
5
Graph limits

5.1 Introduction and statements of main results

Graph limits seeks a generalization of analytic limits to graphs. Con-
sider the following two examples that shows the potential parallel
between the set of rational numbers and graphs:

Example 5.1. For x ∈ [0, 1], the minimum of x3 − x occurs at x =

1/
√

3. But if we restrict ourselves in Q (pretending that we don’t
know about real numbers), a way to express this minimum is to find
a sequence x1, x2, . . . of rational numbers that converges to 1/

√
3.

Example 5.2. Given p ∈ (0, 1), we want to minimize the density
of C4’s among all graphs with edge density p. From Theorem 4.1
we see that the minimum is p4, which is obtained via a sequence of
quasirandom graphs. (There is no single finite graph that obtains this
minimum.)

We can consider the set of all graphs as a set of discrete objects
(analogous to Q), and seek its "completion" (analogously R).

Definition 5.3. A graphon ("graph function") is a symmetric measur-
able function W : [0, 1]2 → [0, 1].

Remark 5.4. Definition 5.3 can be generalized to Ω × Ω → [0, 1]
where Ω is any measurable probability space, but for simplicity we
will usually work with Ω = [0, 1]. (In fact, most "nice" measurable
probability space can be represented by [0, 1].)

The codomain of the function can also be generalized to R, in
which case we will refer to the function as a kernel. Note that this
naming convention is not always consistent in literature.

Graphons can be seen as a generalized type of graphs. In fact,
we can convert any graph into a graphon, which allow us to start
imagining what the limits of some sequences of graph should look
like.
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Example 5.5. Consider a half graph Gn, which is a bipartite graph
where one part is labeled 1, 2, . . . , n and the other part is labeled
n + 1, . . . , 2n, and vertices i and n + j is connected if and only if i ≤ j.
If we treat the adjacency matrix Adj(Gn) as a 0/1 bit image, we can
define graphon WGn : [0, 1]2 → [0, 1] (which consists of (2n)2 "pixels"
of size 1/(2n)× 1/(2n) each). When n goes to infinity, the graphon
converges (pointwise) to a function that looks like Figure 5.2.
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Figure 5.1: The half graph Gn for n = 4
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Figure 5.2: The graph of WGn (for
n = 4) and the limit as n goes to infinity
(black is 1, white is 0)

This process of converting graphs to graphons can be easily gener-
alized.

Definition 5.6. Given a graph G with n vertices (labeled 1, . . . , n),
we define its associated graphon as WG : [0, 1]2 → [0, 1] obtained
by partitioning [0, 1] = I1 ∪ I2 ∪ · · · In with λ(Ii) = 1/n such that if
(x, y) ∈ Ii × Ij, then W(x, y) = 1 if i and j are connected in G and 0
otherwise. (Here λ(I) is the Lebesgue measure of I.)

However, as we experiment with more examples, we see that using
pointwise limit as in Example 5.5 does not suffice for our purpose in
general.

Example 5.7. Consider any sequence of random (or quasirandom)
graphs with edge density 1/2 (with number of vertices approaching
infinity), then the limit (should) approach the constant function W =

1/2, though it certainly does not do so pointwise.

Example 5.8. Consider a complete bipartite graph Kn,n with the
two parts being odd-indexed and even-indexed vertices. Since the
adjacency matrix looks like a checkerboard, we may expect limit to
look like the 1/2 constant function as well, but this is not the case: if
we instead label the two parts 1, . . . , n and n + 1, . . . 2n, then we see
that the graphons should in fact converge to a 2× 2 checkerboard
instead.

Figure 5.3: A graph of WKn,n and two
possible limits of WKn,n as n goes to
infinity

The examples above show that we need to (at the very least) take
care of relabeling of the vertices in our definition of graph limits.

Definition 5.9. A graph homomorphism from H to G is a map
φ : V(H) → V(G) such that if uv ∈ E(H) then φ(u)φ(v) ∈ E(G).
(Maps edges to edges.) Let Hom(H, G) be the set of all such homo-
morphisms. and let hom(H, G) = |Hom(H, G)|. Define homomor-
phism density as

t(H, G) =
hom(H, G)

|V(G)||V(H)| .

This is also the probability that a uniformly random map is a homo-
morphism.

Example 5.10. • hom(K1, G) = |V(G)|,
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• hom(K2, G) = 2|E(G)|,

• hom(K3, G) is 6 times the number of triangles in G,

• hom(G, K3) is the number of proper 3-colorings of G (where the
colors are labeled, say red/green/blue).

Remark 5.11. Note that the homomorphisms from H to G do not
quite correspond to copies of subgraphs H inside G, because the
homomorphisms can be non-injective. Since the number of non-
injective homomorphisms contribute at most OH(n|V(H)−1|) (where
n = |V(G)|), they form a lower order contribution as n → ∞ when H
is fixed.

Definition 5.12. Given a symmetric measurable function W : [0, 1]2 →
R, define

t(H, W) =
∫
[0,1]|V(H)| ∏

ij∈E(H)

W(xi, xj) ∏
i∈V(H)

dxi.

Note that t(H, G) = t(H, WG) for every G and H.

Example 5.13. When H = K3, we have

t(K3, W) =
∫

[0,1]3

W(x, y)W(y, z)W(z, x) dxdydz.

This can be viewed as the "triangle density" of W.

We may now define what it means for graphs to converge and
what the limit is.

Definition 5.14. We say that a sequence of graphs Gn (or graphons
Wn) is convergent if t(H, Gn) (or t(H, Wn)) converges as n goes to
infinity for every graph H. The sequence converges to W if t(H, Gn)

(or t(H, Wn)) converges to t(H, W) for every graph H.

Remark 5.15. Though not necessary for the definition, we can think of
|V(Gn)| going to infinity as n goes to infinity.

A natural question is whether a convergent sequence of graphs has
a "limit". (Spoiler: yes.) We should also consider whether the "limit"
we defined this way is consistent with what we expect. To this end,
we need a notion of "distance" between graphs.

One simple way to define the distance between G and G′ to be
∑k 2−k|t(Hk, G)− t(Hk, G′)| for some sequence H1, H2, . . . of all the
graphs. (Here 2−k is added to make sure the sum converges to a
number between 0 and 1.) This is topologically equivalent to the
concept of convergence in Definition 5.14, but it is not useful.

Another possibility is to consider the edit distance between two
graphs (number of edge changes needed), normalized by a factor of
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1/|V(G)|2. This is also not very useful, since the distance between
any two G(n, 1/2) is around 1/4, but we should expect them to be
similar (and hence have o(1) distance).

This does, however, inspires us to look back to our discussion of
quasirandom graphs and consider when a graph is close to constant
p (i.e. similar to G(n, p)). Recall the DISC criterion in Theorem 4.1,
where we expect |e(X, Y)− p|X||Y|| to be small if the graph is suffi-
ciently random. We can generalize this idea to compare the distance
between two graphs: intuitively, two graphs (on the same vertex set,
say) are close if |eG(X, Y) − eG′(X, Y)|/n2 is small for all subsets X
and Y. We do, however, need some more definitions to handle (for
example) graph isomorphisms (which should not change the dis-
tances) and graphs of different sizes.

Definition 5.16. The cut norm of W : [0, 1]2 → R is defined as

‖W‖� = sup
S,T⊆[0,1]

∣∣∣∣∫S×T
W
∣∣∣∣ ,

where S and T are measurable sets.

For future reference, we also define some related norms.

Definition 5.17. For W : [0, 1]2 → R, define the Lp norm as
‖W‖p = (

∫
|W|p)1/p, and the L∞ norm as the infimum of all the

ream numbers m such that the set of all the points (x, y) for which
W(x, y) > m has measure zero. (This is also called the essential
supremum of W.)

Definition 5.18. We say that φ : [0, 1] → [0, 1] is measure-preserving if
λ(A) = λ(φ−1(A)) for all measurable A ⊆ [0, 1].

Example 5.19. The function φ(x) = x + 1/2 mod 1 is clearly measure-
preserving. Perhaps less obviously, φ(x) = 2x mod 1 is also measure-
preserving, since while each interval is dilated by a factor of 2 under
φ, every point has two pre-images, so the two effects cancel out. This
only works because we compare A with φ−1(A) instead of φ(A).

Definition 5.20. Write Wφ(x, y) = W(φ(x), φ(y)) (intuitively, "rela-
belling the vertices"). We define the cut distance

δ�(U, W) = inf
φ
‖U −Wφ‖�

where φ is a measure-preserving bijection.
For graphs G, G′, define the cut distance δ�(G, G′) = δ�(WG, WG′).

We also define the cut distance between a graph and a graphon as
δ�(G, U) = δ�(WG, U).
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Note that φ is not quite the same as permuting vertices: it is al-
lowed to also split vertices or overlay different vertices. This allows
us to optimize the minimum discrepancy/cut norm better than sim-
ply considering graph isomorphisms.

Remark 5.21. The inf in the definition is indeed necessary. Suppose
U(x, y) = xy and W = Uφ, where φ(x) = 2x mod 1, we cannot attain
‖U −Wφ′‖� = 0 for any φ′ (although the cut distance is 0) since φ is
not bijective.

Now we present the main theorems in graph limit theory that
we will prove later. First of all, one might suspect that there is an
alternative definition of convergence using the cut distance metric,
but it turns out that this definition is equivalent to Definition 5.14.

Theorem 5.22 (Equivalence of convergence). A sequence of graphs or Borgs, Chayes, Lovász, Sós, and Veszter-
gombi (2008)graphons is convergent if and only if it is a Cauchy sequence with respect to

the cut (distance) metric.

(A Cauchy sequence with respect to metric d is a sequence {xi}
that satisfies supm≥0 d(xn, xn+m)→ 0 as n→ ∞.)

Theorem 5.23 (Existence of limit). Every convergent sequence of graphs Lovász and Szegedy (2006)

or graphons has a limit graphon.

Denote W̃0 as the space of graphons, where graphons with cut
distance 0 are identified.

Theorem 5.24 (Compactness of the space of graphons). The set W̃0 is Lovász and Szegedy (2007)

a compact metric space under the cut metric.

Remark 5.25. Intuitively, this means that the spaces of "essentially
different" graphs is not very large. This is similar to the regularity
lemma, where every graph has a constant-size description that ap-
proximates the graph well. In fact, we can consider this compactness
theorem as a qualitative analytic version of the regularity lemma.

5.2 W-random graphs

Recall the Erdős-Rényi random graphs G(n, p) we’ve seen before. We
now introduce its graphon generalization. Let’s start with a special
case, the stochastic block model. It is a graph with vertices colored
randomly (blue or red), and two red vertices are connected with
probability prr, a red vertex and a blue vertex are connected with
probability prb = pbr, and two blue vertices are connected with
probability pbb.

Definition 5.26. Uniformly pick x1, . . . , xn from the interval [0, 1]. A
W-random graph, denoted G(n, W), has vertex set [n] and vertices i
and j are connected with probability W(xi, xj).

https://mathscinet.ams.org/mathscinet-getitem?mr=2455626
https://mathscinet.ams.org/mathscinet-getitem?mr=2455626
https://mathscinet.ams.org/mathscinet-getitem?mr=2274085
https://mathscinet.ams.org/mathscinet-getitem?mr=2306658


100 regularity and counting lemmas

x2

x3

x1

x1 x3 x2

b

r

r b

∗ ∗

∗ ∗

∗ ∗

Figure 5.4: 2-block model

An important statistical question is that given a graph, whether
there is a good model for where this graph comes from. This gives
some motivation to study W-random graphs. We also learnt that the
sequence of Erdős-Rényi random graphs converges to the constant
graphon, where below is an analogous result.

Theorem 5.27. Let W be a graphon. Suppose that for all n, Gn are chosen
from W-random graphs independently, then Gn →W almost surely.

Remark 5.28. In particular, every graphon W is the limit of some se-
quence of graphs. This gives us some form of graph approximations.

The proof for the above theorem uses Azuma’s inequality in order
to show that t(F, Gn) ≈ t(F, W) with high probability.

5.3 Regularity and counting lemmas

We now develop a series of tools to prove Theorem 5.24.

Theorem 5.29 (Counting Lemma). For graphons W, U and graph F, we
have

|t(F, W)− t(F, U)| ≤ |E(F)| δ�(W, U).

Proof. It suffices to prove |t(F, W) − t(F, U)| ≤ |E(F)|‖W − U‖�.
Indeed, by considering the above over U replaced by Uφ, and taking
the infimum over all measure-preserving bijections φ, we obtain the
desired result.

Recall that the cut norm ‖W‖� = supS,T⊆[0,1] |
∫

S×T W|. Now we
prove its useful reformulation: for measurable functions u and v,

sup
S,T⊆[0,1]

∣∣∣∣∫S×T
W
∣∣∣∣ = sup

u,v:[0,1]→[0,1]

∣∣∣∣∫
[0,1]2

W(x, y)u(x)v(y)dxdy
∣∣∣∣ .

Here’s the reason for the equality to hold: we take u = 1S and v = 1T

so the left hand side is no more than the right hand side, and then
the bilinearity of the integrand in u, v yields the other direction (the
extrema are attained for u, v taking values at 0 or 1).

We now illustrate the case when F = K3. Observe that

t(K3, W)− t(K3, U) =
∫
((W(x, y)W(x, z)W(y, z)−U(x, y)U(x, z)U(y, z))dxdydz

=
∫
(W −U)(x, y)W(x, z)W(y, z)dxdydz

+
∫

U(x, y)(W −U)(x, z)W(y, z)dxdydz

+
∫

U(x, y)U(x, z)(W −U)(y, z)dxdydz.

Take the first term as an example: for a fixed z,∣∣∣∣∫ (W −U)(x, y)W(x, z)W(y, z)dxdydz
∣∣∣∣ ≤ ‖W −U‖�

https://en.wikipedia.org/wiki/Azuma%27s_inequality


graph limits 101

by the above reformulation. Therefore, the whole sum is bounded by
3‖W −U‖� as we desire.

For a general graph F, by the triangle inequality we have

|t(F, W)− t(F, U)| =
∣∣∣∣∣
∫
( ∏

uivi∈E
W(ui, vi)− ∏

uivi∈E
U(ui, vi)) ∏

v∈V
dv

∣∣∣∣∣
≤
|E|

∑
i=1

∣∣∣∣∣
∫ ( i−1

∏
j=1

U(uj, vj)(W(ui, vi)−U(ui, vi))
|E|

∏
k=i+1

W(uk, vk)

)
∏
v∈V

dv

∣∣∣∣∣ .

Here, each absolute value term in the sum is bounded by ‖W −
U‖� the cut norm if we fix all other irrelavant variables (everything
except ui and vi for the i-th term), altogether implying that |t(F, W)−
t(F, U)| ≤ |E(F)| δ�(W, U).

We now introduce an “averaging function” for graphon W.

Definition 5.30. For a partition P = {S1, . . . , Sk} of [0, 1] into measur-
able subsets, and W : [0, 1]2 → R a symmetrical measurable function,
define the stepping operator WP : [0, 1]2 → R constant on each Si × Sj

such that WP (x, y) = 1
λ(Si)λ(Sj)

∫
Si×Sj

W if (x, y) ∈ Si × Sj.

(We ignore the defined term when the denominator equals to 0,
because the sets are measure-zero anyway).

This is actually a projection in Hilbert space L2([0, 1]2), onto the
subspace of functions constant on each step Si × Sj. It can also be
viewed as the conditional expectation with respect to the σ-algebra
generated by Si × Sj.

Theorem 5.31 (Weak regularity lemma). For any ε > 0 and any
graphon W : [0, 1]2 → R, there exists a partition P of [0, 1] into no
more than 41/ε2

measurable sets such that ‖W −WP‖� ≤ ε.

Definition 5.32. Given graph G, a partition P = {V1, . . . , Vk} of V(G)

is called weakly ε-regular if for all A, B ⊂ V(G),∣∣∣∣∣e(A, B)−
k

∑
i,j=1

d(Vi, Vj)|A ∩Vi||B ∩Vj|
∣∣∣∣∣ ≤ ε|V(G)|2.

These are similar but different notions we have seen when intro-
ducing Theorem 3.5.

Theorem 5.33 (Weak Regularity Lemma for Graphs). For all ε > 0 Frieze-Kannan (1999)

and graph G, there exists a weakly ε-regular partition of V(G) into up to
41/ε2

parts.

Lemma 5.34 (L2 energy increment). Let W be a graphon and P a
partition of [0, 1], satisfying ‖W −WP‖� > ε. There exists a refine-
ment P ′ of P dividing each part of P into no more than 4 parts, such that
‖WP ′‖2

2 > ‖WP‖2
2 + ε2.

https://mathscinet.ams.org/mathscinet-getitem?mr=1723039
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Proof. Because ‖W −WP‖� > ε, there exist subsets S, T ⊂ [0, 1]
such that |

∫
S×T(W −WP )| > ε. Let P ′ be the refinement of P by

introducing S and T (divide P based on whether it’s in S \ T,T \ S,
S ∩ T or S ∩ T), and that gives at most 4 sub-parts each.

Define 〈W, U〉 to be
∫

WU. We know that 〈WP , WP 〉 = 〈WP ′ , WP 〉
because WP is constant on each step of P , and P ′ is a refinement of
P . Thus, 〈WP ′ −WP , WP 〉 = 0. By Pythagorean Theorem,

‖WP ′‖2
2 = ‖WP ′ −WP‖2

2 + ‖WP‖2
2 > ‖WP‖2

2 + ε2,

where the latter inequality comes by the Cauchy–Schwarz inequality,

‖1S×T‖2‖WP ′ −WP‖2 ≥ |〈WP ′ −WP , 1S×T〉| = |〈W −WP , 1S×T〉| > ε.

Proposition 5.35. For any ε > 0, graphon W, and P0 partition of [0, 1],
there exists partition P refining part of P0 into no more than 41/ε2

parts,
such that ‖W −WP‖� ≤ ε.

This proposition specifically tells us that starting with any given
partition, the regularity argument still works.

Proof. We repeatedly apply Lemma 5.34 to obtain P0,P1, . . . parti-
tions of [0, 1]. For each step, we either have ‖W −WP‖� ≤ ε and thus
stop, or we know ‖WP ′‖2

2 > ‖WP‖2
2 + ε2.

Because ‖WPi‖2
2 ≤ 1, we are guaranteed to stop after fewer than

than ε−2 steps. We also know that each part is subdivided into no
more than 4 parts at each step, obtaining 4ε−2

as we desire.

We hereby introduce a related result in computer science, the
MAXCUT problem: given a graph G, we want to find max e(S, S̄)
among all vertex subsets S ⊂ V(G). Polynomial-time approximation
algorithms developed by Goemans and Williamson that finds a cut
within around 0.878 fraction of the optimum. conjecture known as

Goemans and Williamson (1995)

Khot, Kindler, Mossel, and O’Donnell 
(2007)the Unique Games Conjecture would imply that the it would not

be possible to obtain a better approximation than the Goemans–
Williamson algorithm.2306295 states the impossibility of beating this.
It is shown that approximating beyond 16

17 ≈ 0.941 is NP-hard. Håstad (2001)

On the other hand, the MAXCUT problem becomes easy to ap-
proximate for dense graphs, i.e., approximating the size of the max-
imum cut of an n-vertex graph with in to εn2 additive error in time
polynomial in n, where ε > 0 is a fixed constant. One can apply an
algorithmic version of the weak regularity lemma and brute-force
search through all possible partition sizes of the parts. This appli-
cation was one of the original motivations of the weak regularity
lemma.

https://mathscinet.ams.org/mathscinet-getitem?mr=1412228
https://mathscinet.ams.org/mathscinet-getitem?mr=2144931
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5.4 Compactness of the space of graphons

Definition 5.36. A martingale is a random sequence X0, X1, X2, . . .
such that for all n, E[Xn|Xn−1, Xn−2, . . . , X0] = Xn−1.

Example 5.37. Let Xn denotes the time n balance at a fair casino,
where the expected value of each round’s gain is 0. Then {Xn}n≥0 is
a martingale.

Example 5.38. For a fixed random variable X, we define Xn =

E(X| information up to time n), so that this sequence also forms a
martingale.

Theorem 5.39 (Martingale Convergence Theorem). Every bounded
martingale converges almost surely.

Remark 5.40. Actually, instead of bounded, it is enough for the mar-
tingales to be L1-bounded or uniform integrable, both of which gives
sup E(X+

n ) < ∞.

We sketch a idea inspired by a betting strategy. The proof below
omits some small technical details that can be easily filled in for those
who are familiar with the basic language of probability theory. • •

•
•

•
•

•

•
•

•
•

•

a

b

n

•

•

Figure 5.5: examples of “upcrossings”
Proof. An “upcrossing” of [a, b] consists of an interval [n, n + t] such
that Xn < a, and Xn+t is the first instance after Xn such that Xn+t >

a. We refer to the figure on the right instead of giving a more precise
definition.

Suppose there is a sequence of bounded martingale {Xn} that
doesn’t converge. Then there exists rational numbers 0 < a < b < 1
such that {Xn} upcrosses the interval [a, b] infinitely many times. We
will show that this event occurs with probability 0 (so that after we
sum over a, b ∈ Q, {Xn} converges with probability 1).

Denote uN to be the number of upcrossings (crossings from below
to above the interval) up to time N. Consider the following betting
strategy: at any time, we hold either 0 or 1 share. If Xn < a, then buy
1 share and hold it until the first time that the price (Xn) reads more
than b (i.e. we sell at time m such that Xm > b for the first time and
m > n).

How much profit do we make from this betting strategy? We
pocket b− a for each upcrossing. Accounting for difference between
our initial and final balance, our profit is at least (b − a)uN − 1. On
the other hand, the optional stopping theorem tells us that every
“fair” betting strategy on a margingale has zero expected profit. So
because the profits of a martingale is zero,

0 = E profit ≥ (b− a)EuN − 1,
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which implies EuN ≤ 1
b−a . Let u∞ = limN→∞ uN denotes the total

number of upcrossings. By the monotone convergence theorem, we
have Eu∞ ≤ 1

b−a too, hence P(u∞ = ∞) = 0, implying our result.

We now prove the main theorems of graph limits using the tools
developed in previous sections, namely the weak regularity lemma
(Theorem 5.31) and the martingale convergence theorem (Theo-
rem 5.39). We will start by proving that the space of graphons is
compact (Theorem 5.24). In the next section we will apply this result
to prove Theorem 5.23 and Theorem 5.22, in that order. We will also
see how compactness can be used to prove a graphon-reformulation
of the strong regularity lemma.

Recall that W̃0 is the space of graphons modulo the equivalence
relation W ∼ U if δ�(W, U) = 0. We can see that (W̃0, δ�) is a metric
space.

Theorem 5.41 (Compactness of the space of graphons). The metric Lovász and Szegedy (2007)

space (W̃0, δ�) is compact.

Proof. As W̃0 is a metric space, it suffices to prove sequential com-
pactness. Fix a sequence W1, W2, . . . of graphons. We want to show
that there is a subsequence which converges (with respect to δ�) to
some limit graphon.

For each n, apply the weak regularity lemma (Theorem 5.31) re-
peatedly, to obtain a sequence of partitions

Pn,1,Pn,2,Pn,3, . . .

such that

(a) Pn,k+1 refines Pn,k for all n, k,

(b) |Pn,k| = mk where mk is a function of only k, and

(c)
∥∥Wn −Wn,k

∥∥
� ≤ 1/k where Wn,k = (Wn)Pn,k .

The weak regularity lemma only guarantees that |Pn,k| ≤ mk, but if
we allow empty parts then we can achieve equality.

Initially, each partition may be an arbitrary measurable set. How-
ever, for each n, we can apply a measure-preserving bijection φ to
Wn,1 and Pn,1 so that Pn,1 is a partition of [0, 1] into intervals. For
each k ≥ 2, assuming that Pn,k−1 is a partition of [0, 1] into intervals,
we can apply a measure-preserving bijection to Wn,k and Pn,k so that
Pn,k is a partition of [0, 1] into intervals, and refines Pn,k−1. By in-
duction, we therefore have that Pn,k consists of intervals for all n, k.
Properties (a) and (b) above still hold. While property (c) may not
hold, and it’s no longer true that Wn,k = (Wn)Pn,k , we still know that
δ�(Wn, Wn,k) ≤ 1/k for all n, k. This will suffice for our purposes.

https://mathscinet.ams.org/mathscinet-getitem?mr=2306658
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Now, the crux of the proof is a diagonalization argument in count-
ably many steps. Starting with the sequence W1, W2, . . . , we will
repeatedly pass to a subsequence. In step k, we pick a subsequence
Wn1 , Wn2 , . . . such that:

1. the endpoints of the parts of Pni ,k all individually converge as
i→ ∞, and

2. Wni ,k converges pointwise almost everywhere to some graphon Uk

as i→ ∞.

There is a subsequence satisfying (1) since each partition Pn,k has
exactly mk parts, and each part has length in [0, 1]. So consider a
subsequence (Wai )

∞
i=1 satisfying (1). Each Wai ,k can be naturally iden-

tified with a function fai ,k : [mk]
2 → [0, 1]. The space of such functions

is bounded, so there is a subsequence ( fni )
∞
i=1 of ( fai )

∞
i=1 converging

to some f : [mk]
2 → [0, 1]. Now f corresponds to a graphon Uk which

is the limit of the subsequence (Wni )
∞
i=1. Thus, (2) is satisfied as well.

To conclude step k, the subsequence is relabeled as W1, W2, . . . and
the discarded terms of the sequence are ignored. The corresponding
partitions are also relabeled. Without loss of generality, in step k
we pass to a subsequence which contains W1, . . . , Wk. Thus, the end
result of steps k = 1, 2, . . . is an infinite sequence with the property
that (Wn,k)

∞
n=1 converges pointwise almost everywhere (a.e.) to Uk for

all k:

W1 W2 W3 . . .
k = 1 W1,1 W2,1 W3,1 . . . → U1 pointwise a.e.
k = 2 W1,2 W2,2 W3,2 . . . → U2 pointwise a.e.
k = 3 W1,3 W2,3 W3,3 . . . → U3 pointwise a.e.

...
...

...
...

. . .
...

Similarly, (Pn,k)
∞
n=1 converges to an interval partition Pk for all k.

By property (a), each partition Pn,k+1 refines Pn,k, which implies
that Wn,k = (Wn,k+1)Pn,k . Taking n→ ∞, it follows that Uk = (Uk+1)Pk

(see Figure 5.6 for an example). Now each Uk can be thought of as
a random variable on probability space [0, 1]2. From this view, the
equalities Uk = (Uk+1)Pk exactly imply that the sequence U1, U2, . . .
is a martingale.

U1 0.5 P1

U2

0.4 0.6

0.6 0.4

P2

U3

0.3 0.4 0.7 0.4

0.4 0.5 0.4 0.9

0.7 0.4 0.4 0.4

0.4 0.9 0.4 0.4

P3

Figure 5.6: An example of possible U1,
U2, and U3, each graphon averaging the
next.

The range of each Uk is contained in [0, 1], so the martingale is
bounded. By the martingale convergence theorem (Theorem 5.39),
there exists a graphon U such that Uk → U pointwise almost every-
where as k→ ∞.

Recall that our goal was to find a convergent subsequence of
W1, W2, . . . under δ�. We have passed to a subsequence by the above
diagonalization argument, and we claim that it converges to U under
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δ�. That is, we want to show that δ(Wn, U)� → 0 as n → ∞. This
follows from a standard "3-epsilons argument": let ε > 0. Then there
exists some k > 3/ε such that ‖U −Uk‖1 < ε/3, by pointwise con-
vergence and the dominated convergence theorem. Since Wn,k → Uk

pointwise almost everywhere (and by another application of the
dominated convergence theorem), there exists some n0 ∈ N such that∥∥Uk −Wn,k

∥∥
1 < ε/3 for all n > n0. Finally, since we chose k > 3/ε,

we already know that δ(Wn, Wn,k)� < ε/3 for all n. We conclude that

δ(U, Wn)� ≤ δ(U, Uk)� + δ(Uk, Wn,k)� + δ(Wn,k, Wn)�

≤ ‖U −Uk‖1 +
∥∥Uk −Wn,k

∥∥
1 + δ(Wn,k, Wn)�

≤ ε.

The second inequality uses the general bound that

δ(W1, W2)� ≤ ‖W1 −W2‖� ≤ ‖W1 −W2‖1

for graphons W1, W2.

5.5 Applications of compactness

We will now use the compactness of (W̃0, δ�) to prove several results,
notably the strong regularity lemma for graphons, the equivalence of
the convergence criteria defined by graph homomorphism densities
and by the cut norm, and the existence of a graphon limit for every
sequence of graphons with convergent homomorphism densities.

As a warm-up, we will prove that graphons can be uniformly ap-
proximated by graphs under the cut distance. The following lemma
expresses what we could easily prove without compactness:

Lemma 5.42. For every ε > 0 and every graphon W, there exists some
graph G such that δ�(G, W) < ε.

Proof. By a well-known fact from measure theory, there is a step
function U such that ‖W −U‖1 < ε/2. For any constant graphon p
there is a graph G such that ‖G− p‖� < ε/2; in fact, a random graph
G(n, p) satisfies this bound with high probability, for sufficiently
large n. Thus, we can find a graph G such that ‖G−U‖� < ε/2 by
piecing together random graphs of various densities. So

δ�(G, W) ≤ ‖W −U‖1 + ‖U − G‖� < ε

as desired.

However, in the above lemma, the size of the graph may depend
on W. This can be remedied via compactness.
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Proposition 5.43. For every ε > 0 there is some N ∈ N such that for any
graphon W, there is a graph G with N vertices such that δ�(G, W) < ε.

Proof. For a graph G, define the ε-ball around G by Bε(G) = {W ∈
W̃0 : δ�(G, W) < ε}.

W̃0

ε

G

Figure 5.7: Cover of W̃0 by open balls

As G ranges over all graphs, the balls Bε(G) form an open cover
of W̃0, by Lemma 5.42. By compactness, this open cover has a fi-
nite subcover. So there is a finite set of graphs G1, . . . , Gk such that
Bε(G1), . . . , Bε(Gk) cover W̃0. Let N be the least common multiple of
the vertex sizes of G1, . . . , Gk. Then for each Gi there is some N-vertex
graph G′i with δ�(Gi, G′i) = 0, obtained by replacing each vertex of Gi

with N/|V(Gi)| vertices. But now W is contained in an ε-ball around
some N-vertex graph.

Figure 5.8: A K3 and its 2-blowup. Note
that the graphs define equal graphons.

Remark 5.44. Unfortunately, the above proof gives no information
about the dependence of N on ε. This is a byproduct of applying
compactness. One can use regularity to find an alternate proof which
gives a bound.

Intuitively, the compactness theorem has a similar flavor to the
regularity lemma; both are statements that the space of graphs is in
some sense very small. As a more explicit connection, we used the
weak regularity lemma in our proof of compactness, and the strong
regularity lemma follows from compactness straightforwardly.

Theorem 5.45 (Strong regularity lemma for graphons). Let ε = Lovász and Szegedy (2007)

(ε1, ε2, . . . ) be a sequence of positive real numbers. Then there is some If εk = ε/k2, then this theorem approxi-
mately recovers Szemerédi’s Regularity
Lemma. If εk = ε, then it approximately
recovers the Weak Regularity Lemma.

M = M(ε) such that every graph W can be written

W = Wstr + Wpsr + Wsml

where

• Wstr is a step function with k ≤ M parts,

•
∥∥Wpsr

∥∥
� ≤ εk,

• ‖Wsml‖1 ≤ ε1.

Proof. It is a well-known fact from measure theory that any measur-
able function can be approximated arbitrarily well by a step function.
Thus, for every graphon W there is some step function U such that
‖W −U‖1 ≤ ε1. Unfortunately, the number of steps may depend on
W; this is where we will use compactness.

For graphon W, let k(W) be the minimum k such that some k-
step graphon U satisfies ‖W −U‖1 ≤ ε1. Then {Bεk(W)

}W∈W̃0
is

clearly an open cover of W̃0, and by compactness there is a finite set
of graphons S ⊂ W̃0 such that {Bεk(W)

(W)}W∈S covers W̃0.

https://mathscinet.ams.org/mathscinet-getitem?mr=2306658
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Let M = maxW∈S k(W). Then for every graphon W, there is some
W ′ ∈ S such that δ�(W, W ′) ≤ εk(W ′). Furthermore, there is a k-step
graphon U with k = k(W ′) ≤ M such that ‖W ′ −U‖1 ≤ ε1. Hence,

W = U + (W −W ′) + (W ′ −U)

is the desired decomposition, with Wstr = U, Wpsr = W −W ′, and
Wsml = W ′ −U.

Earlier we defined convergence of a sequence of graphons in
terms of the sequences of F-densities. However, up until now we
did not know that the limiting F-densities of a convergent sequence
of graphons are achievable by a single graphon. Without completing
the space of graphs to include graphons, this is in fact not true, as we
saw in the setting of quasirandom graphs. Nonetheless in the space
of graphons, the result is true, and follows swiftly from compactness.

Theorem 5.46 (Existence of limit). Let W1, W2, . . . be a sequence of Lovász and Szegedy (2006)

graphons such that the sequence of F-densities {t(F, Wn)}n converges for
every graph F. Then the sequence of graphons converges to some W. That is,
there exists a graphon W such that t(F, Wn)→ t(F, W) for every F.

Proof. By sequential compactness, there is a subsequence (ni)
∞
i=1 and

a graphon W such that δ�(Wni , W) → 0 as i → ∞. Fix a graph F. By
Theorem 5.29, it follows that t(F, Wni ) → t(F, W). But by assumption,
the sequence {t(F, Wn)}n converges, so all subsequences have the
same limit. Therefore t(F, Wn)→ t(F, W).

The last main result of graph limits is the equivalence of the two
notions of convergence which we had defined previously.

Theorem 5.47 (Equivalence of convergence). Convergence of F- Borgs, Chayes, Lovász, Sós, and Veszter-
gombi (2008)densities is equivalent to convergence under the cut norm. That is, let

W1, W2, . . . be a sequence of graphons. Then the following are equivalent:

• The sequence of F-densities {t(F, Wn)}n converges for all graphs F

• The sequence {Wn}n is Cauchy with respect to δ�.

Proof. One direction follows immediately from Theorem 5.29, the
counting lemma: if the sequence {Wn}n is Cauchy with respect to δ�,
then the counting lemma implies that for every graph F, the sequence
of F-densities is Cauchy, and therefore convergent.

For the reverse direction, suppose that the sequence of F-densities
converges for all graphs F. Let W and U be limit points of {Wn}n (i.e.
limits of convergent subsequences). We want to show that W = U.

Let (ni)
∞
i=1 be the subsequence such that Wni → W. By the count-

ing lemma, t(F, Wni ) → t(F, W) for all graphs F, and by conver-
gence of F-densities, t(F, Wn) → t(F, W) for all graphs F. Similarly,
t(F, Wn)→ t(F, U) for all F. Hence, t(F, U) = t(F, W) for all F.

https://mathscinet.ams.org/mathscinet-getitem?mr=2274085
https://mathscinet.ams.org/mathscinet-getitem?mr=2455626
https://mathscinet.ams.org/mathscinet-getitem?mr=2455626
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By the subsequent lemma, this implies that U = W.

Lemma 5.48 (Moment lemma). Let U and W be graphons such that
t(F, W) = t(F, U) for all F. Then δ�(U, W) = 0. This lemma is named in analogy with

the moment lemma from probability,
which states that if two random vari-
able have the same moments (and are
sufficiently well-behaved) then they are
in fact identically distributed.

Proof. We will sketch the proof. Let G(k, W) denote the W-random
graph on k vertices (see Definition 5.26). It can be shown that for any
k-vertex graph F,

Pr[G(k, W) ∼= F as labelled graph] = ∑
F′⊇F

(−1)E(F′)−E(F)t(F′, W).

In particular, this implies that the distribution of W-random graphs is
entirely determined by F-densities. So G(k, W) and G(k, U) have the
same distributions.

Let H(k, W) be an edge-weighted W-random graph on vertex
set [k], with edge weights sampled as follows. Let x1, . . . , xk ∼
Unif([0, 1]) be independent random variables. Set the edge-weight
of (i, j) to be W(xi, xj).

We claim two facts, whose proofs we omit

• δ�(H(k, W), G(k, W))→ 0 as k→ ∞ with probability 1, and

• δ1(H(k, W), W)→ 0 as k→ ∞ with probability 1.

Since G(k, W) and G(k, U) have the same distribution, it follows from
the above facts and the triangle inequality that δ�(W, U) = 0.

A consequence of compactness and the moment lemma is that the
"inverse" of the graphon counting lemma also holds: a bound on F-
densities implies a bound on the cut distance. The proof is left as an
exercise.

Corollary 5.49 (Inverse counting lemma). For every ε > 0 there is some
η > 0 and integer k > 0 such that if U and W are graphons with

|t(F, U)− t(F, W)| ≤ η

for every graph F on at most k vertices, then δ�(U, W) ≤ ε.

Remark 5.50. The moment lemma implies that a graphon can be
recovered by its F-densities. We might ask whether all F-densities
are necessary, or whether a graphon can be recovered from, say,
finitely many densities. For example, we have seen that if W is the
pseudorandom graphon with density p, then t(K2, W) = p and
t(C4, W) = p4; furthermore, it is uniquely determined by these
densities. If the equalities hold then δ�(W, p) = 0.

The graphons which can be recovered from finitely many F-
densities in this way are called "finitely forcible graphons". Among
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the graphons known to be finitely forcible are any step function and Lovász and Sós (2008)

the half graphon W(x, y) = 1x+y≥1. More generally, W(x, y) = Lovász and Szegedy (2011)

1p(x,y)≥0 is finitely forcible for any symmetric polynomial p ∈ R[x, y]
which is monotone decreasing on [0, 1].

5.6 Inequalities between subgraph densities

One of the motivations for studying graph limits is that they provide
an efficient language with which to think about graph inequalities.
For instance, we could be able to answer questions such as the fol-
lowing:

Question 5.51. If t(K2, G) = 1/2, what is the minimum possible
value of t(C4, G)?

We know the answer to this question; as discussed previously, by
Theorem 4.1 we can consider a sequence of quasirandom graphs;
their limit is a graphon W such that t(K2, W) = 2−4.

In this section we work on these kind of problems; specifically,
we are interested in homomorphism density inequalities. Two graph
inequaities have been discussed previously in this book; Mantel’s
theorem (Theorem 2.2) and Turán’s theorem (Theorem 2.6):

Theorem 5.52 (Mantel’s Theorem). Let W : [0, 1]2 → [0, 1] be a graphon.
If t(K3, W) = 0, then t(K2, W) ≤ 1/2.

Theorem 5.53 (Turán’s theorem). Let W : [0, 1]2 → [0, 1] be a graphon.
If t(Kr+1, W) = 0, then t(K2, W) ≤ 1− 1/r.

Our goal in this section is to determine the set of all feasible edge
density, triangle density pairs for a graphon W, which can be for-
mally written as

D2,3 = {(t(K2, W), t(K3, W)) : W graphon } ⊆ [0, 1]2.

t(
K

3,
W
)

t(K2, W)

Figure 5.9: Mantel’s Theorem implica-
tion in the plot of D2,3 (red line)

We know that the limit point of a sequence of graphs is a graphon
(Theorem 5.23), hence the region D2,3 is closed. Moreover, Mantel’s
Theorem (Theorem 5.52) tells us that the horizontal section of this
region when triangle density is zero extends at most until the point
(1/2, 0) ∈ [0, 1]2 (see Figure 5.9).

A way in which we can describe D2,3 is by its cross sections. A
simple argument below shows that each vertical cross section of D2,3

is a line segment:

Proposition 5.54. For every 0 ≤ r ≤ 1, the set D2,3 ∩ [0, 1]× {r} is a line
segment with no gaps.

https://mathscinet.ams.org/mathscinet-getitem?mr=2368030
https://mathscinet.ams.org/mathscinet-getitem?mr=2802882


graph limits 111

Proof. Consider two graphons W0, W1 with the same edge density;
then, we can consider

Wt = (1− t)W0 + tW1,

which is a graphon; moreover, its triangle density is mapped contin-
uously as t varies from 0 to 1. Its initial and final values are t(K3, W0)

and r(K3, W1), respectively, so every triangle density between these
values can be achieved.

Then, in order to better understand the shape of D2,3, we would
like to determine the minimum and maximum subgraph densities
that can be achieved given a fixed edge density. We begin by address-
ing this question:

Question 5.55. What is the maximum number of triangles in an
n-vertex m-edge graph?

The Kruskal–Katona theorem can be
proved using a “compression argu-
ment”: we repeatedly “push” the edges
towards the clique and show that num-
ber of triangles can never decrease in
the process.

An intuitive answer would be that the edges should be arranged
so as to form a clique. This turns out to be the correct answer: a
result known as the Kruskal–Katona theorem implies that a graph
with (k

2) has at most (k
3) triangles. Here we prove an slightly weaker

version of this bound.

a

a

1

0

Figure 5.10: Graphon which achieves
upper boundary of D2,3: t(K2, W) = a2

and t(K3, W) = a3

Theorem 5.56. For every graphon W : [0, 1]2 → [0, 1],

t(K3, W) ≤ t(K2, W)3/2.

Remark 5.57. This upper bound is achieved by a graphon like the
one shown in Figure 5.10, which is a limit graphon of a sequence of
cliques in G; for each of these graphons, edge and triangle densities
are, respectively,

t(K2, W) = a2, t(K3, W) = a3.

Therefore, The upper boundary of the region D3,2 is given by the
curve y = x3/2, as shown by Figure 5.11.

0.25

0.75

0.5

0.5

0.75

0.75

0
0

1

1

t(K2, W)

t(
K

3,
W
)

Figure 5.11: Plot of upper boundary of
D2,3, given by the curve y = x3/2 in
[0, 1]2

Proof of Theorem 5.56. It suffices to prove the following inequality for
every graph G:

t(K3, G) ≤ t(K2, G)3/2.

Let us look at hom(K3, G) and hom(K2, G); these count the number
of closed walks in the graph of length 3 and 2, respectively. These
values correspond to the second and third moments of the spectrum
of the graph G:

hom(K3, G) =
k

∑
i=1

λ3
i and hom(K2, G) =

k

∑
i=1

λ2
i
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Where {λi}n
i=1 are the eigenvalues of the adjacency matrix AG. We

then have that

hom(K3, G) =
n

∑
i=1

λ3
i ≤

(
n

∑
i=1

λ2
i

)3/2

= hom(K2, G)3/2. (5.1)

After dividing by |V(G)|3 on both sides, the result follows.

Note that in the last proof, we used the following useful inequality,
with ai = λ2

i and t = 3/2:

Claim 5.58. Let t > 1, and a1, · · · , an ≥ 0. Then,

at
1 + · · ·+ at

n ≤ (a1 + · · ·+ an)
t

Proof. This inequality is homogeneous with respect to the variables
ai, so we can normalize and assume that ∑ ai = 1; therefore, each of
the ai ∈ [0, 1], so that at

i ≤ ai for each i. Therefore,

LHS = at
1 + · · ·+ at

n ≤ a1 + · · ·+ an = 1 = 1t = RHS.

The reader might wonder whether there is a way to prove this
without using eigenvalues of the graph G. We have following result,
whose proof does not require spectral graph theory:

Theorem 5.59. For every W : [0, 1]2 → R which is symmetric,

t(K3, W) ≤ t(K2, W2)3/2

where W2 corresponds to the graphon W, squared pointwise.

Note that above, t(K2, W)3/2 falls in between these two terms
when W is a graphon because all the terms would be bounded be-
tween 0 and 1; therefore, the above result is stronger than that of
Theorem 5.56. The proof of this result follows from applying the
Cauchy–Schwarz inequality three times; one corresponding to each
edge of a triangle K3.

Proof. We have

t(K3, W) =
∫
[0,1]3

W(x, y)W(x, z)W(y, z)dxdydz.

From now on, we drop the notation for our intervals of integration.
We can apply the Cauchy–Schwarz inequality on the following in-
tegral; first with respect to the variable dx, and subsequently with
respect to the variables dy, dz, each time holding the other two vari-
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ables constant:

t(K3, W) =
∫

W(x, y)W(x, z)W(y, z)dxdydz

≤
∫ (∫

W(x, y)2dx
)1/2 (∫

W(x, z)2dx
)1/2

W(y, z)dydz

≤
∫ (∫

W(x, y)2dxdy
)1/2 (∫

W(x, z)2dx
)1/2 (∫

W(y, z)2dy
)1/2

dz

≤
(∫

W(x, y)2dxdy
)1/2 (∫

W(x, z)2dxdz
)1/2 (∫

W(y, z)2dydz
)1/2

= ‖W‖3
2

= t(K2, W)3/2,

completing the proof.

Remark 5.60. If we did not have the condition that W is symmetric,
we could still use Hölder’s inequality; however, we would obtain a
weaker statement. In this situation, Hölder’s inequality would imply
that ∫

[0,1]3
f (x, y)g(x, z)h(y, z)dxdydz ≤ ‖ f ‖3‖g‖3‖h‖3,

and by setting f = g = h = W, we could derive a weaker bound than
the one obtained in the proof of Theorem 5.59 because, in general,
‖W‖2 ≤ ‖W‖3.

The next theorem allows us to prove linear inequalities between
clique densities.

Theorem 5.61 (Bollobás). Let c1, · · · , cn ∈ R. The inequality Bollobás (1986)

n

∑
r=1

crt(Kr, G) ≥ 0

holds for every graph G if and only if it holds for every G = Km with
m ≥ 1. More explicitly, the inequality holds for all graphs G if and only if

n

∑
r=1

cr ·
m(m− 1) · · · (m− r + 1)

mr ≥ 0

for every m ≥ 1.

Proof. One direction follows immediately because the set of clique
graphs is a subset of the set of all graphs.

We now prove the other direction. The inequality holds for all
graphs if and only if it holds for all graphons, again since the set
of graphs is dense in W̃0 with respect to the cut distance metric. In
particular, let us consider the set S of node-weighted simple graphs,
with a normalization ∑ ai = 1.

a2 = 0.1

a1 = 0.2 a3 = 0.4

a4 = 0.3

a1

a2

a3

a4

a1 a2 a3 a4

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

Figure 5.12: Example of a node
weighted graph on four vertices, whose
weights sum to 1, and its corresponding
graphon.

https://mathscinet.ams.org/mathscinet-getitem?mr=0866142
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As Figure 5.12 shows, each node weighted graph can be repre-
sented by a graphon. The set S is dense in W̃0, because this set con-
tains the set of unweighted simple graphs. Then, it suffices to prove
this inequality for graphs in S .

Suppose for the sake of contradiction that there exists a node
weighted simple graph H such that

f (H) :=
n

∑
r=1

crt(Kr, H) < 0

Among all such H, we choose one with smallest possible number m
of nodes. We choose node weights a1, · · · , am with sum equal to 1

such that f (H) is minimized. We can find such H because we have
a finite number of parameters, and f is a continuous function over a
compact set.

We have that ai > 0 without loss of generality; otherwise we
would have a contradiction because we could delete that node and
decrease the quantity |V(H)|, while f (H) < 0 would still hold.

Moreover, H is a complete graph; otherwise there exist i, j such
that ij 6∈ E(H). Note that the clique density is a polynomial in terms
of the node weights; this polynomial would not have an a2

i term
because the set of graphons S corresponds to simple graphs, and
the vertex i would not be adjacent to itself. This polynomial does not
have an aiaj term either, because i and j are not adjacent. Therefore,
f (H) is multilinear in the variables ai and aj.

Fixing all of the other node weights and considering ai, aj as our
variables of the multilinear function f (H), this function would be
minimized by setting ai = 0 or aj = 0. If one of these weights were
set to zero, this would imply a decrease in the number of nodes,
while ai + aj would be preserved, hence not increasing f (H). This is
a contradiction to the minimality of number of nodes in H such that
f (H) < 0.

In other words, H must be a complete graph; further, the polyno-
mial f (H) on the variables ai has to be symmetric:

f (H) =
n

∑
r=1

crr!sr,

where each sr is an elementary symmetric polynomial of degree r

sr = ∑
i1<···<ir

ai1 · · · air .

In particular, by making constant all variables but a1, a2, the polyno-
mial f (H) can be written as

f (H) = A + B1a1 + B2a2 + Ca1a2,
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where A, B1, B2, C are constants; by symmetry, we have B1 = B2; also,
since ∑ ai = 1, we have that a1 + a2 is constant, so that

f (H) = A′ + Ca1a2.

If C > 0 then f would be minimized when a1 = 0 or a2 = 0; this
cannot occur because of the minimality of the number of nodes in
H. If C = 0 then any value of a1, a2 would yield the same minimum
value of f (H); in particular we could set a1 = 0, again contradicting
minimality on the number of nodes. Therefore, the constant C must
be negative,implying that f (H) would be minimized when a1 = a2.
Then, all of the ai have to be equal, and H can also be regarded as an
unweighted graph.

In other words, if the inequality of interest fails for some graph H,
then it must fail for some unweighted clique H; this completes the
proof.

Remark 5.62. In the proof above, we only considered clique densities;
an inequality over other kinds of graphs would not necessarily hold.

Thanks to the theorem above, it is relatively simple to test linear
inequalities between densities, since we just have to verify them for
cliques. We have the following corollary:

Corollary 5.63. For each n, the extremal points of the convex hull of

{( (t(K2, W), t(K3, W), · · · , t(Kn, W)) : W graphon} ⊂ [0, 1]n−1

are given by W = Km for all m ≥ 1.

Note that the above claim implies Turán’s theorem, because by
Theorem 5.61, the extrema of the set above are given in terms of
clique densities, which can be understood by taking W to be a clique.
Thus, if t(Kr+1, W) = 0, then this cross section on the higher dimen-
sional cube [0, 1]r will be bounded by the value t(K2, W) = 1− 1

r .
In the particular case that we want to find the extremal points in

the convex hull of D2,3 ⊂ [0, 1]2, they correspond to

pm =

(
m− 1

m
,
(m− 1)(m− 2)

m2

)
All of the points of these form in fact fall into the curve given by

y = x(2x− 1), which is the dotted red curve in Section 5.6.
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Figure 5.13: Set of lower boundary
points of D2,3, all found in the curve
given by y = x(2x− 1)

Because the region D2,3 is contained in the convex hull of the red
points {pm}m≥0, it also lies above the curve y = x(2x − 1). We can
moreover draw line segments between the convex hull points, so as
to obtain a polygonal region that bounds D2,3.

The region D2,3 was determined by Razborov, who developed the
Razborov (2007)theory of flag algebras, which have provided a useful framework in

https://mathscinet.ams.org/mathscinet-getitem?mr=2371204
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which to set up sum of squares inequalities, e.g., large systematic
applications of the Cauchy–Schwarz inequalities, that could be used
in order to prove graph density inequalities.

Theorem 5.64 (Razborov). For a fixed edge density t(K2, W), which falls Razborov (2008)

into the following interval, for some k ∈N

t(K2, W) ∈
[

1− 1
k− 1

, 1− 1
k

]
,

the minimum feasible t(K3, W) is attained by a unique step function
graphon corresponding to a k-clique with node weights a1, a2, · · · , ak with
sum equal to 1, and such that a1 = · · · = ak−1 ≥ ak.
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Figure 5.14: Complete description of the
region D2,3 ⊂ [0, 1]2

The region D2,3 is illustrated on the right in Section 5.6. We have
exaggerated the drawwings of the concave “scallops” in the lower
boundary of the region for better visual effects.

Note that in Turán’s theorem, the construction for the graphs
which correspond to extrema value (Chapter 2, definition 2.5) are
unique; however, in all of the intermediate values t(t2, W) 6= 1− 1/k,
this theorem provides us with non-unique constructions.

To illustrate why these constructions are not unique, the graphon
in Figure 5.15, which is a minimizer for triangle density when t(t2, W) =

2/3 can be modified by replacing the highlighted region by any
graphon with the same edge density.

α1

α2

α3

α1 α2 α3

1 1 0

1 0 1

0 1 1

Figure 5.15: A non unique optimal
graphon in the case k = 3.

Non-uniqueness of graphons that minimize t(K3, W) implies that
this optimization problem is actually difficult.

The problem of minimizing the Kr-density in a graph of given
edge density was solved for r = 4 by Nikiforov and all r by Reiher.,

Nikiforov (2011)
Reiher (2016)

respectively.
More generally, given some inequality between various subgraph

densities, can we decide if the inequality holds for all graphons?
For polynomial inequalities between homomorphism densities, it

suffices to only consider linear densities, since t(H, W)t(H′, W) =

t(H t H′, W).
Let us further motivate with a related, more classical question

regarding nonnegativity of polynomials:

Question 5.65. Given a multivariable polynomial p ∈ R[x1, x2, · · · , xn],
is p(x) ≥ 0 for every x = (x1, · · · , xn)?

This problem is decidable, due to a classic result of Tarski that
every the first-order theory of the reals is decidable. In fact, we have
the following characterization of nonnegative real polynomials.

Theorem 5.66 (Artin). A polynomial p ∈ R[x1, x2, · · · , xn] is nonnega-
tive if and only if it can be written as a sum of squares of rational functions.

https://mathscinet.ams.org/mathscinet-getitem?mr=2433944
https://mathscinet.ams.org/mathscinet-getitem?mr=2737279
https://mathscinet.ams.org/mathscinet-getitem?mr=3549620
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However, when we turn our interest into the set of lattice points,
the landscape changes:

Question 5.67. Given a multivariable polynomial p ∈ R[x1, x2, · · · , xn],
can it be determined whether p(x1, · · · , xn) ≥ 0 for all x ∈ Zn?

The answer to the above question is no. This is related to the fact
that one cannot solve diophantine equations, or even tell whether
there is a solution:

Theorem 5.68 (Matiyasevich; Hilbert’s 10th problem). Given a gen- Matiyasevich (2011)

eral diophantine equation is an undecidable problem to find its solutions, or
even to determine whether integer solutions exist.

Turning back to our original question of interest, we want to know
whether the following question is decidable

Question 5.69. For a given set of graphs {Hi}i∈[k] and a1, · · · , ak ∈ R,
is ∑k

i=1 ait(Hi, G) ≥ 0 true for every graph G?

The following theorem provides an answer to this question:

Theorem 5.70 (Hatami - Norine). Given a set of graphs {Hi}i∈[k] and Hatami and Norine (2011)

a1, · · · , ak ∈ R, whether the inequality

k

∑
i=1

ait(Hi, G) ≥ 0

is true for every graph G is undecidable.

A rough intuition for why the above theorem is true is that we
actually have a discrete set of points along the lower boundary of
D2,3; one could reduce the above problem into proving the same in-
equalities along the points in the intersection of the red curve and the
region. The set of points in this intersection forms a discrete set, and
the idea is to encode integer inequalities (which are undecidable) into
graph inequalities by using the special points on the lower boundary
of D2,3.

Another kind of interesting question is to ask whether specific
inequalities are true; there are several open problems of that type.
Here is an important conjecture in extremal graph theory:

Conjecture 5.71 (Sidorenko’s Conjecture). If H is a bipartite graph then Sidorenko (1993)

t(H, W) ≥ t(K2, W)e(H).

We worked recently with an instance of the above inequality, when
H = C4, when we were discussing quasirandomness. However,
the above problem is open. Let us consider the Möebius strip graph

https://mathscinet.ams.org/mathscinet-getitem?mr=2962974
https://mathscinet.ams.org/mathscinet-getitem?mr=2748400
https://mathscinet.ams.org/mathscinet-getitem?mr=1225933
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- which consists in removing a 10-cycle from a complete bipartite
graph K5,5 (Section 5.6).

The name of this graph comes from its realization as a face-vertex
incidence graph of the usual simplicial complex of the Möebius strip.
The graph above is the first one for which this inequality remains an
open problem.

Figure 5.16: The Möebius strip graph.

Even if nonnegativeness of a general linear graph inequalities is
undecidable, if one wants to decide whether they are true up to an
ε-error, the problem becomes more accessible:

Theorem 5.72. There exists an algorithm that, for every ε > 0 decides
correctly that

n

∑
i=1

cit(Hi, G) ≥ −ε

for all graphs G, or outputs a graph G such that

n

∑
i=1

cit(Hi, G) < 0.

Proof sketch. As a result of weak regularity lemma, we can take a
weakly ε-regular partition. All the information regarding edge den-
sities can be represented by this partition; in other words, one would
only have to test a bounded number of possibilities on weighted
node graphs with ≤ M(ε) parts whose edge weights are multiples
of ε. If the estimate for the corresponding weighted sum of graph
densities is true for the auxiliary graph one gets from weak regular-
ity lemma, then it is also true for the original graph up to an ε-error;
otherwise, we can output a counterexample.
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