

!"##$
%&'&(

"#)*+)$#)*+,*-./01

6.172
Performance
Engineering
of Software
Systems

© 2008-2018 by the MIT 6.172 Lecturers 1

!
LECTURE 22
Graph Optimization
Julian Shun

Outline

• What is a graph?
• Graph representations
• Implementing breadth-first search
• Graph compression/reordering

© 2008-2018 by the MIT 6.172 Lecturers 2

Edges model relationships between objects

What is a graph?

!"#$%$&'$(%$&'$(

! Vertices model objects
! Edges model relationships between objects

"#$%& '()

*+,(# -+.$/

0.&

1,&/ 2,&3

4+55+6

2,&3*6+,#&9

HI#$+5
Image courtesy of STRING. Used under CC-BY.

© 2008-2018 by the MIT 6.172 Lecturers 3

https://string-db.org/

What is a graph?

! Edges can be directed
! Relationship can go one way or both ways

© 2008-2018 by the MIT 6.172 Lecturers 4

! Edges can be directed
! Relationship can go one way or both ways

Image created CZ .IT 0penCourse8are.

What is a graph?

• Edges can be weighted
∙ Denotes “strength”, distance, etc.

Distance between cities Flight costs

© 2008-2018 by the MIT 6.172 Lecturers 5

© Scott Mitchell for Microsoft. All rights reserved. This content is excluded from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

https://web.archive.org/web/20160128213655/https://msdn.microsoft.com/en-us/library/aa289152(v=vs.71).aspx

What is a graph?

• Vertices and edges can have types and
metadata

Google Knowledge Graph

© Third Door Media. All rights reserved. This content is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/

© 2008-2018 by the MIT 6.172 Lecturers 6

https://searchengineland.com/laymans-visual-guide-googles-knowledge-graph-search-api-241935

!"##$
%&'&(

"#)*+)$#)*+,*-./01

© 2008-2018 by the MIT 6.172 Lecturers 7

!
SOME MORE APPLICATIONS
OF GRAPHS

Social network queries

! Examples:
! Finding all your friends who went to the same

high school as you
! Finding common friends with someone
! Social networks recommending people whom

you might know
! Product recommendation

© 2008-2018 by the MIT 6.172 Lecturers 8

Finding good clusters

! Some applications
! Finding people with

similar interests
! Detecting fraudulent

websites
! Document clustering
! Unsupervised learning

! Finding groups of vertices that are “well-
connected” internally and “poorly-
connected” externally

© 2008-2018 by the MIT 6.172 Lecturers 9
Image © source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

More Applications

!"##$%&"'(%)

/ Study of the brain
network structure

*'+,$-.$,'$#&+&("#
© NECSUS. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

/ Pixels correspond to
vertices

/ Edges between
neighboring pixels with
weight corresponding
to similarity

© 2008-2018 by the MIT 6.172 Lecturers 10

Image courtesy of Andreas Horn. Used under CC-BY.

https://www.sciencedirect.com/science/article/pii/S2352340915001912#f0005
https://necsus-ejms.org/how-machines-see-the-world-understanding-image-annotation/

!"##$
%&'&(

"#)*+)$#)*+,*-./01

© 2008-2018 by the MIT 6.172 Lecturers 12

!
GRAPH REPRESENTATIONS

Graph Representations

! Vertices labeled from 0 to n-1

0

1

3 3

2

4

0 1 2 3 4 (0,1)
(1,0)
(1,3)
(1,4)
(2,3)
(3,1)
(3,2)
(4,1)

0 1 0 0 0

1 0 0 1 1

0 0 0 1 0

0 1 1 0 0

0 1 0 0 0

Adjacency matrix
(“1” if edge exists, Edge list

“0” otherwise)
! What is the space requirement for each

in terms of number of edges (m) and
number of vertices (n)?

© 2008-2018 by the MIT 6.172 Lecturers 13

Graph Representations
• Adjacency list
∙ Array of pointers (one per vertex)
∙ Each vertex has an unordered list of its edges

• What is the space requirement?
• Can substitute linked lists with arrays for

better cache performance
∙ Tradeoff: more expensive to update graph

© 2008-2018 by the MIT 6.172 Lecturers 14

Graph Representations
• Compressed sparse row (CSR)
∙ Two arrays: Offsets and Edges
∙ Offsets[i] stores the offset of where vertex i’s

edges start in Edges
Vertex IDs 0 1 2 3

Offsets 0 4 5 11 ...

Edges 2 7 9 16 0 1 6 9 12 ...

• How do we know the degree of a vertex?
• Space usage?
• Can also store values on the edges with an

additional array or interleaved with Edges
© 2008-2018 by the MIT 6.172 Lecturers 15

Tradeoffs in Graph Representations
! What is the cost of different operations?

Adjacency
matrix

Edge list Adjacency list Compressed
sparse row

Storage cost /
scanning

whole graph

O(n2) O(m) O(m+n) O(m+n)

Add edge O(1) O(1) O(1)/O(deg(v)) O(m+n)
Delete edge

from vertex v
O(1) O(m) O(deg(v)) O(m+n)

Finding all
neighbors of a

vertex v

O(n) O(m) O(deg(v)) O(deg(v))

O(1) O(m) O(deg(v)) O(deg(v)) Finding if w is
a neighbor of v

! There are variants/combinations of
these representations

© 2008-2018 by the MIT 6.172 Lecturers 16

Graph Representations

• The algorithms we will discuss today are
best implemented with compressed
sparse row (CSR) format
∙ Sparse graphs
∙ Static algorithms-no updates to graph
∙ Need to scan over neighbors of a given set of

vertices

© 2008-2018 by the MIT 6.172 Lecturers 17

Degrees can be highly skewed

Properties of real-world graphs
! They can be big (but not too big)

A04.(/%1#3B0'C "#$%&'()* "#$%&'()*
-+%D.//.01%2#'3.4#5 +,-%$.//.01%2#'3.4#5 9,>%$.//.01%2#'3.4#5
+,>%$.//.01%#7 6,6%$.//.01%#7 +?:%$.//.01%#7

86,9%;<= 89:%;<= 8>-@%;<=
! Sparse (m much less than n2)
! Degrees can be highly skewed

Most people

Lady Gaga, Obama

N
um

be
r

of

ve
rt

ic
es

 w
ith

de

gr
ee

 Studies have shown that
many real-world graphs have

a power law degree
distribution

#vertices with deg. d ! a!d-p Degree
(2 < p < 3)

© 2008-2018 by the MIT 6.172 Lecturers 18
Based off image by Hay Kranen, in the public domain.

https://commons.wikimedia.org/wiki/File:Long_tail.svg

!"##$
%&'&(

"#)*+)$#)*+,*-./01

© 2008-2018 by the MIT 6.172 Lecturers 19

!
IMPLEMENTING A GRAPH
ALGORITHM:
BREADTH-FIRST SEARCH

Breadth-First Search (BFS)
! Given a source vertex s, visit the

vertices in order of distance from s
! Possible outputs:
! Vertices in the order they were visited

" D, B, C, E, A
! The distance from each vertex to s

A B C D E
2 1 1 0 1

! A BFS tree, where each vertex has a
parent to a neighbor in the previous
level

Applications

Betweenness
centrality

Eccentricity
estimation

Maximum flow

Web crawlers

Network
broadcasting

Cycle detection

…

A

B source = D

C

D

E

BFS tree

A

B

C

D

E

© 2008-2018 by the MIT 6.172 Lecturers 20

Serial BFS Algorithm

Source: https://en.wikipedia.org/wiki/Breadth-first_search

© 2008-2018 by the MIT 6.172 Lecturers 21

Serial BFS Algorithm
• Assume graph is given in compressed

sparse row format
∙ Two arrays: Offsets and Edges
∙ n vertices and m edges (assume Offsets[n] = m)

int* parent = //while queue not empty

(int*) malloc(sizeof(int)*n); while(q_front != q_back) {
int* queue = int current = queue[q_front++]; //dequeue
(int*) malloc(sizeof(int)*n); int degree =

Offsets[current+1]-Offsets[current];
for(int i=0; i<n; i++) { for(int i=0;i<degree; i++) {

parent[i] = -1; int ngh = Edges[Offsets[current]+i];
} //check if neighbor has been visited

if(parent[ngh] == -1) {
queue[0] = source; parent[ngh] = current;
parent[source] = source; //enqueue neighbor

queue[q_back++] = ngh;
int q_front = 0, q_back = 1; } Total of m }

} random accesses
• What is the most expensive part of the code?
∙ Random accesses cost more than sequential accesses

© 2008-2018 by the MIT 6.172 Lecturers 22

Analyzing the program
int* parent =
(int*) malloc(sizeof(int)*n);
int* queue =
(int*) malloc(sizeof(int)*n);

for(int i=0; i<n; i++) {
parent[i] = -1;

}

queue[0] = source;
parent[source] = source;

int q_front = 0; q_back = 1;

//while queue not empty
while(q_front != q_back) {

int current = queue[q_front++]; //dequeue
int degree =

Offsets[current+1]-Offsets[current];
for(int i=0;i<degree; i++) {

int ngh = Edges[Offsets[current]+i];
//check if neighbor has been visited

}
}

}

if(parent[ngh] == -1) {
parent[ngh] = current;
//enqueue neighbor
queue[q_back++] = ngh;

! (Approx.) analyze number of cache misses (cold cache;
cache size << n; 64 byte cache line size; 4 byte int)
! n/16 for initialization ! n/16 for enqueueing
! n/16 for dequeueing

Total " (51/16)n + (17/16)m ! n for accessing Offsets array
! " 2n + m/16 for accessing Edges array
! m for accessing parent array

© 2008-2018 by the MIT 6.172 Lecturers 23

Analyzing the program
int* parent = //while queue not empty

(int*) malloc(sizeof(int)*n); while(q_front != q_back) {
int* queue = int current = queue[q_front++]; //dequeue
(int*) malloc(sizeof(int)*n); int degree =

Offsets[current+1]-Offsets[current];
for(int i=0; i<n; i++) { for(int i=0;i<degree; i++) {

parent[i] = -1; int ngh = Edges[Offsets[current]+i];
} //check if neighbor has been visited

if(parent[ngh] == -1) {
queue[0] = source; parent[ngh] = current;
parent[source] = source; //enqueue neighbor

queue[q_back++] = ngh;
int q_front = 0; q_back = 1; }

} Check bitvector first before
} accessing parent array

n cache misses
instead of m

• What if we can fit a bitvector of size n in cache?
∙ Might reduce the number of cache misses
∙ More computation to do bit manipulation

© 2008-2018 by the MIT 6.172 Lecturers 24

BFS with bitvector
int* parent =
(int*) malloc(sizeof(int)*n);
int* queue =
(int*) malloc(sizeof(int)*n);
int nv = 1+n/32;
int* visited =
(int*) malloc(sizeof(int)*nv);

for(int i=0; i<n; i++) {
parent[i] = -1;

}

for(int i=0; i<nv; i++) {
visited[i] = 0;

}

queue[0] = source;
parent[source] = source;
visited[source/32]

= (1 << (source % 32));

int q_front = 0; q_back = 1;

//while queue not empty
while(q_front != q_back) {

int current = queue[q_front++]; //dequeue
int degree =

Offsets[current+1]-Offsets[current];
for(int i=0;i<degree; i++) {

int ngh = Edges[Offsets[current]+i];
//check if neighbor has been visited
if(!((1 << ngh%32) & visited[ngh/32])){

visited[ngh/32] |= (1 << (ngh%32));
parent[ngh] = current;
//enqueue neighbor
queue[q_back++] = ngh;

}
}

}

• Bitvector version is
faster for large enough
values of m

© 2008-2018 by the MIT 6.172 Lecturers 25

!"##$
%&'&(

"#)*+)$#)*+,*-./01

© 2008-2018 by the MIT 6.172 Lecturers 28

!
PARALLELIZING
BREADTH-FIRST SEARCH

s

Parallel BFS Algorithm

0

1

1

2

2

2

2

1

Frontier

• Can process each frontier in parallel
∙ Parallelize over both the vertices and their

outgoing edges
• Races, load balancing

© 2008-2018 by the MIT 6.172 Lecturers 29

Parallel BFS Code
2 4 3 1 3

0 2 6 9 10

© 2008-2018 by the MIT 6.172 Lecturers 30

BFS(Offsets, Edges, source) {
parent, frontier, frontierNext, and degrees are arrays
cilk_for(int i=0; i<n; i++) parent[i] = -1;
frontier[0] = source, frontierSize = 1, parent[source] = source;

while(frontierSize > 0) {
cilk_for(int i=0; i<frontierSize; i++)

degrees[i] = Offsets[frontier[i]+1] – Offsets[frontier[i]];
perform prefix sum on degrees array
cilk_for(int i=0; i<frontierSize; i++) {

v = frontier[i], index = degrees[i], d = Offsets[v+1]-Offsets[v];
for(int j=0; j<d; j++) { //can be parallel

ngh = Edges[Offsets[v]+j];
if(parent[ngh] == -1 && compare-and-swap(&parent[ngh], -1, v)) {

frontierNext[index+j] = ngh;
} else { frontierNext[index+j] = -1; }

}
}
filter out “-1” from frontierNext, store in frontier, and update frontierSize to be

the size of frontier (all done using prefix sum)
}

}

frontierSize = 5

Prefix sum

frontierSizefrontierSizefrontierSizev5 frontierNextfrontierNextfrontierNextfrontierNextv2 frontier, and update frontierfrontierfrontierv3 , and update , and update , and update v4

}

filter out “-filter out “filter out “filter out “v1

the size of the size of the size of the size of the size of frontier (all done using prefix sum)frontier (all done using prefix sum)frontier (all done using prefix sum)frontier (all done using prefix sum)the size of the size of
, and update

(all done using prefix sum)
, and update

(all done using prefix sum)(all done using prefix sum)(all done using prefix sum)(all done using prefix sum)
, and update , and update , and update , and update , and update frontierSize to be frontierSizefrontierSizefrontierSize, and update , and update , and update , and update , and update

24 9 -1 15 89 -1 -1 25 90 99 -1 -1 4 24 9 15 89 25 90 99 4 frontierSize = 8 frontier =

(See problem
27-4 of CLRS)

BFS Work-Span Analysis
! Number of iterations <= diameter D of graph
! Each iteration takes !(log m) span for

cilk_for loops, prefix sum, and filter
(assuming inner loop is parallelized)

Span = "(D log m)

! Sum of frontier sizes = n
! Each edge traversed once -> m total visits
! Work of prefix sum on each iteration is

proportional to frontier size -> !(n) total
! Work of filter on each iteration is proportional

to number

cturersecturers
Work = "(n+m)

 of edges traversed -> !(m) total

© 2008-2018 by the MIT 6.172 Le 31

Performance of Parallel BFS
! Random graph with n=107 and m=108

! 10 edges per vertex
! 40-core machine with 2-way hyperthreading
40

Sp
ee

d
u
p
 r

el
at

iv
e

to

se
ri

al
 B

FS

25

20

15

10

5

0 Sp
ee

d
u
p
 r

el
at

iv
e

to

1
-t

h
re

ad
 t

im
e 30

20

10

0

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Number of threads Number of threads

! 31.8x speedup on 40 cores with hyperthreading
! Serial BFS is 54% faster than parallel BFS on 1

thread
© 2008-2018 by the MIT 6.172 Lecturers 32

Golden Rule of Parallel Programming

Never write nondeterministic Never
parallel programs.

33

They can exhibit anomalous behaviors,
and it’s hard to debug them.

© 2008-2018 by the MIT 6.172 Lecturers

Silver Rule of Parallel Programming

Never Never write nondeterministic
parallel programs parallel programs

—
parallel programsparallel programs

— but if you must*
parallel programsparallel programs

but if you must* — but if you must* but if you must* but if you must* but if you must* but if you must* but if you must*
always devise a test strategy always devise a test strategy

to control the nondeterminism!

34

Typical test strategies
• Turn off nondeterminism.
• Encapsulate nondeterminism.
• Substitute a deterministic alternative.
• Use analysis tools.

*E.g., for performance reasons.
© 2008-2018 by the MIT 6.172 Lecturers

Dealing with nondeterminism
BFS(Offsets, Edges, source) {

parent, frontier, frontierNext, and degrees are arrays
cilk_for(int i=0; i<n; i++) parent[i] = -1;
frontier[0] = source, frontierSize = 1, parent[source] = source;

while(frontierSize > 0) {
cilk_for(int i=0; i<frontierSize; i++)

degrees[i] = Offsets[frontier[i]+1] – Offsets[frontier[i]];
Nondeterministic!perform prefix sum on degrees array

cilk_for(int i=0; i<frontierSize; i++) {
v = frontier[i], index = degrees[i], d = Offsets[v+1]-Offsets[v];
for(int j=0; j<d; j++) {

ngh = Edges[Offsets[v]+j];
if(parent[ngh] == -1 && compare-and-swap(&parent[ngh], -1, v)) {

frontierNext[index+j] = ngh;
} else { frontierNext[index+j] = -1; }

}
}
filter out “-1” from frontierNext, store in frontier, and update frontierSize to be

the size of frontier (all done using prefix sum)
}

}
© 2008-2018 by the MIT 6.172 Lecturers 35

BFS(Offsets, Edges, source) {
//omitted some initialization code
cilk_for(int i=0; i<n; i++) parent[i] = !;
while(frontierSize > 0) {

compute degrees array and perform prefix sum

Deterministic parallel BFS

 on it
cilk_for(int i=0; i<frontierSize; i++) { //phase 1

v = frontier[i], index = degrees[i], d = Offsets[v+1]-Offsets[v];
for(int j=0; j<d; j++) { //can be parallel

Two phases over the
outgoing edges

BFS(Offsets, Edges, source) {
//omitted some initialization code
cilk_for(int i=0; i<n; i++) parent[i] = !;
while(frontierSize > 0) {

compute degrees array and perform prefix sum on it

writeMin(addr, newval):
oldval = *addr
while(newval < oldval):

if(CAS(addr, oldval, newval)): return
else: oldval = addr* array and perform prefix sum on it

//phase 1
], d = Offsets[v+1]-Offsets[v];

Two phases over the
outgoing edges

On 32 cores, (an
optimized version of)

deterministic BFS
is 5—20% slower than
nondeterministic BFS

ngh = Edges[Offsets[v]+j]; Smallest value gets written
writeMin(&parent[ngh], v); }

}
cilk_for(int i=0; i<frontierSize; i++) { //phase 2

v = frontier[i], index = degrees[i], d = Offsets[v+1]-Offsets[v];
for(int j=0; j<d; j++) { //can be parallel

ngh = Edges[Offsets[v]+j];
Check if “won” if(parent[ngh] == v) {

parent[ngh] = -v; //to avoid revisiting
frontierNext[index+j] = ngh; }

else { frontierNext[index+j] = -1; }}
}
filter out “-1” from frontierNext, store in frontier, and update frontierSize

}} !"#$%&'()*(+,&,,"%-.(/*()011"23.(4.(502&672.(728(4*(!-#2*(!"#$%"&''()*$#$%+,",-#,.)/&%&''$')0'12%,#3+-)4&")5$)6&-#7)//"// 9:;9*
© 2008-2018 by the MIT 6.172 Lecturers 36

!"##$
%&'&(

"#)*+)$#)*+,*-./01

© 2008-2018 by the MIT 6.172 Lecturers 37

!
DIRECTION-OPTIMIZING
BREADTH-FIRST SEARCH

Growth of frontiers
Random graph Power law graph

10000000

1000000

100000

10000

1000

100

10

1

10000000

1000000

100000

10000

1000

100

10

1

Fr
o
n
ti

er
 s

iz
e

1 6 11 1 3 5 7 9 11 13 15 17 19

Iteration number Iteration number

! For many graphs, frontier grows rapidly and
then shrinks

! Most of the work done with frontier (and sum of
out-degrees) is large

© 2008-2018 by the MIT 6.172 Lecturers 38

15
5

8

7

6

11

12

!

© 2008-2018 by the MIT 6.172 Lecturers

Two ways to do BFS

11

10

9

13

14

1

4

3

2

11

10

9

Top-down

Bottom-up !

!

Bottom-up is better
when frontier is
large and many
vertices have been
visited
! Reduces number of

edges traversed

Top-down is better
when frontier is
small

Which one
to use?

39
© IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

https://people.eecs.berkeley.edu/~sbeamer/pubs/beamer-sc2012.pdf

Direction-optimizing BFS
• Choose based on frontier size (Idea by Beamer,

Asanovic, and Patterson in Supercomputing 2012)

Top-down Bottom-up

• Loop through frontier for all vertices v in parallel:
if parent[v] == -1: vertices and explore for all neighbors ngh of v:

unvisited neighbors if ngh on frontier:
parent[v] = ngh;
place v on frontierNext;
break;

• Efficient for small frontiers • Efficient for larger frontiers
• Updates to parent array is • Update to parent array need

atomic not be atomic
• Threshold of frontier size > n/20 works well in practice
∙ Can also consider sum of out-degrees

• Need to generate “inverse” graph if it is directed

© 2008-2018 by the MIT 6.172 Lecturers 40

Representing the frontier
• Sparse integer array
∙ For example, [1, 4, 7]

• Dense byte array
∙ For example, [0, 1, 0, 0, 1, 0, 0, 1] (n=8)
∙ Can further compress this by using 1 bit per vertex

and using bit-level operations to access it

• Sparse representation used for top-down
• Dense representation used for bottom-up

• Need to convert between representations
when switching methods

© 2008-2018 by the MIT 6.172 Lecturers 41

Direction-optimizing BFS performance

8
BFS on 40 cores with hyperthreading

Bottom-up
7

6

5 Top-down
4

3

2 Direction-optimizing
1 (bottom-up if frontier

size > n/20; otherwise 0

R
u
n
n
in

g
 t

im
e

(s
ec

o
n
d
s)

top-down) Random Power-law

! Benefits highly dependent on graph
! No benefits if frontier is always small (e.g., on

a grid graph or road network)
© 2008-2018 by the MIT 6.172 Lecturers 42

Ligra Graph Framework

procedure EDGEMAP(G, frontier, Update, Cond):
if (size(frontier) + sum of out-degrees > threshold) then:

return EDGEMAP_DENSE(G, frontier, Update, Cond);
else:

return EDGEMAP_SPARSE(G, frontier, Update, Cond);

! "#$%&'%(%$)*&+,)(&-./+&0123
! 45'$) 6$)7%8#$9&'%(%$)*5:%/&;5$%<+5#(=#>+575:)+5#(
+#&7)(?&#+,%$&>$#@*%7/
! 1#$&%A)7>*%B&@%+8%%((%//&<%(+$)*5+?B&<#((%<+%;&<#7>#(%(+/B
/>)$/%&C)'%D)(9B&/,#$+%/+&>)+,/B&%<<%(+$5<5+?&%/+57)+5#(B
'$)>,&<*./+%$5('B&9=<#$%&;%<#7>#/5+5#(B&/%+&<#E%$B&%+<F

Source: Julian Shun and Guy Blelloch. Ligra: A Lightweight Graph Processing Framework for
Shared Memory, ACM Symposium on Principles and Practice of Parallel Programming 2013

© 2008-2018 by the MIT 6.172 Lecturers 47

!"##$
%&'&(

"#)*+)$#)*+,*-./01

© 2008-2018 by the MIT 6.172 Lecturers 54

!
GRAPH COMPRESSION
AND REORDERING

Graph Compression on CSR

0 4 5 11

2 7 9 16 0 1 6 9 12 !!!"

0&/'&1"23%""""""""4""""""""""5""""""""""6"""""""""7 0&/'&1"23%""""""""4""""""""""5""""""""""6"""""""""7

2 7

0&/'&1"23%""""""""4""""""""""5""""""""""6"""""""""7

1

#$$%&'%

()*&%

!!!"

Sort edges and encode
differences

2 5 2 7 -1 -1 5 3 3 !!!"
+,-./&%%&)
()*&%

6"8 4"9"6" :"8 6"9";" 5"8 6"9"85"

< For each vertex v:
< First edge: difference is Edges[Offsets[v]]-v
< i’th edge (i>1): difference is Edges[Offsets[v]+i]-

Edges[Offsets[v]+i-1]
< Want to use fewer than 32 or 64 bits to store

each value
© 2008-2018 by the MIT 6.172 Lecturers 55

Variable-length codes
! k-bit (variable-length) codes
! Encode value in chunks of k bits
! Use k-1 bits for data, and 1 bit as the “continue” bit

! Example: encode “401” using 8-bit (byte) codes
!

0 0 0 0 0 1 10 0 1 0 0 0 1

In binary: 1 1 0 0 1 0 0 0 1

1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1

“continue” bit

7 bits for data

“continue” bit

! Decoding is just encoding “backwards”
! Read chunks until finding a chunk with a “0” continue bit
! Shift data values left accordingly and sum together

! Branch mispredictions from checking continue bit
© 2008-2018 by the MIT 6.172 Lecturers 56

Encoding optimization
! Another idea: get rid of “continue” bits

x1 x2 x3 x4 x5 x6 x7 x8 ……
Number of bytes …… required to encode 1 2 2 2 2 2 2 2

Header

each integer
Use run-length encoding

0 1 0 1 1 0 0 1

Number of bytes
per integer

Size of group
(max 64)

…… ……
Integers in group

encoded in byte chunks

! Increases space, but makes decoding cheaper (no
branch misprediction from checking “continue” bit)

Source: Julian Shun, Laxman Dhulipala and Guy Blelloch. Smaller and Faster: Parallel Processing
of Compressed Graphs with Ligra+, IEEE Data Compression Conference 2015

© 2008-2018 by the MIT 6.172 Lecturers 57

Decoding on-the-fly
! Need to decode during the algorithm
! If we decoded everything at the beginning we would

not save any space!

2 5 2 7 9 2 1 3 3 Frontier Frontier

-4

5 10

30 5

6 3 1 3 5 6 2

In parallel, all vertices
can decode their edges

"#

$%

&&

'

(

2

-16 2 19 1 4 2 5 3

! Each vertex decodes its edges sequentially
! What about high degree vertices?

© 2008-2018 by the MIT 6.172 Lecturers 58

Parallel decoding

-1 2 4 3 16 2 1 5 8 19 4 1 23 14 12 1 9 10 3 5

High-degree
vertex

Chunks of size T
!

!

-1 2 4 3 16 2 27 5 8 19 4 1 -1 27 87 14 12 1 9 10 87 !

" T=100 to 10,000 Encode first entry relative to source vertex
works well in

All chunks can be practice
decoded in parallel!

Source: Julian Shun, Laxman Dhulipala and Guy Blelloch. Smaller and Faster: Parallel Processing
of Compressed Graphs with Ligra+, IEEE Data Compression Conference 2015

© 2008-2018 by the MIT 6.172 Lecturers 59

ot
kr

Good compression for most graphs
! Space to store graph, which dominates the actual

space usage for most graphs
Relative space compared to uncompressed graph Uncompressed

1
Compressed (Byte)

0.8

0.6 Compressed (Byte-
RLE) 0.4
Compressed (Nibble

0.2 (4-bit codes))
0

d J s J t 0 r n m i L t L u 4 e o h
o

o r - n - k t i g c e r 2 i d t m t n a n - o a o O w u a D s P c - p
k T - Y 3 - k t m l u i o n c c

! Can further reduce space but
need to ensure decoding is fast

Average space used
relative to uncompressed

Byte: 53%
Byte-RLE: 56%
Nibble: 49%

Source: Julian Shun, Laxman Dhulipala and Guy Blelloch. Smaller and Faster: Parallel Processing
of Compressed Graphs with Ligra+, IEEE Data Compression Conference 2015

© 2008-2018 by the MIT 6.172 Lecturers 60

0
S ss

 y s k d S ss
 y s d k t tF n rit ntF n r e oB aci ne oB e

wee
nnac Fi Re r

nn
 F ni R -r etn - o nne t go nn

wee
 pe ag ap e a cc mma Pcc

mm

 P t o llEet o llE eCe Be C BB B

What is the cost of decoding on-the-fly?
Self-Normalized 40-core Running Time Normalized 40-core Running Time

50 2 Uncompressed
40 1.5
30

Compressed 1
20 (Byte)

0.5
10

Compressed 0
(Byte-RLE)

Compressed
(Nibble)

! In parallel, compressed can outperform uncompressed
! These graph algorithms are memory-bound and memory

subsystem is a bottleneck in parallel (contention for resources)
! Spends less time on memory operations, but has to decode

! Decoding has good speedup so overall speedup is higher
! All techniques integrated into Ligra framework

Source: Julian Shun, Laxman Dhulipala and Guy Blelloch. Smaller and Faster: Parallel Processing
of Compressed Graphs with Ligra+, IEEE Data Compression Conference 2015

© 2008-2018 by the MIT 6.172 Lecturers 61

Graph Reordering
! Reassign IDs to vertices to improve locality
! Goal: Make vertex IDs close to their neighbors’ IDs

and neighbors’ IDs close to each other

4 1

0 2

3 0 3

1 2

4

5 5

Sum of differences = 21 Sum of differences = 19

! Can improve compression rate due to smaller
“differences”

! Can improve performance due to higher cache hit
rate

! Various methods: BFS, DFS, METIS, by degree, etc.
© 2008-2018 by the MIT 6.172 Lecturers 62

Summary

• Real-world graphs are large and sparse
• Many graphs algorithms are irregular and

involve many memory accesses
• Improve performance with algorithmic

optimizations and by creating/exploiting
locality

• Optimizations may work for some graphs, but
not others

© 2008-2018 by the MIT 6.172 Lecturers 63

MIT OpenCourseWare
https://ocw.mit.edu

6.172 Performance Engineering of Software Systems
Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

