
Review of probability models 

Probability models are natural for real-world situations 
that are repeatable, using trials that 

• have the same initial conditions 

• are essentially isolated from each other 

• have a fixed set of possible outcomes 

• have essentially ‘random’ individual outcomes. 

For any model, an extended model for a sequence or 
an n-tuple of IID repetitions is well-defined. 

Relative frequencies and sample averages (in the ex­
tended model) ‘become deterministic’ and can be com­

pared with real-world relative frequencies and sample 
averages in the repeated experiment. 
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Markov, Chebychev, Chernoff bounds 

Inequalities, or bounds, play an unusually large role in probability. 
Part of the reason is their frequent use in limit theorems and part 
is an inherent imprecision in probability applications. 

One of the simplest and most useful bounds is the Markov in­
equality: If Y is a non-negative rv with an expectation E [Y ], then 
for any real y > 0, 

E [Y ] 
Pr{Y ≥ y} ≤ 

y 

Pf: 
Area under Fc

✟ (y) is = E [Y ]
✟ ❅ ✟✟ ❅

{ ≥ } ✟✙
Pr   

 
Y y  ❅ 

❅ 
❄ ❅ 

❅❅❘ Fc
Area = (y)yPr{Y ≥ y} 

y 
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The laws of large numbers (LLN’s) specify what ‘be­

come deterministic’ means. 

They only operate within the extended model, but 
provide our only truly experimental way to compare 
the model with repeated trials of the real-world ex­
periment. 

Probability theory provides many many consistency 
checks and ways to avoid constant experimentation. 

Common sense, knowledge of the real-world system, 
focus on critical issues, etc. often make repeated trials 
unnecessary. 

The determinism in large numbers of trials underlies 
much of the value of probability. 
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E
Markov inequality: Pr{Y ≥ y} ≤ [ Y ] 

y 

Area = yPr{Y ≥ y} 

Pr{Y ≥ y} 

Fc(y) 

y 

Note that the Markov bound is usually very loose. It 

is tight (satisfied with equality) if Y is binary with 

possible values 0 and y. 

The Markov bound decreases very slowly (as 1/y) with 

increasing y. 

5 

The Chebyshev inequality: If Z has a mean E [Z] = Z 

and a variance, 2 σ , then for any � > 0, Z

� � 2 σ
Pr |Z − Z| ≥ � ≤ Z (1) 

�2 

Pf: Let Y = (Z − Z)2 . Then E [Y ] = 2 σ and for anyZ 
y > 0, 

 
Pr{Y ≥ y} ≤ 2 σ /y; Pr

√
Y Z

√≥ y ≤ 2 σZ/y 

Now 
√

Y = |Z Setting

�

− Z  

�

|.  � = 
√

y yields (1). 

Chebychev requires a variance, but decreases as 1 2 /�

with increasing distance � from the mean. 
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The weak law of large numbers and convergence 

Let X1, X2, . . . , Xn be IID rv’s with mean X, variance 
2 σ . Let Sn = 2 2 X1 +  + Xn. Then σ = nσ .
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The mean of the distribution varies with n and the 
standard deviation varies with 

√
n. 
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The Chernoff bound: For any z > 0 and any r > 0 such 

that the moment generating function g  erZ
Z(r) = E

exists, 

� �

Pr{Z ≥ z} ≤ gZ(r) exp(−rz) (2) 

Pf: Let Y = erZ . Then E [Y ] = gZ(r). For any y > 0, 
Markov says, 

 
Pr{Y ≥ y} ≤ gZ(r)/y; Pr

�
rZ e ≥ rze

�
≤ rz gZ(r)/e , 

which is equivalent to (2). 

This decreases exponentially with z and is useful in 

studying large deviations from the mean. 

7 

Sn 
· · ·



The sample average is Sn/n, which is a rv of mean X 

and variance 2σ /n. 

The mean of the distribution is X and the standard 

deviation decreases with 1/
√

n. 
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V

�
Sn

� ��  2 2 Sn σ
AR = E − X 

� �

= . (3) 
n n n 

��  2Sn 
lim E − X 

� �

= 0. (4) 
n→∞ n

Note that (3) says more than (4), since it says the 
convergence is as 1/n and in fact it gives the variance 
explicitly. But (4) establishes a standard form of con­

vergence of rv’s called convergence in mean square. 

Def: A sequence of rv’s, Y1, Y2, . . . converges in mean 
square to a rv Y if 

lim E 
�
(Yn − Y )2

� 
= 0 

n→∞ 

10 

1 

0.8 · 

0.6 

0.4 

0.2


0

0 0.25 0.5 0.75 1 

FYn 
(z) 

Yn = Sn 
n 

· · · · · · · · · · · · · · 

· · · · · · · · · · · 

· · · · · · · · · · · 

· · · · · · · · · · · · · 

· · · · · · · · · · · · · · 

n = 4 
n = 20 
n = 50 



The fact that Sn/n converges in mean square to X 
doesn’t tell us directly what might be more interesting: 
what is the probabilility that |Sn/n − X| exceeds � as a 
function of � and n? 

Applying Chebyshev to (3), however, 
�� � � 2 Sn σ

Pr  − X  ≥ � ≤ for every � > 0 (5) 
n n�2 

One can get

�� �
�

 an arbitra

��

ry accuracy of � between sample 
average and mean with probability 1− 2 2σ /n� , which can 
be made as close to 1 as we wish, by increasing n. 

This gives us the weak law of large numbers (WLLN): 
 

Sn 
lim Pr

����
 − X 

���� ≥ �
�

�  = 0 for every � > 0. 
n→∞ n
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WLLN: lim Pr
����Sn 

 − X 
���
 ≥ �

�
 = 0 for every � > 0. 

n→∞ n

�
We have proven this under the assumption that Sn = 

n X  =1 n where X

�

1, X2, . . . ,

�

 are IID with finite variance. n

An equivalent statement (following from the definition 
of a limit of real numbers) is that for every δ > 0, 

Pr
���  

�S�
n 

 − X 
���� ≥ �

�
 ≤ δ for all large enough n. (6) 

n 
Note that (6) tells us less about the speed of conver­

gence than 

Pr
���  2 

�S�
n σ

 − X 
�� �

�� ≥ � 
n 

≤ 
n�2 

But (6) holds without a variance (if E [|X|] < ∞.) 
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1 − δ 

✻ 

❄ 

δ1 

❄ 

✻ 

❄ 

✻ 

1 

0 

2� δ1 + δ2 = δ ≤✲ ✛ 

FSn/n✏✏✏✏✮ 

δ2 

σ2 

n�2 

What this says is that Pr Sn 
n ≤ x is approaching a unit 

step at X as n → ∞. F

�

or any

�

 fixed �, δ goes to 0
as 2 2 n → ∞. If σX < ∞, then δ → 0 at least as σ /n� . 
Otherwise it might go to 0 more slowly. 

Def: A sequence of rv’s, Y1, Y2, . . . converges in prob­

ability to a rv Y if for every � > 0, δ > 0, 

Pr{|Yn − Y | ≥ �} ≤ δ for all large enough n 

This means that {Sn/n; n ≥ 1} converges to X in prob­

ability if E [|X|] < ∞. 
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Review: We saw that if σX exists and X1, X2, . . . are 
IID, then σSn/n = σX/

√
n. 

Thus Sn/n converges to X in mean square. Chebychev 
then shows that Sn/n converges to X in probability. 

In the same way, if {Yn; n ≥ 1} converges to Y in mean 
square, Chebychev show that it converges in probabil­

ity. 

That is, mean square convergence implies convergence 
in probability. The reverse is not true, since a variance 
is not required for the WLLN. 

Finally, convergence in probability means that the dis­
tribution of Yn − Y approaches a unit step at 0. 
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Recall that Sn 
2 Sn n

− nX is a zero mean rv with variance 
nσ . Thus √− X 

is zero mean, unit variance. 
nσ 
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Central limit theorem: 
� �    2S yn  nX  1 x

lim Pr 
−
√ ≤ y 

−
n→∞ n σ 

��

= 
� � �

 
 
√ exp dx.

−∞ 2π 2 

    y 1 2Sn  nX  x
lim Pr  y = exp dx. 

n→∞ 

� �
− −
√

n σ 
≤

�� �

−∞ 
√

2π 

�

2 

�

Not only does (Sn − nX)/
√

nσX have mean 0, variance 
1 for all n, but it also becomes normal Gaussian. 

We saw this for the Bernoulli case, but the general 
case is messy and the proof (by Fourier transforms) is 
not insightful. 

The CLT applies to FS , not to the PMF or PDF. n

Def: A sequence Z1, Z2, . . . of rv’s converges in distribution 
to Z if limn→∞ FZ (z) = FZ(z) for all  n z where FZ(z) is 
continuous. 

The CLT says that (Sn − nX)/
√

nσX converges in dis­
tribution to Φ. 
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Paradox: The CLT says something very strong about 

how Sn/n converges to X, but convergence in distri­

bution is a very weak form of convergence. 

Resolution: The rv’s that converge in distribution in 

the CLT are (Sn − nX)/
√

nσX. Those that converge in 

probability to 0 are (Sn − nX)/n, a squashed version of 

(Sn − nX)/
√

nσX. 

The CLT,� for 0 < σX < �∞, for example, says that  
limn→∞ Pr (Sn − nX)/n ≤ 0 = 1/2. This can not be 

deduced from the WLLN. 
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Convergence in distribution is almost a misnomer, since 
the rv’s themselves do not necessarily become close 
to each other in any ordinary sense. 

For example any sequence of IID rv’s converge in dis­
tribution since they have the same distribution to start 
with. 

Thm: Convergence in probability implies convergence 
in distribution. 

Pf: Convergence of {Yn; n ≥ 1} in probability means 
convergence to a unit step. 

Thus convergence in mean square implies convergence 
in probability implies convergence in distribution. 
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Convergence with probability 1 

A rv is a far more complicated thing than a number. 
Thus it is not surprising that there are many types of 
convergence of a sequence of rv’s. 

A very important type is convergence with probability 
1 (WP1). We introduce convergence WP1 here and 
discuss it more in Chap. 4. 

The definition is deceptively simple. 

Def: A sequence Z1, Z2, . . . , of rv’s converges WP1 to 
a rv Z if 

Pr
�  
ω ∈ Ω : lim Zn(ω) = Z(ω)

�
= 1 

n→∞ 

19 

 
Pr ω ∈ Ω : lim Zn(ω) = Z(ω) = 1 

n→∞ 

In order to pa

�

rse this, note that each

�

 sample point 
maps into a sequence of real numbers, Z1(ω), Z2(ω), . . . . 

Some of those sequences of real numbers have a limit, 
and in some cases, that limit is Z(ω). Convergence 
WP1 means that the set ω for which Z1(ω), Z2(ω) has 
a limit, and that limit is Z(ω), is an event and that the 
probability of that event is 1. 

One small piece of complexity that can be avoided 
here is looking at the sequence {Yi = Zi − Z; i ≥ 1} and 
asking if that sequence converges to 0 WP1. 
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The strong law of large numbers (SLLN) says the 
following: Let X1, X2, . . . be IID rv’s with E [|X|] < ∞. 
Then {Sn/n; n ≥ 1} converges to X WP1. In other 
words, all sample paths of {Sn/n; n ≥ 1} converge to X 
except for a set of probability 0. 

These are the same conditions under which the WLLN 
holds. We will see, when we study renewal processes, 
that the SLLN is considerably easier to work with than 
the WLLN. 

It will take some investment of time to feel at home 
with the SLLN, (and in particular to have a real sense 
about these sets of probability 1) and we put that off 
until chap 4. 
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