
7. Tile That Courtyard, Please 
 
We shape our buildings; thereafter they shape us. ― Winston Churchill. 
 

 
Consider the following tiling problem. We have a courtyard with 2n × 2n squares and we 
need to tile the courtyard using L-shaped tiles or trominoes.  Each trominoe consists of 
three square tiles attached to form an L shape as shown below. 
 

 
 
 
                               	
  
 
 
 
 
 
Can this be done without spilling over the boundaries, breaking a tromino or having 
overlapping trominoes?  The answer is no, simply because 2n × 2n = 22n is not divisible 
by 3, only by 2.  However, if there is one square that can be left untiled, then 22n – 1 is 
divisible by 3. Can you show this?1 
 
We, therefore, have hope of properly tiling a 2n × 2n courtyard with one square that we 
can leave untiled because, for example, there is a statue of your favorite President on it. 
We’ll call this square that can be left untiled the missing square. 
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Since this is not a book of mathematical puzzles we’ll tell you! 22n – 1 can be written as 
(2n – 1) (2n + 1). 2n is clearly not divisible by 3. And that means that either 2n – 1 is 
divisible by 3 or 2n + 1 is divisible by 3. 

Programming constructs and algorithmic paradigms covered in this puzzle: List 
comprehension basics. Recursive Divide-and-Conquer search. 
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Is there an algorithm that tiles any 2n × 2n courtyard with one missing square in an 
arbitrary location? As an example, below is a 23 × 23 where the missing square is 
marked Δ. Does the location of the missing square matter? 
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The answer is yes.  We will describe and code a recursive Divide-and-Conquer algorithm 
that can tile a courtyard with 2n × 2n squares with one missing square in an arbitrary 
location.   To help you understand how recursive Divide-and-Conquer works, we will 
first describe how it is used in Merge Sort, a popular sorting algorithm. 
 

Merge	
  Sort	
  
 
We can perform sorting using the elegant Divide-and-Conquer Merge Sort.  Here’s how 
Merge Sort works. 
 
Suppose we have a list as shown here that needs to be sorted in ascending order:   
 

a	
   b	
   c	
   d 
 
We divide it into two equal-sized sublists: 
 

a	
   b 
 

c	
   d 
 
Then, we sort the sublists recursively.  At the base case of the recursion, if we see a list of 
size 2, we simply compare the two elements in the list and swap if necessary.  Let’s say 
that a < b, and c > d.  Since we want to sort in ascending order, after the two recursive 
calls return we end up getting: 
 

a	
   b 
 

d	
   c 
 
Now we come back to the first (or topmost) call to sort and our task is to merge the two 
sorted sublists into one sorted list.  We do this using a merge algorithm, which simply 
compares the first two elements of the two sublists, repeatedly.  If a < d, then it first puts 
a into the merged (output) list and effectively removes it from the sublist.  It leaves d 
where it was. It then compares b with d. Let’s say that d is smaller.  Merge puts d into the 
output list next to a.  Next, b and c are compared.  If c is smaller, c is placed next into the 
output list, and finally b is placed.  The output will be:  
 

a	
   d	
   c	
   b 
 
Note that if the number of elements is odd, the subarrays will not be equal in size but 
differ in size by 1. 
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Below is code for Merge Sort. 
 
	
  1.	
   def	
  mergeSort(L):	
  
	
  2.	
   	
  	
  	
  	
  if	
  len(L)	
  ==	
  2:	
  
	
  3.	
   	
  	
  	
  	
  	
  	
  	
  	
  if	
  L[0]	
  <=	
  L[1]:	
  
	
  4.	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  return	
  [L[0],	
  L[1]]	
  
	
  5.	
   	
  	
  	
  	
  	
  	
  	
  	
  else:	
  
	
  6.	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  return	
  [L[1],	
  L[0]]	
  
	
  7.	
   	
  	
  	
  	
  else:	
  
	
  8.	
   	
  	
  	
  	
  	
  	
  	
  	
  middle	
  =	
  len(L)//2	
  
	
  9.	
   	
  	
  	
  	
  	
  	
  	
  	
  left	
  =	
  mergeSort(L[:middle])	
  
10.	
   	
  	
  	
  	
  	
  	
  	
  	
  right	
  =	
  mergeSort(L[middle:])	
  
11.	
   	
  	
  	
  	
  	
  	
  	
  	
  return	
  merge(left,	
  right)	
  
 
Lines 2-6 correspond to the base case where we have a list of two elements and we place 
them in the right order. If the list is longer than two in length, we split the list in two 
(Line 8), and make two recursive calls, one on each sublist (Lines 9-10). We use list 
slicing; L[:middle] returns the part of the list L corresponding to L[0] through 
L[middle–1], and L[middle:] returns the part of the list corresponding to L[middle] to 
L[len(L)–1], so no elements are dropped.  Finally, on Line 11, we call merge on the 
two sorted sublists and return the result. 
 
All that remains is the code for merge. 
 
	
  1.	
   def	
  merge(left,	
  right):	
  
	
  2.	
   	
  	
  	
  	
  result	
  =	
  []	
  
	
  3.	
   	
  	
  	
  	
  i,	
  j	
  =	
  0,	
  0	
  
	
  4.	
   	
  	
  	
  	
  while	
  i	
  <	
  len(left)	
  and	
  j	
  <	
  len(right):	
  
	
  5.	
   	
  	
  	
  	
  	
  	
  	
  	
  if	
  left[i]	
  <	
  right[j]:	
  
	
  6.	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  result.append(left[i])	
  
	
  7.	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  i	
  +=	
  1	
  
	
  8.	
   	
  	
  	
  	
  	
  	
  	
  	
  else:	
  
	
  9.	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  result.append(right[j])	
  
10.	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  j	
  +=	
  1	
  
11.	
   	
  	
  	
  	
  while	
  i	
  <	
  len(left):	
  
12.	
   	
  	
  	
  	
  	
  	
  	
  	
  result.append(left[i])	
  
13.	
   	
  	
  	
  	
  	
  	
  	
  	
  i	
  +=	
  1	
  
14.	
   	
  	
  	
  	
  while	
  j	
  <	
  len(right):	
  
15.	
   	
  	
  	
  	
  	
  	
  	
  	
  result.append(right[j])	
  
16.	
   	
  	
  	
  	
  	
  	
  	
  	
  j	
  +=	
  1	
  
17.	
   	
  	
  	
  	
  return	
  result 
 
Initially, merge creates a new empty list result (Line 2). There are three while loops in 
merge. The first one is the most interesting, which corresponds to the general case when 
the two sublists are both nonempty. In this case, we compare the current first elements of 
each of the sublists (represented by counters i and j), pick the smaller one, and 
increment the counter for the sublist whose element we selected to place in result. The 
first while loop terminates when either of the sublists becomes empty. 

4



 
When one of the sublists is empty, we simply append the remaining elements of the 
nonempty sublist to the result. The second and third while loops correspond to the left 
sublist being nonempty and the right one being nonempty. 
 

Merge Sort Execution and Analysis 
 
Suppose we have this input list for Merge Sort: 
 

inp	
  =	
  [23,	
  3,	
  45,	
  7,	
  6,	
  11,	
  14,	
  12]	
  
	
  

How does the execution proceed? The list is split into two: 
 

[23,	
  3,	
  45,	
  7]	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [6,	
  11,	
  14,	
  12]	
  
	
  

and the left list is sorted first, and the first step is to split it in two: 
 

[23,	
  3]	
  	
  	
  	
  [45,	
  7]	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [6,	
  11,	
  14,	
  12]	
  
	
  

Each of these 2-element lists is sorted in ascending order: 
 

[3,	
  23]	
  	
  	
  	
  [7,	
  45]	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [6,	
  11,	
  14,	
  12]	
  
	
  

The sorted lists of two elements each are merged into a sorted result: 
 

[3,	
  7,	
  23,	
  45]	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [6,	
  11,	
  14,	
  12]	
  
	
  

Next, it looks at the right list and splits it in two: 
 

[3,	
  7,	
  23,	
  45]	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [6,	
  11]	
  	
  	
  	
  [14,	
  12]	
  
	
  

Each of the right sublists is sorted: 
 

[3,	
  7,	
  23,	
  45]	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [6,	
  11]	
  	
  	
  	
  [12,	
  14]	
  
	
  

The sorted sublists of two elements each are merged into a sorted result: 
 

[3,	
  7,	
  23,	
  45]	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [6,	
  11,	
  12,	
  14]	
  
	
  

And finally, the two sorted sublists of 4 elements each are merged: 
 

[3,	
  6,	
  7,	
  11,	
  12,	
  14,	
  23,	
  45]	
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Exercises 
 
Exercise 1: You are given a 2n × 2n courtyard with 4 tiles missing. There are (at least) 
two cases where this is possible: 
 

1. When the four missing tiles are in four different quadrants. 
2. When any three of the four tiles are such that you can tile them using a tromino. 

 
Write a procedure that will determine if you can tile the courtyard or not using 
recursiveTile.  The procedure can just return True or False, given n, and a four-
element list of missing square coordinates. 
 
Puzzle Exercise 2: Suppose you have a two-dimensional list or matrix T as shown below, 
where all rows and all columns are sorted. Devise and implement a binary search 
algorithm that works for lists such as T.   You can assume that all elements are unique as 
in the example below. 
 

T	
  =	
  [[	
  1,	
  	
  4,	
  	
  7,	
  11,	
  15],	
  
	
  	
  	
  	
  	
  [	
  2,	
  	
  5,	
  	
  8,	
  12,	
  19],	
  
	
  	
  	
  	
  	
  [	
  3,	
  	
  6,	
  	
  9,	
  16,	
  22],	
  
	
  	
  	
  	
  	
  [10,	
  13,	
  14,	
  17,	
  24],	
  
	
  	
  	
  	
  	
  [18,	
  21,	
  23,	
  26,	
  30]]	
  

          
Here’s the strategy you should use: Guess that the value is at position i,	
  j and think of 
what it means if the value is less than T[i][j], or if the value is greater than T[i][j]. 
For example, if we are searching for 21 and we compare with T[2][2]	
  =	
  9, we know 
that 21 cannot be in the T[<=	
  2][<=	
  2] upper left quadrant because all values in that 
quadrant are less than 9.  However, 21 could be in any of the three other quadrants, i.e., 
the bottom left T[>	
  2][<=	
  2] quadrant, which it is in this example, or the top right T[<=	
  
2][>	
  2] or bottom right T[>	
  2][>	
  2] quadrants in different examples.    
 
You can always eliminate one of the four quadrants in your two-dimensional binary 
search. You will have to make recursive calls on the other three quadrants. 
 
Puzzle Exercise 3: It is a natural question to ask as to whether the two-dimensional 
binary search algorithm of Exercise 2 is the best possible algorithm. Let’s look at T again: 
 

T	
  =	
  [[	
  1,	
  	
  4,	
  	
  7,	
  11,	
  15],	
  
	
  	
  	
  	
  	
  [	
  2,	
  	
  5,	
  	
  8,	
  12,	
  19],	
  
	
  	
  	
  	
  	
  [	
  3,	
  	
  6,	
  	
  9,	
  16,	
  22],	
  
	
  	
  	
  	
  	
  [10,	
  13,	
  14,	
  17,	
  24],	
  
	
  	
  	
  	
  	
  [18,	
  21,	
  23,	
  26,	
  30]]	
  

 
Suppose we want to find out if element 13 exists in the two-dimensional list or matrix T. 
Here’s the strategy you should use: Start with the top right element. If the element is 
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smaller than the element you are looking for, you can eliminate the entire first row and 
move one position down. If the element is larger, you can eliminate the entire last column 
and move one position left. Obviously, if the element is the top right element, you can 
stop. 
 
The neat thing about the above strategy is that it either eliminates a row or a column in 
each step. So you will find the element you are searching for in at most 2n steps for a n × 
n matrix, or you will determine that it does not exist. Code the above algorithm by 
making recursive calls on the appropriate submatrix (with one less row or one less 
column). In our example above, we will move from 15 to 11 to 12 to 16 to 9 to 14 to 13. 
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