random set.

Green showed that the theorem is true with n0 = tow((1/ε)O(1)).
This bound was improved by Fox–Pham to n0 = tow(O(log 1

ε )),
using the regularity method. They showed that this bound is tight; Fox and Pham (2019+)

this is an instance in which the regularity method gives the right
bounds, which is interesting. This is the bound we will show.

Lemma 6.25 (Bounded increments). Let α, ε > 0. If α0, α1, . . . ∈ [0, 1]
such that α0 ≥ α, then there exists k ≤ dlog2

1
ε e such that 2αk − αk+1 ≥

α3 − ε.

Proof. Otherwise, α1 ≥ 2α0 − α3 + ε ≥ α3 + ε. Similarly α2 ≥ 2α1 −
α3 + ε ≥ α3 + 2ε. If we continue this process, we find αk ≥ α3 + 2k−1ε

for all 1 ≤ k ≤ dlog2
1
ε e+1. Thus αk > 1 if k = dlog2

1
ε e+ 1, which is a

contradiction.

Let f : Fn
3 → C, and let U ≤ Fn

3 ; this notation means that U is a
subspace of Fn

3 . Let fU(x) be the average of f (x) on the U-coset that
x is in.

The lemma below is related to an arithmetic analog of the regular-
ity lemma.

Lemma 6.26. For all ε > 0, there exists m = tow(O(log 1
ε )) such that for

all f : Fn
3 → [0, 1], there exist subspaces W ≤ U ≤ Fn

3 with codim W ≤ m
such that

‖ f̂ − fW‖∞ ≤
ε

|U⊥|
and

2‖ fU‖3
3 − ‖ fW‖3

3 ≥ (E f )3 − ε.

https://mathscinet.ams.org/mathscinet-getitem?mr=2153903
https://arxiv.org/abs/1708.08482
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Proof. Let ε0 := 1 and εk+1 := ε3−1/ε2
k for integers k ≥ 0. Using the

recursion, we find that the recursion says ε−2
k+1 = ε−232/ε2

k , so that

ε−2
k+1 ≤ 22ε−2

k

for sufficiently large k. Let

Rk := {r ∈ Fn
3 : | f̂ (r)| ≥ εk}.

Then |Rk| ≤ ε−2
k , since by Parseval’s identity, ∑r | f̂ (r)|2 = E[ f 2] ≤ 1.

Now define Uk := R⊥k and αk := ‖ fUk‖
3
3. Note αk ≥ (E f )3 by

convexity. So by the previous lemma, there exists k = O(log 1
ε ) such

that 2αk − αk+1 ≥ (E f )3 − ε. For this choice of k, let m := ε−2
k+1. With

some computation we find m = tow(O(log 1
ε )).

It is not too hard to check that

f̂W(r) =

 f̂ (r) if r ∈W⊥,

0 if r /∈W⊥.

So ‖ ̂f − fUk+1‖∞ ≤ maxr/∈Rk+1
| f̂ (r)| ≤ εk+1 ≤ 3−|Rk |ε ≤ ε/|U⊥k |. So

if we take W = Uk+1 and U = Uk, we are done, as codim Uk+1 ≤
|Rk+1| ≤ m.

With a regularity lemma comes a counting lemma, which is left as
an exercise (it is fairly easy to prove). Define

Λ3( f ; U) = Ex∈Fn
3 ,y∈U f (x) f (x + y) f (x + 2y).

Lemma 6.27 (Counting lemma). Let f , g : Fn
3 → [0, 1] and U ≤ Fn

3 .
Then

|Λ3( f ; U)−Λ3(g; U)| ≤ 3|U⊥| · ‖ f̂ − g‖∞.

Lemma 6.28. Let f : Fn
3 → [0, 1], with subspaces W ≤ U ≤ Fn

3 . Then

Λ3( fW ; U) ≥ 2‖ fU‖3
3 − ‖ fW‖3

3.

Proof. We use Schur’s inequality: a3 + b3 + c3 + 3abc ≥ a2(b + c) +
b2(a + c) + c2(a + b) for a, b, c ≥ 0. We find

Λ( fW ; U) = E x,y,z
form a 3-AP in

the same U-coset

fW(x) fW(y) fW(z)

≥ 2Ex, y in same U-coset fW(x)2 fW(y)−E f 3
W

≥ 2E f 2
W fU −E f 3

W

≥ 2E f 3
U −E f 3

W ,

where the first inequality follows from Schur’s inequality and the last
follows from convexity.
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Theorem 6.29. For all ε > 0, there exists m = tow(O(log 1
ε )) such that if

f : Fn
3 → [0, 1], then there exists U ≤ Fn

3 with codimension at most m such
that

Λ3( f ; U) ≥ (E f )3 − ε.

Note if n is large enough, then |U| is large enough, so there exists
a nonzero “common difference" y.

Proof. Choose U, W as in the regularity lemma. Then

Λ3( f ; U) ≥ Λ3( fW ; U)− 3ε ≥ 2‖ fU‖3
3 − ‖ fW‖3

3 − 3ε ≥ (E f )3 − 4ε.

The corresponding statement for popular differences is true in Z

as well.

Theorem 6.30. For all ε > 0, there exists N0 = N0(ε) such that if Green (2005)

N > N0 and A ⊆ [N] with |A| = αN, then there exists y > 0 such that

|{x : x, x + y, x + 2y ∈ A}| ≥ (α3 − ε)N.

A similar statement also holds for 4-APs in Z:

Theorem 6.31. For all ε > 0, there exists N0 = N0(ε) such that if Green and Tao (2010)

N > N0 and A ⊆ [N] with |A| = αN, then there exists y > 0 such that

|{x : x, x + y, x + 2y, x + 3y ∈ A}| ≥ (α4 − ε)N.

Remark 6.32. Surprisingly, the corresponding statement for 5-APs (or
longer) in Z is false. Bergelson, Host, and Kra (2005) with

appendix by Ruzsa

https://mathscinet.ams.org/mathscinet-getitem?mr=2153903
https://mathscinet.ams.org/mathscinet-getitem?mr=2815606
https://mathscinet.ams.org/mathscinet-getitem?mr=2138068
https://mathscinet.ams.org/mathscinet-getitem?mr=2138068
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