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Reminder: Causal effects

» Potential outcomes under treatment and control, Y (1), Y (0)

» Covariates and treatment, X, T
X

» Conditional average treatment effect (CATE)
CATE(X) = E[Y(1) —Y(0) | X]

Potential outcomes Features Y




Today: Treatment policies/regimes

» A policy mr assigns treatments to patients
(typically depending on their medical history/state)

» Example: For a patient with medical history x,
m(x) = I[CATE(x) > 0]
“Treat if effect is positive”
» Today we focus on policies guided by clinical outcomes
(as opposed to legislation, monetary cost or side-effects)




Example: Sepsis management

» Sepsis is a complication of an infection which

can lead to massive organ failure and death
» One of the leading causes of death in the ICU
» The primary treatment target is the infection

» Other symptoms need management:

breathing difficulties, low blood pressure, ...

—
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Recall: Potential outcomes

Septic patient with

breathing difficulties Y (0)
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3 Blood 1. Should the patient be put on
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. , Yo mechanical ventilation?
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Mechanical ventilation?




Today: Sequential decision making

» Many clinical decisions are made in sequence
» Choices early may rule out actions later

» Can we optimize the policy by which actions are made?
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Recall: Potential outcomes

Septic patient with
breathing difficulties

1. Should the patient be put on
" mechanical ventilation?

Mechanical ventilation?




Example: Sepsis management

Septic patient with ®
breathing difficulties 8
® % 2. Should the patient be
. sedated?
%,
K ® (To alleviate discomfort due
N to mech. ventilation)

Mechanical ventilation? Sedation?




Example: Sepsis management

Septic patient with
breathing difficulties

Mechanical ventilation?

Sedation?

eo

&

Vasopressors?

3. Should we
artificially raise
blood pressure?

(Which may have
dropped due to
sedation)



Example: Sepsis management

Septic patient with
breathing difficulties

Mechanical ventilation?

Sedation?
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Finding optimal policies

» How can we treat patients so that their
outcomes are as good as possible?

» What are good outcomes?

» Which policies should we consider?

QOutcome




Success stories in popular press

» AlphaStar

» AlphaGo

» DQN Atari

» Open Al Five

|
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Reinforcement learning

-

» Maximize reward! o
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Great! Now let’s treat patients

» Patient state at time S; is like the game board
» Medical treatments A; are like the actions

» Outcomes R, are the rewards in the game

» What could possibly go wrong?
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1. Decision processes
2. Reinforcement learning
3. Learning from batch (off-policy) data

4. Reinforcement learning in healthcare



Decision processes

» An agent repeatedly, at

times t takes actions 4, !~~~ Agent
to receive rewards R;
from an environment, Reward R;

the state S; of which is
(partially) observed

Environment

Action A;



Decision process: Mechanical ventilation
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Decision process: Mechanical ventilation

» State S; includes demographics,
physiological measurements,
ventilator settings, level of
consciousness, dosage of
sedatives, time to 50
ventilation, number of
intubations




Decision process: Mechanical ventilation

» Actions A, include intubation
and extubation, as well as
administration and dosages of
sedatives A,



Decision processes

» A decision process specifies how states S;, actions 4;, and
rewards R; are distributed: p(Sy, ..., S7,4q, ..., A1, Ry, ..., R7)

» The agent interacts with the environment according to a
behavior policy u = p(4¢ | -+ )*

* The ... depends on the type of agent




Markov Decision Processes

» Markov decision processes (MDPs) are a special case

» Markov transitions:
p(St | SO) ""St—erO' '"’At—l) — p(St | St—l'At—l)

» Markov reward function: p(R; | S¢, A¢) =p(R: 1 Sg, ., Se—1, Ags s Aper)

» Markov action policy u = p(A; | S¢) =p(Ac1So, ) Sec1,Ags s Apeq)




Markov assumption

» State transitions, actions and reward depend only on most
recent state-action pair




Contextual bandits (special case)*

» States are independent: p(S; | Si_1,4;-1) = p(5;)
» Equivalent to single-step case: potential outcomes!
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* The term “contextual bandits” has connotations of efficient exploratiéh, which is not addressed here




Contextual bandits & potential outcomes

» Think of each state S; as an i.i.d. patient, the actions A; as the
treatment group indicators and R; as the outcomes

AO AT




Goal of RL

» Like previously with causal effect estimation, we are interested
in the effects of actions A; on future rewards

Ar




Value maximization

» The goal of most RL algorithms is to maximize the expected
cumulative reward—the value V,, of its policy =

» Return: G, = YI_, R,

Sum of future rewards

» Value: V;, = E,, .[Go]

Expected sum of rewards under policy

» The expectation is taken with respect to scenarios acted out
according to the learned policy




Example

» Let’s say that we have data from a policy

a; =0 al =1
a; =1 R%
Rl
. Rl 3
Patient 1 2
Patient 2 2 =0 ) a3 =1
1 a; =1
2
R% RZ R3
Patient 3 2
a3=0 Rf az; =0
Rg’ a3 =0
R3

Value
n

1 n
=1

Return
G'=Ri +R;+R;3

G? = R + R3 + R}

G = R{ + R + R3



Robot In a room

» Stochastic actions <_f_.
p(Moveup | A ="up”) = 0.8
Avalilable non-opposite moves
have uniform probability

» Rewards:

+1 at [4,3] (terminal state)
-1 at [4,2] (terminal)
-0.04 per step

Slide from Peter Bodik

+1

Start




Robot in a room
4 What is the optimal policy?

» Stochastic actions
p(Moveup | A ="up”) = 0.8
Avalilable non-opposite moves
have uniform probability

? ? ? +1

—1
» Rewards: f
+1 at [4,3] (terminal state) ” ” ’ .

-1 at [4,2] (terminal)
-0.04 per step

Slide from Peter Bodik




Robot In a room

» The following is the optimal
policy/trajectory under
deterministic transitions

» Not achievable in our
stochastic transition model

Slide from Peter Bodik

+1




Robot in a room
» Optimal policy

» How can we learn this?

Slide from Peter Bodik

+1
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Paradigms™
Model-based RL

Transitions
p(Se | S, Ap—1)

G-computation
MDP estimation

*We focus on off-policy RL here

Value-based RL

Value/return
p(G: | S¢, Ap)

Q-learning
G-estimation

Policy-based RL

Policy
p(A: | St)

REINFORCE

Marginal structural models



Paradigms™
Model-based RL

Transitions
p(Se | Se—1,Ai—1)

G computation
MDP estimation

*We focus on off-policy RL here

Value-based RL

Value/return
p(G: | S¢, Ap)

Q-learning
G-estimation

Policy-based RL

Policy
p(4: S

REINFORCE

Marginal structural models



Dynamic programming

» Assume that we know how
good a state-action pair is

» Q: Which end state is the
best? A: [4,3]

» Q: What is the best way to get
there? A: Only [3,1]

Slide from Peter Bodik

Start




Dynamic programming
» [2,1] is slightly better than [3,2]
because of the risk of

transitioning to [4,2] from [3,2]

» Which is the best way to [2,1]?

Slide from Peter Bodik

> +1
=
3,2] [4,2]

Start




Dynamic programming

» The idea of dynamic
programming for
reinforcement learning is to
recursively learn the best
action/value in a previous
state given the best
action/value in future states

Slide from Peter Bodik

+1




Dynamic programming

» Next: How do we get the
value of each state?

Slide from Peter Bodik

+1




Q-learning
» Q-learning is a value-based reinforcement learning method

» Recall: The value of a state s under a policy « is
UT[(S) = [, [Gt | St — S] = x| X707/ Resj 1 ¢ = ]

Reward discount factor*

*Mathematical tool more than anything %



Q-learning
» Q-learning is a value-based reinforcement learning method

» The value of a state s under a policy « is
UT[(S) = [, [Gt | St — S] = x| X707/ Resj 1 ¢ = ]

Reward discount factor*

» The value of a state-action pair (s,a) is
qrc(S: a) = [Erc[Gt | 5¢ = 5, A = a]

*Mathematical tool more than anything 0




Q-learning
» Q-learning attempts to estimate g, with a function Q(s,a) such
that o is the deterministic policy

n(s) = arg max, Q(s,a)

» The best Q is the best state-action value function

Q*(5,@) = maxqq(s,a) =:q'(5,0)




Bellman equation

» For the optimal Q-function g*, “Bellman optimality” holds*

q*(s) a) — IET[ [Rt ~+ yn}l,alxq*(st-l_l’ a’) | St = S,At = a]

State-action value Immediate reward  Future (discounted) rewards*

» Look for functions with this property!

*A necessary property for optimality of dynamic programming 2




Q-learning with discrete states

» If states are discrete, s € {0, ..., K}, Q-learning can be solved
exactly using dynamic programming (for small enough K)*

» Initialize a table of Q(s, a)
» Repeat

Q(Se, Ar) « Q(Sp, Ap) + a [Rt Ty mc?x Q(St41,a) — Q(St»At)]

Learning rate

*Converges to the optimal g* if all state-action pairs visited over and dVer again




Q-learning with discrete states

1. Initialize Q(s,a) =0, leta,y =1
2. Repeat

Q(St, Ap) <« Q(Sp, A + a [Rt + Yy max Q(St+1,a) — Q(St»At)]

Assume that transitions are
deterministic for now

et each state-pair be visited in
order, over and over®

* We will come back to this “

Q-table
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-learning with discrete states

Q-table

Initialize Q(s,a) =0, leta,y =1
epeat

A < QS A) +a [Rt + Yy max Q(St+1,a) — Q(St, At)

+

N

,
N ,
< .
N - .
N . .
< ,
N .
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-learning with discrete states

Q-table

Initialize Q(s,a) =0, leta,y =1
epeat

A < QS A) +a [Rt + Yy max Q(St+1,a) — Q(St, Ar)

46




-learning with discrete states

Q-table

Initialize Q(s,a) =0, leta,y =1
epeat

A < QS A) +a [Rt + Yy max Q(St+1,a) — Q(St, At)

+

,

.
,
N ,
< .
N .
N . .
<
N .

N ,

N ,
N .
N ,

-0.16 <-0.16
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-learning with discrete states

Q-table

Initialize Q(s,a) =0, leta,y =1
epeat

A < QS A) +a [Rt + Yy max Q(St+1,a) — Q(St, At)

48




-learning with discrete states

Q-table

Initialize Q(s,a) =0, leta,y =1
epeat

A < QS A) +a [Rt + Yy max Q(St+1,a) — Q(St, At)

49




Fitted Q-learning (with function approximation)

» If the number of states K is large or S; is not discrete, we
cannot maintain a table for Q(s, a)

» Instead, we may represent Q(s,a) by a function Q4 and
minimize the risk

R(Qg) = Eg [(R +y max Q(s", A" — Qe(S,A))ZI

Old estimate of Q Current estimate




Bellman equation (one step)

» In the one-step case (no future states)
R 2
R(Qp) = Ex |(Re + pmascisa) - 0p(5,4)) |
= E, [(Re — Qo (5, 40))°]

» Finding q(s, a) is analogous to finding expected potential
outcomes E[R(a) | S = s] in the one-step case!



Recall: Potential outcomes

4 Regression adjustment

min—— > (i) = )

Control outcome
E[Y(0) | X]

——ereree
i:t;=t ’,f‘
o
& g
. /. Treated outcome
)
E[¥ (1) | X]




Fitted Q-learning as covariate adjustment

» Fitted Q-learning is like covariate adjustment (regression) with
a moving target (which is updated during learning)

Choice of loss, (here squared)

PN

R(Qs) = Ex | (G(5, 4.5, R) = Qo (5, M) |

= R + y max 0(S',a")
N a J
!

Expectation over transitions (s,a, s’,r) Target Prediction

N




Off-policy learning

» Where does our data come from?
2 I 2
R(Qp) = By | (R +ymax(S',a) = 0p(5,4)) |
L How do we evaluate this expectation?

» "What are the inputs and outputs of our regression?”

» Alternate between updates of Q and Qg




Exploration in RL

» Tuples (s,a,s’,r) may be obtained by:
» On-policy exploration—“Playing the game” with the current policy
» Randomized trials —Executing a sequentially random policy

» Off-policy (observational)—E.g., healthcare records

» The latter is most relevant to us!

55




1. Decision processes
2. Reinforcement learning paradigms
3. Learning from batch (off-policy) data

4. Reinforcement learning in healthcare



Off-policy learning

» Trajectories (s{,a4,11), ..., (s, ar, rp),0f states s;, actions a,,
and rewards r; observed in e.g. medical record

» Actions are drawn according to a behavior policy u, but we
want to know the value of a new policy «

» Learning policies from this data is at least as hard as
estimating treatment effects from observational data




Assumptions for (off-policy) RL

» Sufficient conditions for identifying value function

Single-step case Sequential case
Strong ignorability: Sequential randomization:
Y(0),Y()LTIX G(.) LAy | 5 Ay
“No hidden confounders” “Reward indep. of policy given history”
Overlap: Positivity:
v, t: p(T=t|X=x)>0 Va,t: p(A; =a| S, A1) >0
“All actions possible” “All actions possible at all times”

58



Assumptions for (off-policy) RL

» Sufficient conditions for identifying value function

Single-step case Sequential case

: Sequential randomization:
Y(0,Y(H)LTIX G(..) WAL | Se, Ay

“No hidden confounders” “Reward indep. of policy given history”
vx,t: p(T=t|X=x)>0 Va, t: p(A; =a | S, A—1 ) >0
“All actions possible” “All actions possible at all times”

59



Recap: Learning potential outcomes

atmin
i May 15 f Sep 15

[.]
o

as Medication A
Anna \ Control
r{ t=0 /\

Age = 54 Blood sugar = ?
Gender = Female

Y(0)
Race = Asian

Blood pressure = 150/95

WBC count = 6.8*109%L J{ %
Temperature = 36.7°C ] . ﬁ
Medication B

Blood sugar = High “Treated” Blood sugar = ?

t=1 Y (1)

60




Treating Anna once

» We assumed a simple causal graph. This let us identify the causal effect
of treatment on outcome from observational data

Treatment, A

Ignorability
State, S Effect of treatment R(@LAIS

Potential outcome under
Outcome, R action a

61




Treating Anna over time

» Let’s add a time point...

Ignorability
S, S, Ri(a) L A¢ | Sy




Treating Anna over time

» What influences her state?

Anna’s health status depends on how we treated her

Ignorability
Ri(a) L A | S

It is likely that if Anna is diabetic, she will remain so

63



Treating Anna over time

» What influences her state?

The outcome at a later time point may depend on earlier choices

Ignorability

The outcome at a later time may depend on an earlier state

64



Treating Anna over time

» What influences her state?

If we already tried a treatment,

If we know that a we might not try it again
patient had a
symptom previously, Ay l A,
it may affect futur
decisions |gn |Iity
R:(ay' L A\l S

If the last treatment was unsuccessful,
it may change our next choice

65




State & ignorability

» To have sequential ignorability, we need to remember history!

History H,

Ignorability
R:(a) L A; | H;

66




Summarizing history

» The difficulty with history is that its size grows with time

» A simple change of the standard MDP is to store the states
and actions of a length k window looking backwards

» Another alternative is to learn a summary function that
maintains what is relevant for making optimal decisions,
e.dg., using an RNN




State & ignorability

» We cannot leave out unobserved confounders

Unobserved confounder, U
Unobserved confounder, U




What made success possible/easier?

» Full observability
Everything important to optimal action is observed

» Markov dynamics
History is unimportant given recent state(s)

» Limitless exploration & self-play through simulation
We can test “any” policy and observe the outcome

» Noise-less state/outcome (for games, specifically)

AlphaGo © source unknown, Atari © Nature/Google
DeepMind/Atari Interactive, Dota 2 © Valve, and robots ©
Peter Pastor. All rights reserved. This content is excluded
69 from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/




1. Decision processes
2. Reinforcement learning paradigms

3. Learning from batch (off-policy) data

4. Reinforcement learning in healthcare. Tomorrow!
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