

Ben Bitdiddle created a new function, int matrix magic(Matrix m) for his
company’s top-grossing big data processing package. As matrix magic is per-
formance critical, Ben wanted to autotune a bunch of parameters in the function
using an autotuner. For that, he found the biggest matrix available, and used
it as the input to the autotuner. His autotuned matrix magic function will
always be faster than the original matrix magic without autotuning.
True False

Solution:
 False. Overfitting - the tuned version might work well for big matrices but not for
small matrices.

1

Professors de Lancie and Barker are working independently on fixed-size serial
heap allocation.
Professor de Lancie implements a linked list which supports two O(1)-time
operations: adding an element to the tail, and removing an element from the
head. Professor Barker implements a linked list which also supports two O(1)-
time operations: adding an element to the head, and removing an element from
the head. The professors use their respective data structures as free lists in their
respective allocators.
True or False:

• Professor Barker’s implementation will likely run faster than Professor de
Lancie’s implementation due to increased temporal locality.

• Professor de Lancie’s implementation will likely use less space than Pro-
fessor Barker’s implementation due to decreased external fragmentation.

Solutions:
• True. When Professor Barker removes an element from the free list, he

removes the same one he's most recently put on - this is good temporal locality.
Professor Lancie does the opposite.

• False. Especially when it's a fixed size allocator, exactly which memory block we
give out doesn't really impact the overall fragmentation. Either way, the two
implementations will use approximately the same total amount of memory for
a given trace (and thus have approximately the same fragmentation

2

Professor Harrison writes an application that only allocates and frees 1040-byte
objects. He has a choice between two allocators. The fixed-sized allocator uses
a free list of 1040-byte blocks. The variable-sized allocator uses binned free lists
with blocks that are exact powers of 2. What are the likely advantages of the
fixed-size allocator over the variable-sized allocator?

A. Allocating and freeing are faster.

B. Less internal fragmentation.

C. Less external fragmentation.

D. Less false sharing.

E. Fewer TLB (translation lookaside buffer) misses.

Solution:
A, B, E.
 A fixed size allocator is fast because it only has one free list.
 Blocks given are exactly the desired size, so no internal fragmentation.
 The binned free list should only be dealing with 2048-size blocks, so there
shouldn't be any difference in external fragmentation - one allocator gives a
block exactly when the other allocator does too.
 The fixed size allocator isn't cache aligned, so more false sharing.
 The fixed size allocator uses less overall memory, so there are less total memory
pages - thus, there are less TLB misses (since TLB misses directly correspond
with new pages in memory)

3

After analyzing the memory request trace of a program, Ben Bitdiddle imple-
ments a fixed-size memory allocator that allocates and frees 128-byte objects.
His allocator takes a 4096-byte page of memory and splits it into blocks of size
128 bytes. It uses 96 bits at the beginning of the block for bookkeeping. To
keep track of which blocks are free, it uses a bitmap placed in the bookkeeping
area at the beginning of the page.
Ben now decides to adapt his allocator to work in a multithreaded environment
with exactly two threads. He does this by splitting the blocks on the page into
two sets such that each thread allocates from its own half. He also splits the
bitmap in half. He pads each half of the bitmap to 64 bits so that the two
threads can update the two halves independently. Nevertheless, Ben’s allocator
suffers from poor performance. Which of the following explanations are most
likely the reasons for Ben’s poor performance? (Select all that apply)

A. Poor space utilization

B. External fragmentation

C. True sharing of the bitmap

D. False sharing of the bitmap

E. None of the above

Solution:
 A, D
 If one thread allocates much more than the other, we waste half the storage.
 There's no reason for there to be any difference in external fragmentation.
 The bitmap isn't actually shared, so that's not true sharing.
 The bitmaps are on the same cache line, so that is false sharing.

4

MIT OpenCourseWare
https://ocw.mit.edu

6.172 Performance Engineering of Software Systems
Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

5

https://ocw.mit.edu
https://ocw.mit.edu/terms
https://ocw.mit.edu/terms
https://ocw.mit.edu

	cover.pdf
	Blank Page

