6.262: Discrete Stochastic Processes 2/23/11

Lecture 7: Finite-state Markov Chains; the matrix
approach

Outline:

e T he transition matrix and its powers
e Convergence of [P"] > 0

e Ergodic Markov chains

e Ergodic unichains

e Other finite-state Markov chains



Recall that the state X,, of a Markov chain at step
n depends on the past only through the previous
step, i1.e.,

Pr{Xn=j|Xn-1=1%4Xpn—2,..., X0} = B}

T his implies that the joint probability of X, X4,..., Xn
can be expressed as a function of py,(zp) and of the
transition probabilities, {F;;; 1 <1i,57 < M}.

The transition probabilities are conveniently repre-
sented in terms of a transition matrix,

P11 Pip -+ Pie
P>y Py -+ Pog
= | A

Pe1 Pe2 -+ Deo



If we condition only on the state at time 0O, and
define P/; = Pr{X, =j| Xog =1}, then, starting with
n = 2, we have

P: = Y Pr{X,=j|X1 =k Xo =1} Pr{X; = k|Xo = i}
k

= Y PPy,
k

Note that ), P, Pi; 1s the ¢, 5 term of the product of
the transition matrix [P] with itself, which is [P2].

Thus the 2-step transition probabilities {P%; 1 <4, <
M} are simply the elements of [P2].



Iterating to find P for successively larger n,
Pz'? — Z Pri{Xn=j|Xn—1=k} Pr{X,,_1=k|Xo = i}
1
ZP” Py

Thus PZ-"; Is the 7,5 element of [P"], i.e., the matrix
[P] to the n'"* power.

Computational hack: To find high powers of [P],
calculate [P2],[P?%],[P8], etc. and then multiply the
required powers of 2.

Chapman-Kolmogorov egns: Since [P™1"] = [P™][P"],

+n __
Pz?? n_Zsz'ZLPI?j



Convergence of [P"] > 0

An important question for Markov chains, and one
that effects almost everything else, is whether the
effect of the initial state dies out with time, i.e.,
whether Ilim, -~ P,Lf'} = m; for all + and j, where 7; is a
function only of ;7 and not of : or n.

If this limit exists, we can multiply both sides by Pj;
and sum over j, getting

i n _— . .
im_ Z PliPjj, = ijpjk
J J

The left side is limp—oo PZ.Z"H = m. [ hus if this limit

exists, the vector © must satisfy mp = >, 7P, for
each k.



In matrix terms, does lim,_,-[P"] exist, and is each
row is the same vector, 77 If so, then 7 must satisfy
the matrix equation 7© = 7[P].

Def: A probability vector is a vector @ = (71,...,7m\m)
for which each =; is nonnegative and >, 7, = 1. A

probability vector 7 is called a steady-state vector
for the transition matrix [P] if 7 = 7[P].

One would now think that we have reduced the
question of whether lim,_-[P"] exists to the study
of the steady-state equation 7 = 7[P].

Surprisingly, studying lim,_—-[P"] is relatively sim-
ple, whereas understanding the set of solutions to

—

7 = 7[P] is more complicated. We will find that
7© = w[P] always has one (and often more) prob-
ability vector solutions, but this does’t imply that

limp—oo[P"] exists.



Ergodic Markov chains

Another way to express that lim, - [P"] converges
to a matrix of equal rows 7 is the statement that,

for each column j, limp—-so P{; = m; for each .

The following theorem demonstrates this type of
convergence, and some stronger results, for ergodic
Markov chains.

Thm: Let an ergodic finite-state Markov chain have
transition matrix [P]. Then for each j, max; PZ?} IS
nonincreasing in n, minisz'} IS nondecreasing In n,
and

lim maxPn = |im mmP'”’ = 7; >0
n—r 00 n—oo 4

with exponentlal convergence in n



The key to this theorem is the pair of statements
that max; PZ?} IS nonincreasing in n and miniPZf'} IS non-
decreasing in n.

It turns out, with an almost trivial proof, that these
statements are true for all Markov chains, so we
first establish this as a lemma.

Lemma 1: Let [P] be the transition matrix of an
arbitrary finite-state Markov chain. Then for each
7, Max; PZ?;. IS nonincreasing in n and minz-PZ?} IS non-
decreasing in n.

Example 1: Consider the 2-state chain with P, =
P>; = 1. Then P{, alternates between 1 and O for
increasing n and P35, alternates between 0 and 1.
The maximum of P, and P35 is 1, which is nonin-
creasing, and the minimum is O.




Lemma 1: Let [P] be the transition matrix of an
arbitrary finite-state Markov chain. Then for each
7, mMax; PZT'} IS nonincreasing in n and minz-Pz?} IS non-
decreasing in n.

Example 2: Consider the 2-state ergodic chain with

— — — 3 3 9 i
Pio = Py = 3/4. Then Pf’Q = 2> 8 167" for increas-

: _ 15 7
ing n and P}5 =7, 3, 155 -

Each sequence oscillates while approaching 1/2, but

max(P},, P3,) = 3, 2, i%,... which is decreasing to-
ward 1/2. Similarly the minimum approaches 1/2
_ 13 7

1 n n
from below, min(P{,, P3,) = 7, 5, 15 - -



Lemma 1: Let [P] be the transition matrix of an
arbitrary finite-state Markov chain. Then for each
7, max; P,L?} IS nonincreasing in n and minz-szf; IS non-
decreasing in n.

Proof: For any states 7,5 and any step n,

1
Pt = N PPy
k

¢
—_ n
= mgax By;
Since this holds for all states i, it holds for the max-
imizing i, SO max; P;}"'l < maxy Pé'}' Replacing maxima
with minima and reversing inequalities,

< ) Py maxPy
k

. n—l—l . n
miln Pz-j > mﬁm Peg'-
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Before completing the proof of the theorem, we
specialize the theorem to the case where [P] > 0,
I.e., where F;; >0 for all ¢, .

Lemma 2: Let [P] > 0 be the transition matrix of
a finite-state Markov chain and let o« = min; ; P;;.
Then for all states 5 and all n > 1:

A

n+1 . n+1
miax Pij miln P,L.j

(méax szj = mgin P[}-) (1 —-2a).

(mﬁax Pé’"”j — mgin Pé"’j) < (1-2a)".

lim max P;’
n—oo g J

Note that Lemma 1 implies that Iim,;— manPZ}
must exist since this is the limit of a decreasing
non-negative sequence. This lemma then shows
the maxima and minima both have the same limit.

lim minP;: > 0.
n—o0 g J
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Proof of lemma 2: We tighten the proof of lemma
1 slightly to make use of the positive elements. For
a given n and j, let /., be a state that minimizes
PZ?} over i. Then

1
Pt = N PP
k

IA

Z Pii mﬁang} + Py min P{‘j
k?ﬁgmin
— n i n
= (1—PFy_.) meaxPej + Pitin mn Poj

meax Pyi — Pig .o (meax Py; mgm P€]>

IA

n n i n
meax Py — a (mgax Py — mgln P€j>

n+1 n N i n
miaxP,L.j < méangj a<m£a><P€j mém P@)
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We have shown that

n+1 n N A n
miax S TS meax Py — o <m€ax Py; mgln P@) :

Interchanging max with min and < with >, we get

i~ pnt1 YY) 7 YY)
min Btz mgln Pyi + o (mﬁangj — meln ng) :

Subtracting these equations,
n—+1 . n—+1 n : n
miaxPZ-j — min Pt < (meaxPej — min P€j> (1-2w).
Since ming ng >« and MmaxXy ng <1-—ac¢,
mgax Py — mein P <1-2«
Iterating on n,

mﬁax Pg} — mgin Pg’“j < (1-2a)"
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Finally, we can get back to arbitrary finite-state er-
godic chains with transition matrix [P].

We have shown that [P"] is positive for h = (M —
1)2 4+ 1, so we can apply Lemma 2 to [P"], with
a = miny; Ph

We don’t much care about the value of «, but only
that it is positive. Then

- hm _— i hm _
ﬂl@oomgaxPej _melnng =7y >0

To show that the limit applies for all n» rather than
than just multiples of h, we use Lemma 1, showing
that max, P[Lj IS non-increasing in n, so it must have

the same limit as mangg;.m. The same argument
applies for the minima. QED
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Ergodic unichains

We have now seen that for ergodic chains, lim,_—~ P,g}.

—

T for all : where 7 is a probability vector. The re-
sulting vector 7 iIs also a steady-state vector and is
the unique probability vector solution to 7#[P] = 7
(see Thm 3.3.1).

It is fairly easy to extend this result to a more gen-
eral class called ergodic unichains. These are chains
containing a single ergodic class along with an ar-
bitrary set of transient states.

If a state is in a singleton transient class, then there
IS a fixed probability, say «, of leaving the class at
each step, and the probability of remaining in the
class for more than n stepsis (1 — a)".
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Th probability of remaining in an arbitrary set of
transient states also decays to 0 exponentially with
n. Essentially each transient state has at least one
path to a recurrent state, and one of those paths
must be taken eventually.

For an ergodic unichain, the ergodic class is even-
tually entered, and then steady state in that class
IS reached.

For every state ; then,
lim maxP"’“ = lim min P” = T

n—oo n—oo  ; J

The difference here is that T = O for each transient
state and T > O for each recurrent state.
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Other finite-state Markov chains

First consider a Markov chain with several ergodic
classes, Cq,...,Cn- The classes don’t communicate
and should be considered separately.

If one insists on analyzing the entire chain, [P] will
have m independent steady state vectors, one nonzero
on each class. [P"] will then converge, but the rows
will not all be the same.

There will be m sets of rows, one for each class,
and the row for class k£ will be nonzero only for the
elements of that class.

17



Next consider a periodic recurrent chain of period
d. This can be separated into d subclasses with a
cyclic rotation between them.

If we look at [P9], we see that each subclass be-
comes an ergodic class, say Cq,...,Cq. Thus lim,_oo[P™9]
exists.

A steady state is reached within each subclass, but
the chain rotates from one subclass to another.
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