
6.262: Discrete Stochastic Processes 2/23/11 

Lecture 7: Finite-state Markov Chains; the matrix 

approach 

Outline: 

•	 The transition matrix and its powers 

•	 Convergence of [Pn] > 0 

•	 Ergodic Markov chains 

•	 Ergodic unichains


• Other finite-state Markov chains
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Recall that the state Xn of a Markov chain at step 
n depends on the past only through the previous 
step, i.e., 

Pr{Xn = j|Xn−1 = i,Xn−2, . . . , X0} = Pij 

This implies that the joint probability of X0, X1, . . . , Xn 

can be expressed as a function of pX (x0) and of the 
0

transition probabilities, {Pij; 1 ≤ i, j ≤ M}. 

The transition probabilities are conveniently repre­
sented in terms of a transition matrix, 

⎡ ⎢ P11 P12 · · · P16
⎤

[P ] =


⎢ ⎥⎢⎢ P21 P22 · · · P26⎢ · · · · · · ⎢⎢ · · · · · · ⎢



⎥⎥⎥
⎣ · · · · · · 

⎥
P61 P62 · · 

⎥



· P66 

⎥⎥⎦
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If we condition only on the state at time 0, and 

define  Pn = Pr{Xn = j  X = i , then, starting with ij | 0 }
n = 2, we have � 2Pij = Pr  j

k 

{X2 = |X1 = k,X0 = i} Pr{X1 = k|X0 = i}� 
= PikPkj


k

 

Note that k PikPkj is the i, j term of the product of 

the transition

�
 matrix [P ] with itself, which is [P 2]. 

Thus the 2-step transition probabilities { 2P ; 1 ≤ i, j ij ≤
M} are simply the elements of [P 2]. 

3




Iterating to find Pn for successively larger n, ij

 
n P 
 =ij  

�
Pr{Xn =j|Xn 1=k} Pr{Xn 1=k|X0 = − − i

k


}

= −

 

� 
n 1P Pik
 kj 

k


Thus Pn is the i, j element of [Pn], i.e., the matrix ij

[  ] to the th P n power. 

Computational hack: To find high powers of [P ], 
calculate [P 2], [P 4], [P 8], etc. and then multiply the 
required powers of 2. 

Chapman-Kolmogorov eqns: Since [Pm+n] = [Pm][Pn], � m+n mP = n P Pij k ik kj 
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Convergence of [Pn] > 0


An important question for Markov chains, and one 
that effects almost everything else, is whether the 
effect of the initial state dies out with time, i.e., 
whether limn  Pn = πj for all  →∞ i and j, where πj is a ij
function only of j and not of i or n. 

If this limit exists, we can multiply both sides by Pjk 
and sum over j, getting 

 
lim 

 

�
n P = 

n→∞ ijPjk 
j 

� 
πjPjk 

j 

+1 The left side is lim n
n→∞ P = πk. Thus if this limit ik  

exists, the vector �π must satisfy πk = 
�

j πjPjk for 
each k. 
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In matrix terms, does limn and →∞[Pn] exist, is each 
row is the same vector, �π? If so, then �π must satisfy 
the matrix equation �π = �π[P ]. 

Def: A probability vector is a vector �π = (π1, . . . , πM) 
 

for which each πi is nonnegative and i πi = 1. A 
probability vector �π is called a steady-state

�
 vector 

for the transition matrix [P ] if �π = �π[P ]. 

One would now think that we have reduced the 
question of whether limn→∞[Pn] exists to the study 
of the steady-state equation �π = �π[P ]. 

Surprisingly, studying limn→∞[Pn] is relatively sim­
ple, whereas understanding the set of solutions to 
�π = �π[P ] is more complicated. We will find that 
�π = �π[P ] always has one (and often more) prob­
ability vector solutions, but this does’t imply that 
limn→∞[Pn] exists. 
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Ergodic Markov chains


Another way to express that limn→∞[Pn] converges 
to a matrix of equal rows �π is the statement that, 
for each column j, limn→∞ Pn = πij j for each i. 

The following theorem demonstrates this type of 
convergence, and some stronger results, for ergodic 
Markov chains. 

Thm: Let an ergodic finite-state Markov chain have 
transition matrix [P ]. Then for each j, maxi P

n is ij
nonincreasing in , min n n i P is nondecreasing in n, ij
and 

. 
lim   max nP = lim min n P = 0ij ij  πj >  
n→∞ i n→∞ i 

with exponential convergence in n 
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The key to this theorem is the pair of statements 
that maxi P

n is nonincreasing in n and minij i P
n is non-ij

decreasing in n. 

It turns out, with an almost trivial proof, that these 
statements are true for all Markov chains, so we 
first establish this as a lemma. 

Lemma 1: Let [P ] be the transition matrix of an 
arbitrary finite-state Markov chain. Then for each 
j, max  

i P
n is nonincreasing in n and mini P

n is non-ij ij
decreasing in n. 

Example 1: Consider the 2-state chain with P12 = 
P21 = 1. Then Pn alternates between 1 and 0 for 12

increasing n and Pn alternates between 0 and 1.
22 
The maximum of Pn and Pn is 1, which is nonin­12 22 
creasing, and the minimum is 0. 

8




Lemma 1: Let [P ] be the transition matrix of an 

arbitrary finite-state Markov chain. Then for each 

j, max   
i P

n is nonincreasing in n and mini P
n is non-ij ij

decreasing in n. 

Example 2: Consider the 2-state ergodic chain with


    n  3  3 P12 =
9P21 = 3/4. Then P = , , , . . . for increas­12 4 8 16

n 1 5 ing n and  7P = , , , . . ..22 4 8 16

Each sequence oscillates while approaching 1/2, but


max(  Pn ) = 3 , P n  , 5 , 9 , . . . which is decreasing to­12 22 4 8 16
ward 1/2. Similarly the minimum approaches 1/2 

  min( n  n ) = 1  3 from below, P , 7 , P , , . . . 12 22 4 8 16
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Lemma 1: Let [P ] be the transition matrix of an 
arbitrary finite-state Markov chain. Then for each 

 n j, maxi P is nonincreasing in n and min Pn is non-ij i ij
decreasing in n. 

Proof: For any states i, j and any step n, 
 n+1 = 

�
n P PikPij kj 

 

�k  
≤ Pik max nP�j

�
k 

= max n P�j
� 

Since this holds for all states i, it holds for the max­
imizing i, so max n+1 

i P ≤ max� P
n. Replacing maxima ij �j

with minima and reversing inequalities, 

min n+1 Pij ≥ min nP . �ji � 
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Before completing the proof of the theorem, we 
specialize the theorem to the case where [P ] > 0, 
i.e., where Pij > 0 for all i, j. 

Lemma 2: Let [P ] > 0 be the transition matrix of 
a finite-state Markov chain and let α = mini,j Pij. 
Then for all states j and all n ≥ 1: 

+1max
�  

 n  P − min n+1 P ≤ max n P −  min nP (1  2α). ij � �j �ji� ij i   � � 

�
−

max n P  − min n (1 − 2 nP  ≤ α) . �j �j
� �

lim max n P =  lim min nP > 0. �jn→∞ � n→∞ �j
� 

Note that Lemma 1 implies that lim max n 
n→∞ � P�j

must exist since this is the limit of a decreasing 
non-negative sequence. This lemma then shows 
the maxima and minima both have the same limit. 
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Proof of lemma 2: We tighten the proof of lemma 

1 slightly to make use of the positive elements. For 

a given n and j, let �min be a state that minimizes 

Pn over i. Thenij 

 n+1 P = nPij

�
ikPkj 

k � 
≤ nPik max n P +�j  Pi� min P

min �j 
� � 

k=�min 

= (1 − Pi� )  max n nP +  P
min �j i� min P

min �j 
�  

n
� �  

 − max n = max − min n P P�j i� P P
min �j �j

� 

�

 

� � �   

≤ max n P�j − α  n maxP�j
�  �

− min nP�j
� 

 

�



max n+1 n n n
P ≤ max P 

�
max P − min P�ji ij �j 

� 
− α �j 

� �

�
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We have shown that

	  

+1 max n  nP ≤ max n nP −  α �j

�
max P . ij �j �ji �	 �

− min P
� 

�
Interchanging max with min and ≤ with ≥, we get


+1 n min n ≥ min +  
�	  

max n n P P α P .ij �j �ji �	 �
− min P

� 

�
 �j

Subtracting these equations, 
	  

max n+1  P   n   n min n+1 P  maxP minP (1  2α). 
	 iji

− ij

�
�j − �ji 

≤
� � 

�
−

Since min� P�j	≥ α and max� P�j ≤ 1 − α, 

max P�j − min P�j ≤ 1 α
�	 � 

− 2  

Iterating on	 n, 

n max P − min n P�j �j
�	 � 

≤ (1 − 2α)n 
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Finally, we can get back to arbitrary finite-state er­
godic chains with transition matrix [P ]. 

We have shown that [Ph] is positive for h = (M 
1)2 

−
+ 1, so we can apply Lemma 2 to [Ph], with 

α = min Ph 
ij . ij

We don’t much care about the value of α, but only 
that it is positive. Then 

lim max hm = min hm P P = π�j �j � > 0 
m→∞ � � 

To show that the limit applies for all n rather than 
than just multiples of h, we use Lemma 1, showing 
that max� P

n is non-increasing in n, so it must have �j

the same limit as max� P
hm . The same argument �j

applies for the minima. QED 
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Ergodic unichains


We have now seen that for ergodic chains, limn→∞ Pn = ij
πj for all i where �π is a probability vector. The re­
sulting vector �π is also a steady-state vector and is 
the unique probability vector solution to �π[P ] = �π 
(see Thm 3.3.1). 

It is fairly easy to extend this result to a more gen­
eral class called ergodic unichains. These are chains 
containing a single ergodic class along with an ar­
bitrary set of transient states. 

If a state is in a singleton transient class, then there 
is a fixed probability, say α, of leaving the class at 
each step, and the probability of remaining in the 
class for more than  n steps is (1 − α)n. 
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Th probability of remaining in an arbitrary set of


transient states also decays to 0 exponentially with


n. Essentially each transient state has at least one 

path to a recurrent state, and one of those paths 

must be taken eventually. 

For an ergodic unichain, the ergodic class is even­

tually entered, and then steady state in that class 

is reached. 

For every state j then, 

lim max n P =ij  lim min n P =ij  πjn→∞ i n→∞ i 

The difference here is that πj = 0 for each transient 

state and πj > 0 for each recurrent state. 
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Other finite-state Markov chains


First consider a Markov chain with several ergodic 

classes, C1, . . . , Cm. The classes don’t communicate 

and should be considered separately. 

If one insists on analyzing the entire chain, [P ] will 

have m independent steady state vectors, one nonzero 

on each class. [Pn] will then converge, but the rows 

will not all be the same. 

There will be m sets of rows, one for each class, 

and the row for class k will be nonzero only for the 

elements of that class. 
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Next consider a periodic recurrent chain of period 

d. This can be separated into d subclasses with a 

cyclic rotation between them. 

If we look at [Pd], we see that each subclass be­

comes an ergodic class, say C nd
1, . . . , Cd. Thus limn [P ] →∞

exists. 

A steady state is reached within each subclass, but 

the chain rotates from one subclass to another. 
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