
	 	 	

	

	 	 	 	

	 	 	 	

Machine Learning for Healthcare 
HST.956, 6.S897 

Lecture 1: What makes	 healthcare unique? 

Prof. David Sontag & Pete	 Szolovits 
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The Problem 

• Cost of health	 care expenditures in the US are
over $3 trillion, and rising

• Despite having some of the best clinicians in
the world, chronic conditions are
– Often diagnosed	 late

– Often inappropriately managed

• Medical errors are pervasive
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Outline for today’s class 

1. Brief history of AI and ML in healthcare

2. Why now?
3. Examples of how ML will transform

healthcare

4. What is unique about ML in healthcare?

5. Overview of class syllabus
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FIGURE 1-1 Major parts of an expert system. Arrows indicate
information flow.

I am ready
** THIS IS A 26 YEAR OLD MALE PATIENT
My understanding is:
The age of the patient is 26
The sex of the patient is male
** FIVE DAYS AGO, HE HAD RESPIRATORY-TRACT SYMPTOMS
What is his name?
** JO
My understanding is:
The name of the patient is Jo
Respiratory-tract is one of the symptoms that the patient had
** A COUPLE OF DAYS BEFORE THE ADMISSION, HE HAD A MALAISE
Please give me the date of admission
** MARCH 12, 1979
My understanding is:
The patient was admitted at the hospital 3 days ago
Malaise is one of the symptoms that the patient had 5 days ago

FIGURE 33-1 Short sample dialogue. The physician’s inputs
appear in capital letters after the double asterisks.

1970’s: MYCIN	 expert system 

• 1970’s (Stanford): MYCIN expert 
Dialogue interface 

system for identifying bacteria 
causing severe infections 

• Proposed a good therapy in 
~69% of cases. Better than 
infectious disease	 experts 
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1980’s: automating medical discovery 

Discovers that prednisone 
elevates cholesterol 
(Annals 	of Internal Medicine, 	‘86) 

[Robert Blum,	 “Discovery,	 Confirmation and Incorporation of Causal Relationships 
froma Large Time-Oriented ClinicalDataBase: TheRXProject”. Dept. of Computer 
Science,	 Stanford. 1981] 

Diagram © Robert Blum. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ 
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FIGURE 2. A multilayer perceptron. This is a two-layer percep-
tron with four inputs, four hidden units, and one output unit.

1990’s: neural networks	 in medicine 

• Neural networks with
clinical data took off in
1990, with 88	 new studies
that	 year

• Small number of features
(inputs)

• Data often collected by
chart review

Problems: 1. Did not fit well into clinical workflow 
2. Hard to get enough training data
3. Poor generalization to new places

[Penny& Frost,NeuralNetworks in ClinicalMedicine.MedDecis Making, 1996] 
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Outline for today’s class 

1. Brief history of AI and ML in healthcare

2. Why now?
3. Examples of how ML will transform

healthcare

4. What is unique about ML in healthcare?

5. Overview of class syllabus
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Adoption of Electronic Health Records 
(EHR)	 has increased 9x in US since 2008
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Courtesy of Health and Human Services. Image is in the public domain. 

[Henry et al.,	 ONC Data Brief,	 May 2016] 
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Large datasets 

President Obama’s initiative to create a 1 million 
person	 research	 cohort 

Core data set: 
• Baseline health exam 

• Clinical data derived 
from electronic health 
records (EHRs) 

• Healthcare claims 

• Laboratory data 

[Precision Medicine Initiative (PMI) working Group Report,	 Sept. 17 2015] 
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Standardization 

OMOP 
Common 
Data 
Model v5.0 

Image is in the public domain. 
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Breakthroughs in machine learning 

• Major advances in ML & AI 
– Learning with high-dimensional features (e.g., l1-
regularization) 

– Semi-supervised and unsupervised learning 

– Modern deep learning techniques (e.g. convnets, 
variants of SGD) 

• Democratization of machine learning 
– High quality open-source software, such as 
Python’s scikit-learn, TensorFlow,	 Torch,	 Theano 
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Industry interest in ML & healthcare 

• Major acquisitions to get big data for ML: 
– Merge ($1 billion purchase by IBM, 2015) 
medical imaging 

– Truven Health Analytics ($2.6 billion purchase by 
IBM, 2016) 
health	 insurance claims 

– Flatiron 	Health ($1.9 billion purchase 	by 	Roche, 
2018) 
electronic health records (oncology) 

21



	 	 	

	 	 	 	 	 	 	

	

	 	 	 	

	 	 	 	 	

	 	 	

Outline for today’s class 

1. Brief history of AI and ML in healthcare 

2. Why now? 

3. Examples of how	 ML will transform 
healthcare 

4. What is unique about ML in healthcare? 

5. Overview of class syllabus 
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Emergency Department: 

• Limited resources 

• Time sensitive 

• Critical decisions 
Courtesy of the US Navy. Image is in the public domain. 
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What is the future of how we treat 
chronic	 disease? 

• Early diagnosis, e.g. of diabetes, Alzheimer's, 
cancer 

• Continuous monitoring and coaching, e.g. for the 
elderly, diabetes, psychiatric disease 

• Discovery of new disease subtypes; design of 
new drugs;	 better targeted	 clinical trials 

33



	 	

	 	 	 	 	 	 	

	

	 	 	 	 	

	 	 	 	 	

	 	 	

Outline for today’s	 class 

1. Brief history of AI and ML in healthcare 

2. Why now? 

3. Examples of how ML will transform 
healthcare 

4. What is unique about ML in healthcare? 

5. Overview of class syllabus 
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What makes healthcare different? 

• Life or death decisions 
– Need robust algorithms 
– Checks and balances built into ML deployment 
– (Also 	arises 	in 	other applications of 	AI such as autonomous 
driving) 

– Need fair and accountable algorithms 

• Many questions are about unsupervised learning 
– Discovering disease subtypes, or answering question such 
as “characterize the types of people that are highly likely to 
be readmitted	 to the hospital”? 

• Many of the questions we want to answer are causal 
– Naïve use of supervised machine learning is insufficient 
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What makes healthcare different? 

• Very little labeled data 
– Motivates semi-supervised learning algorithms 

• Sometimes small numbers of samples (e.g., a 
rare disease) 
– Learn as much as possible from other data (e.g. 
healthy patients) 

– Model the problem carefully 

• Lots	 of missing data, varying time intervals, 
censored labels 
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What makes healthcare different? 

• Difficulty of de-identifying data 
– Need for data	 sharing agreements and sensitivity 

• Difficulty of deploying ML 
– Commercial electronic health record software is 
difficult to modify 

– Data is often in silos; everyone recognizes need for 
interoperability, but slow progress 

– Careful testing and iteration is needed 
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Goals for the semester 

• Intuition for working with healthcare data 

• How to set up as machine learning problems 

• Understand which learning algorithms are 
likely to be useful	 and when 

• Appreciate subtleties in safely & robustly 
applying ML in healthcare 

• Set the research agenda for the next decade 
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6.S897/HST.956	 vs 6.874 

• Our class will focus on clinicaldata and its use 
to improve health care 

• For reasons of time & scope, we will not go 
deep	 into applications in	 the life sciences 
– For this, we recommend taking 6.874 
Computational Systems Biology: Deep Learning 
in the Life Sciences 
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