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Legend: C - extra credit (not required) 

N.B. For all problems explain your reasoning! 

Problem Set 7 No explanation X No credit = No joy 

When making plots, be sure to label all axes, provide numerical tick 
marks, and specify the units of measurement. 

Collaboration is encouraged so long as everyone understands and 
works on all problems. Please indicate the names of your collaborators. 

These problems are designed to get you thinking about quantitative approaches to issues in hearing. 
In problem 1 you will determine a lower bound on the size of an acoustic "particle" and estimate 
the number of collisions an air molecule experiences per second. In problem 2 you will analyze some 
of George von Bk6sy's (Nobel Prize, 1961) classic measurements of the traveling wave. In problem 
3 you will explore the relation between tuning curves (measured versus frequency at fixed position) 
and traveling waves (measured versus position at fixed frequency) and show how measurements of 
one can be used to deduce features of the other. In problem 4 (optional) you will be challenged to 
derive and solve the equations for a simple cochlear model. In problems 5 & 6 you will compare 
your model responses to actual measurements of basilar-membrane motion made in the squirrel 
monkey. Does the simple model agree with experiment? In problem 7 you will investigate a classic 
model for the physiological basis of musical consonance based on the notion of the "critical band." 

Problem 1: Molecules and Sound Particles. In their chapter on the physics of sound in 
The Speech Chain, Denes and Pinson confuse the molecules in air (i.e., the molecules of nitrogren, 
oxygen, etc) with the much larger "fluid particles" used to derive the equations of acoustics. 

1. The average distance a molecule in air travels before colliding with another molecule is known 
as its mean free path. The mean free path sets a conservative lower bound on the size of 
an acoustic particle. Estimate the mean free path for a typical molecule in air at room 
temperature. [Hint: Estimate the mean free path as the distance the molecule needs to travel 
before it sweeps out a volume equal to the average empty volume surrounding each molecule 
of air. Use the ideal gas law and a plausible estimate of molecular dimensions.] 

2. At what sound frequency would the wavelength of sound become comparable to the mean free 
path? Does sound propagate in air at these frequencies? Explain why or why not. 

3. Determine the typical number of air molecules in a cube one mean free path on a side. 

4. Estimate the typical (root-mean-square) velocity of the molecules in air at room temperature. 
[Hint: Use thermodynamic equipartition of energy which says that the translational kinetic 
energy of an air molecule moving in three dimensions is typically kT.] Use your answer to 
determine the typical number of collisons a molecule of air experiences during one second. 

Problem 2: Bkesy's Traveling Waves. This problem is based on the measurements of Bekesy 
reproduced in the course notes (Fig. 11-58 of B6k6sy 1960, or Fig. 7.14 of Yost 1994, or Fig. 3.8 of 
Pickles, 1988). 

1. According to Bkesy's measurements, what is the instantaneousspeed of the traveling wave 
that results from a 100 Hz stimulus as it passes a point 30 mm from the human stapes? What 
is the speed of a 200 Hz stimulus at the same point? Compare your results with the speed of 
sound in water. 
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2. The waves Bekesy describes are very different from plane waves. Explain why, illustrating 
your remarks by using B6k6sy's measurements to deduce the time waveform of the partition 
displacement that results from a stimulus consisting of two pure tones of equal amplitude with 
frequencies of 100 Hz and 200 Hz. (Assume, following B6k6sy's procedure, that the stimulus 
is applied directly to the stapes; filtering by the middle ear can then be neglected.) Plot a 
snapshot of the time-domain waveform as it would appear (1) at the stapes, (2) at 28 mm 
from the stapes, and (3) at 30 mm from the stapes. 

Problem 3: Width of the Excitation Pattern. In this problem you will estimate the number 
of inner hair cells stimulated by a low-level pure tone. Figure 1 below shows a neural tuning curve 
measured in the cat. Imagine presenting a threshold-level pure tone at the neuron's characteristic 
frequency. The tone sets up a traveling wave whose envelope-and the corresponding pattern of 
hair-cell excitation-has a certain width, Ax. Count as "stimulated" any hair cell whose stereocil­
iary motion is at least 1/10 as large as the motion at the characteristic place. 1 Derive a relation 
between the bandwidth, Af, of the tuning curve and the spatial width, Ax, of the excitation pat­
tern. For simplicity, assume that the relation between ear-canal sound pressure and stereociliary 
deflection is linear and that the middle-ear transfer function does not significantly affect the shape 
of the tip of the tuning curve. Justify these assumptions. Explain your procedure for estimating 
the spatial "spread of excitation" from the neural tuning curve (Hint: Use local scaling symmetry). 
Potentially useful facts: (1) in this region the cat cochlear position-frequency map is approximately 
exponential: 

-fCF(X) fmaxe /, 

where f ax 57 kHz and I 5 mm; (2) the width of a hair cell is roughly 10 pm. What fraction m 

of the total number of inner hair cells is stimulated by a threshold-level pure tone? Comment on 
the canonical characterization of neural tuning as "sharp." 

C Problem 4: Transmission-line Model of the Cochlea. In this problem you will analyze the 
simple, one-dimensional model of cochlear mechanics illustrated in Fig. 2. Represent the "unrolled" 
I I, I 1I I : ii - I: 1 : , w . 1 11 -i..z,1.-,.11,,.1 F ~.8r t Ad + 

scala vestibuli and scala tympani, separated by an elastic membrane, representing the cochlear 
partition. Assume that the wavelength of the traveling wave is long compared to the height of the 
scalae. The pressures in the two scalae are then approximately uniform in any cross section and 
depend only on the longitudinal distance from the stapes, x. 

1. Assume that fluid viscosity is negligible and use Newton's 2nd law to derive an expression 
between the fluid pressure, Pv, and the longitudinal fluid velocity, uv, in the scala vestibuli. 

In particular, show that 

a Pxat (1) 

where p is the density of the fluid. (Hint: Consider the forces on the fluid element in a 
cross sectional slice through the scala vestibuli of length Ax.) Derive the analogous equation 
relating Pt and ut in the scala tympani. Assume that both uv and ut are positive when the 

fluid particle flows in the direction of increasing x (i.e., towards the helicotrema). 

2. Assume that the fluid is incompressible and derive an expression between u, and the membrane 
velocity using conservation of mass. Assume that the membrane displacement, d(x,t), is 

1Extra credit: Justify this criterion based on your knowledge of the difference between rate and synchrony measures of neural 
threshold. 
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Figure 1: Neural tuning measured in the cat by Liberman and Kiang (1978, Fig. 1; see also Fig. 4.3 of Pickles 
(1988)). 

orthogonal to its surface and let d be positive when the membrane is displaced downwards 
(i.e., into the scala tympani). In particular, show that 

Sauv =_badb (2) 

where S is the constant cross-sectional area of each scala and b is the width of the membrane. 
(Hint: Consider fluid flow into and out of the cross-sectional slice of length Ax.) Likewise, 
show that 

S-at = btat . (3)&x 

3. Consider now the motion of the cochlear partition, which moves in response to the pressure 
difference across its surface. Represent a small section Ax of the partition as a simple harmonic 
oscillator with an effective mass pAx, damping yAx, and stiffness nAx. (Thus, p, 7, and 
are the mass, damping, and stiffness per unit length.) Derive the equation of motion for this 
section using Newton's 2nd law. In particular, show that 

a2d ad 
b(p - t) = t-2 + + d . (4) 

4. Show that the quantity S(vv + vt) is constant, independent of position. Explain why this 
constant must be zero. Use the results to show that Pv + Pt is also constant, independent of 
position. 

5. Simplify the equations by introducing the variables p Pv - Pt and u S(uv - ut)/2. Assume 
that p and u have sinusoidal time dependence and denote their Fourier transforms by upper­
case letters (so that, e.g., p(x, t) = Re {P(x,w)eiwt), where w is 27r times the frequency of 
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Scala vestibuli pv(x,t)=pressure Sv=area 
Stapes 

uv(x,t)=fluid particle velocity 

d(x,t)=partition displacement 

Cochlear partition
Round pt(x,t) (of width, b)
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Figure 2: Schematic diagram. 

stimulation). Show that one obtains a pair of first-order ordinary differential equations for P 
and U: 

dP 
-= -ZU; (5)
dz 
dU 

= -YP, (6)
dz 

where 
Z(x, w) _ iwM , (7) 

and 

(8)Y(x, w) 
iw(L() + R(x) + l/iwC(x) ( 

What are the values of M, L, R, and C in terms of the mechanical properties of the cochlea 

(e.g, p, b, , etc)? 

Equations (5) and (6) have the same form as the equations describing an electrical transmission 
0 l The lnnr-Xwkrvp mnrll1; 1, ; rrln 7 n rl ehF tI-rlm-ttnr. V nrr lft loncrf

is thus often referred to as a one-dimensional transmission-linemodel. 

6. Decouple the transmission-line equations to obtain a wave equation for P(x, w) at frequency 
w: 

d2 P 1
d P+ P=PO (9)2dx2 

[Hint: Differentiate Eq. (5) for dP/ldx and substitute Eq. (6) for dU/dx into the result.] What 
is A(x, w) in terms of Z and Y? 

7. Solve the wave equation for P(x, w) [Eq. (9)] assuming that Z and Y are constant, independent 
of position. Discuss the character of the solution Peiwt when A 21rA(x) is real. Provide a 
physical interpretation of A. How is the solution modified if A has an imaginary part? 

8. The mechanical properties of the cochlea (e.g., the mass and stiffness of the partition) vary with 
position. But if they change gradually enough, the cochlea might be expected to act locally 
much as a uniform transmission line. This assumption allows one to obtain an approximate 
solution for the forward-traveling pressure wave using the so-called "WKB approximation." 2 

Here, you will show that when the mechanical properties of the medium vary with position, 

2 "WKB" stands for Wentzel, Kramers, and Brillion, who applied this approximation technique to Schr6dinger's equation 
and the problem of a wave packet moving in a potential. 
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the amplitude of the wave changes even when A is entirely real. First, justify assuming a trial 
solution of the form 

P(x) A(x)e-if dx'/(') , (10) 

where A(x) is some function to be determined (note that the dependence on w has been 

omitted for clarity). Substitute this expression into the wave equation and assume that the 

second spatial derivative of A(x) is "small" and can be neglected. Solve the resulting equation 

and determine the function A(x). Discuss the qualitative differences between this solution for 

P(x, w) and the result you obtained assuming that A= constant. 

9. At its basal end, the cochlear "transmission line" is driven by the motion of the stapes. To 

compare model predictions with experiment we need to normalize basilar-membrane (BM) 

velocity by the velocity of the stapes and thereby obtain a "transfer function," 

BM velocity 
stapes velocity' (11) 

that depends only on the mechanics of the cochlea. Assume continuity of volume velocity and 

obtain an expression for the ratio, T, of membrane velocity at point x to the velocity of the 

stapes. Your expression should involve b, Z, Y, P, and the area of the stapes footplate (or 

oval window), Sow. 

10. Based on the forms for Z and Y obtained above (i.e., Eqs. 7 and 8) show that A has the form 

I (1 - p2 i) 2 (12) 

where 3(x,w) -W/r(X), N - (1/4)v/M L, Wr(X) 1 /- is 2r times the "resonant" 
frequency of a section of membrane, and 6 -=WrRC is the dimensionless damping parameter. 

Comment on the significance of the fact that A(x, w) is a function of the ratio /wr(X). 

Problem 5: Comparing Theory and Experiment. In this problem you will compare the one-
dimensional transmission-line model with actual measurements of basilar-mmhrane otion To 

solve for the model response, one substitutes the equation for the wavelength of the traveling wave 

27rA(x, w) [from Eq. 12 from Problem 4, part 10] into the expression you obtained for the basilar-

membrane transfer function T(x, w) [from Problem 4, part 9], uses the WKB approximation to solve 

for the pressure P(x, w) [from Problem 4, part 8], and evaluates the necessary integrals. When the 
smoke clears, the transfer function, T, becomes3 

T(x, w) Tooi/(x,w)[ Wmax 11/2 e-i4N{sin- [,(x,w) -i6/2] -sin-' [P(0,w)-i6/2]} 

WrT( [1 - 0 2 (X,W) i6(, )]3/ 4 (13) 

where To is a real, dimensionless constant and the dimensionless constants N and 6 (defined along 

with (x, w) in Problem 4, part 10) have been assumed independent of position. 

1. Rhode's (1971) measurements of the amplitude and phase of T(xo, w) in the squirrel monkey 

(made as a function of angular frequency w at some point x0o) are shown in Fig. 3. Compute 

T(xo, w) from Eq. (13)-using, for example, Matlab or some similar program-and vary the 

free parameters (To, xo, N, and 6) to try to obtain a decent fit to the data.4 A decent fit should 
3 Much extra credit: Derive Eq. (13) for T(x,w). 
4 Compute your model responses over the range 1-10 kHz using at least 256 points/decade resolution. Plot your amplitude 

results on a logarithmic frequency scale and your phase results on a linear frequency scale, as in Fig. 3. You may find the 
Matlab functions angle() and unwrap() helpful for computing your model phase responses. (When trying to match the phase 
data, the function unwrap() will help you remove discontinuities from the model phase response by adding integer multiples 
of 2r when appropriate.) And when converting your magnitudes to dB, be careful to take the common and not the natural 
logarithm! 
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Rhode's Measurements of T 
(Animal 69-473) 

Amplitude Phase 
f [kHz] ITI [dB] f [kHz] LT [rad] 

1.0 -6.0 1.0 -0.6 
1.5 -2.9 1.5 -2.0 
2.0 -1.2 2.0 -3.4 
2.5 4.2 2.5 -4.5 
3.0 3.0 3.0 -6.3 
3.5 9.2 3.5 -7.1 
4.0 5.7 4.0 -8.5 
4.5 10.7 4.5 -10.0 
5.0 12.3 5.0 -11.1 
5.5 15.6 5.5 -13.0 
6.1 19.8 6.0 -14.2 
6.4 21.6 6.2 -14.9 
6.7 23.6 6.4 -15.6 
7.0 25.6 6.6 -16.6 
7.2 25.4 6.8 -17.3 
7.4 27.4 7.0 -18.4 
7.6 27.2 7.2 -19.1 
7.8 29.3 7.4 -19.6 
8.0 24.1 7.6 -21.5 
8.2 19.4 7.8 -22.9 
8.3 15.2 8.0 -23.9 
8.4 8.5 8.2 -24.8 
8.7 -0.8 8.4 -25.3 
8.9 -10.2 8.6 -26.1 
9.0 -13.1 8.8 -27.5 
9.3 -21.2 9.0 -28.0 
9.5 -28.0 9.3 -27.8 
10.0 -24.9 10.0 -28.5 

Table 1: Data for the measurements shown in Fig. 3. Note that the frequencies at which the amplitude and 
phase are measured are not always the same. 

do a reasonable job reproducing both the amplitude and the phase simultaneously. (Hint: Try 
N - 3 and 3. 1/10 as reasonable first guesses for N and 3.) List the parameter values of your 
fit and plot the resulting function T together with the data. Note that measurements in the 
squirrel monkey suggest that 

Wr(X ) = Wmaxe-xl (14) 

where Wma/27r 50 kHz and 1 5 mm. For your reference the values of the data points are 
listed in Table 1. 

2. Based on your experience varying the parameters values, explain the physical significance of 
the parameters To, x0, N, and 3. What features of T depend on the value of each? How 
accurately are the parameter values determined by the data (i.e., how sensitively does the fit 
depend on the value of each)? Assess the overall quality of your fit. What features of the 
model response are similar to the data? What features are not? 

1O) 3. Using your best-fit parameters, plot the real and imaginary parts of A(x, w) [i.e., 27rA(x, w) 
from Eq. 12 in Problem 4, part 10]. Make two plots: (1) the first at x0 as a function of f and 
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Extrapolated 
Measurements of T 

(Animal 73-104) 
f [kHz] ITj [dB] LT [rad] 

2.0 1.7 -2.8 
4.6 15.4 -10.6 
5.4 19.6 -12.9 
6.0 24.6 -15.0 
6.3 29.5 -16.5 
6.4 33.4 -17.2 
6.6 40.3 -18.3 
6.8 41.0 -19.5 
7.0 50.7 -20.8 
7.1 61.5 -22.2 
7.4 80.9 -25.8 
7.6 80.3 -29.3 
7.8 51.3 -34.8 
8.1 5.6 -34.0 

Table 2: Data for the measurements shown in Fig. 4. 

(2) the second at the best frequency (i.e., approximately 7.8 kHz) as a function of x. Discuss 
how the real and imaginary parts of A(x, w) determine the behavior of the wave (see part 7 of 
Problem 4). 

Problem 6: Theory and Experiment, Revisited. Cochlear mechanics is now known to be 
extremely labile. Healthy preparations show nonlinear responses at all but the lowest (and highest) 
sound levels. Rhode's (1971) measurements were made on what is now thought to be a compromised 
preparation at sound levels of 70-90 dB SPL. Figure 4 shows a more modern estimate of T obtained 
bv eitr nolthin Rholde's lter ra mlrementts to soilnd-levels near threqhold (Zweif 1991). 

1. Compute T(x, w) as in Problem 5 and attempt to obtain an approximate fit to the data by 
varying the free parameters (i.e., To, x0, N, and ). (Hint: Use your earlier experience to 
obtain initial estimates.) List the parameter values of your fit and plot the resulting function 
T together with the data. For your reference the values of the data points are listed in Table 2. 

2. Assess the overall quality of your fit. What features of the data are captured by the model 
response? What features are not? A number of simplifying assumptions were made in deriving 
the model. Which assumptions do you believe to be the most significant (i.e., most likely 
to underlie any discrepancy between the model predictions and the data)? Explain your 
reasoning. 

Problem 7: A Model for the Physiological Basis of Harmony. Certain musical intervals 
are called consonantbecause listeners consider pitches separated by these intervals to "sound good" 
when played together, e.g., on a piano. The intervals traditionally considered consonant are listed 
in Table 3. Note how the relative frequencies of the tones in a consonant interval are given by ratios 
of small integers. In this problem you will investigate a model (originally due to Helmholtz and 
extended and modernized by Plomp) for the physiological basis for this striking "numerological" 
fact, a fact that underlies the rules of harmony governing much of Western music. 
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