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! 
LECTURE 22 
Graph Optimization 
Julian Shun 



   

   
 

  
 

Outline 

• What is a graph?
• Graph representations
• Implementing breadth-first search
• Graph compression/reordering
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Edges model relationships between objects

What is a graph? 

!"#$%$&'$( %$&'$(

! Vertices model objects
! Edges model relationships between objects
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Image courtesy of STRING. Used under CC-BY.
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What is a graph? 

! Edges can be directed
! Relationship can go one way or both ways
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! Edges can be directed
! Relationship can go one way or both ways

Image created CZ .IT 0penCourse8are.



   

 

   
  

  

What is a graph? 

• Edges can be weighted
∙ Denotes “strength”, distance, etc.

Distance between cities Flight costs 
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© Scott Mitchell for Microsoft. All rights reserved. This content is excluded from our Creative Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/

https://web.archive.org/web/20160128213655/https://msdn.microsoft.com/en-us/library/aa289152(v=vs.71).aspx


   

 

      

What is a graph? 

• Vertices and edges can have types and
metadata

Google Knowledge Graph 

© Third Door Media. All rights reserved. This content is excluded from our Creative Commons license. For more 
information, see https://ocw.mit.edu/help/faq-fair-use/
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https://searchengineland.com/laymans-visual-guide-googles-knowledge-graph-search-api-241935
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! 
SOME MORE APPLICATIONS 
OF GRAPHS 



 

  
 

 

Social network queries 

! Examples:
! Finding all your friends who went to the same

high school as you
! Finding common friends with someone
! Social networks recommending people whom

you might know
! Product recommendation
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Finding good clusters 

! Some applications
! Finding people with

similar interests
! Detecting fraudulent

websites
! Document clustering
! Unsupervised learning

! Finding groups of vertices that are “well-
connected” internally and “poorly-
connected” externally

© 2008-2018 by the MIT 6.172 Lecturers 9 
Image © source unknown. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/



 

 

 

More Applications 

!"##$%&"'(%) 

/ Study of the brain 
network structure 

*'+,$-.$,'$#&+&("# 
© NECSUS. All rights reserved. This content is excluded from our Creative 

Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

/ Pixels correspond to
vertices 

/ Edges between
neighboring pixels with
weight corresponding 
to similarity 
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Image courtesy of Andreas Horn. Used under CC-BY.

https://www.sciencedirect.com/science/article/pii/S2352340915001912#f0005
https://necsus-ejms.org/how-machines-see-the-world-understanding-image-annotation/
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! 
GRAPH REPRESENTATIONS 



 

    

   

Graph Representations 

! Vertices labeled from 0 to n-1 

0 

1 

3 3

2 

4 

0 1 2 3 4 (0,1)
(1,0) 
(1,3) 
(1,4) 
(2,3) 
(3,1)
(3,2) 
(4,1) 

0 1 0 0 0 

1 0 0 1 1 

0 0 0 1 0 

0 1 1 0 0 

0 1 0 0 0 

Adjacency matrix
(“1” if edge exists, Edge list 

“0” otherwise) 
! What is the space requirement for each 

in terms of number of edges (m) and 
number of vertices (n)? 
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Graph Representations 
• Adjacency list
∙ Array of pointers (one per vertex) 
∙ Each vertex has an unordered list of its edges 

• What is the space requirement? 
• Can substitute linked lists with arrays for 

better cache performance 
∙ Tradeoff: more expensive to update graph 
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Graph Representations 
• Compressed sparse row (CSR) 
∙ Two arrays: Offsets and Edges 
∙ Offsets[i] stores the offset of where vertex i’s 

edges start in Edges 
Vertex IDs  0  1  2  3 

Offsets 0 4 5 11 ... 

Edges 2 7 9 16 0 1 6 9 12 ... 

• How do we know the degree of a vertex? 
• Space usage? 
• Can also store values on the edges with an 

additional array or interleaved with Edges 
© 2008-2018 by the MIT 6.172 Lecturers 15 



Tradeoffs in Graph Representations 
! What is the cost of different operations? 

Adjacency 
matrix 

Edge list Adjacency list Compressed 
sparse row 

Storage cost / 
scanning 

whole graph 

O(n2) O(m) O(m+n) O(m+n) 

Add edge O(1) O(1) O(1)/O(deg(v)) O(m+n) 
Delete edge 

from vertex v 
O(1) O(m) O(deg(v)) O(m+n) 

Finding all 
neighbors of a 

vertex v 

O(n) O(m) O(deg(v)) O(deg(v)) 

O(1) O(m) O(deg(v)) O(deg(v)) Finding if w is 
a neighbor of v 

 

   

  
 

 
 

 

 
 

 
  

   

! There are variants/combinations of 
these representations 
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Graph Representations 

• The algorithms we will discuss today are 
best implemented with compressed 
sparse row (CSR) format 
∙ Sparse graphs 
∙ Static algorithms-no updates to graph 
∙ Need to scan over neighbors of a given set of 

vertices 
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Degrees can be highly skewed

 

  
 

 
 

  

 
   
 

 
 

Properties of real-world graphs 
! They can be big (but not too big)

A04.(/%1#3B0'C "#$%&'()* "#$%&'()* 
-+%D.//.01%2#'3.4#5 +,-%$.//.01%2#'3.4#5 9,>%$.//.01%2#'3.4#5 
+,>%$.//.01%#7&#5 6,6%$.//.01%#7&#5 +?:%$.//.01%#7&#5 

86,9%;<= 89:%;<= 8>-@%;<= 
! Sparse (m much less than n2)
! Degrees can be highly skewed

Most people 

Lady Gaga, Obama 
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gr
ee

 Studies have shown that 
many real-world graphs have 

a power law degree 
distribution 

#vertices with deg. d ! a!d-p Degree
(2 < p < 3) 
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Based off image by Hay Kranen, in the public domain.

https://commons.wikimedia.org/wiki/File:Long_tail.svg
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! 
IMPLEMENTING A GRAPH 
ALGORITHM: 
BREADTH-FIRST SEARCH 



Breadth-First Search (BFS) 
! Given a source vertex s, visit the

vertices in order of distance from s 
! Possible outputs:
! Vertices in the order they were visited

" D, B, C, E, A
! The distance from each vertex to s 

A B C D E 
2 1 1 0 1 

! A BFS tree, where each vertex has a
parent to a neighbor in the previous
level

Applications 

Betweenness 
centrality 

Eccentricity
estimation 

Maximum flow 

Web crawlers 

Network 
broadcasting 

Cycle detection 

… 

 

 
 

 

    
 

 

A 

B source = D 

C 

D 

E 

BFS tree 

A 

B 

C 

D 

E 
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Serial BFS Algorithm 

 

Source: https://en.wikipedia.org/wiki/Breadth-first_search 
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Serial BFS Algorithm 
• Assume graph is given in compressed

sparse row format
∙ Two arrays: Offsets and Edges
∙ n vertices and m edges (assume Offsets[n] = m)

int* parent = //while queue not empty 

(int*) malloc(sizeof(int)*n); while(q_front != q_back) { 
int* queue = int current = queue[q_front++]; //dequeue 
(int*) malloc(sizeof(int)*n); int degree = 

Offsets[current+1]-Offsets[current]; 
for(int i=0; i<n; i++) { for(int i=0;i<degree; i++) { 

parent[i] = -1; int ngh = Edges[Offsets[current]+i]; 
} //check if neighbor has been visited

if(parent[ngh] == -1) { 
queue[0] = source; parent[ngh] = current; 
parent[source] = source; //enqueue neighbor

queue[q_back++] = ngh; 
int q_front = 0, q_back = 1; } Total of m } 

} random accesses 
• What is the most expensive part of the code?
∙ Random accesses cost more than sequential accesses

© 2008-2018 by the MIT 6.172 Lecturers 22 



 

  
  

  
    

    

  

Analyzing the program 
int* parent = 
(int*) malloc(sizeof(int)*n);
int* queue = 
(int*) malloc(sizeof(int)*n); 

for(int i=0; i<n; i++) {
parent[i] = -1; 

} 

queue[0] = source;
parent[source] = source; 

int q_front = 0; q_back = 1; 

//while queue not empty
while(q_front != q_back) { 

int current = queue[q_front++]; //dequeue 
int degree = 

Offsets[current+1]-Offsets[current]; 
for(int i=0;i<degree; i++) { 

int ngh = Edges[Offsets[current]+i];
//check if neighbor has been visited 

} 
} 

} 

if(parent[ngh] == -1) {
parent[ngh] = current;
//enqueue neighbor
queue[q_back++] = ngh; 

! (Approx.) analyze number of cache misses (cold cache;
cache size << n; 64 byte cache line size; 4 byte int)
! n/16 for initialization ! n/16 for enqueueing
! n/16 for dequeueing

Total " (51/16)n + (17/16)m ! n for accessing Offsets array
! " 2n + m/16 for accessing Edges array
! m for accessing parent array

© 2008-2018 by the MIT 6.172 Lecturers 23 



   

 

          
      

    

   

 
 

Analyzing the program 
int* parent = //while queue not empty 

(int*) malloc(sizeof(int)*n); while(q_front != q_back) { 
int* queue = int current = queue[q_front++]; //dequeue 
(int*) malloc(sizeof(int)*n); int degree = 

Offsets[current+1]-Offsets[current]; 
for(int i=0; i<n; i++) { for(int i=0;i<degree; i++) { 

parent[i] = -1; int ngh = Edges[Offsets[current]+i]; 
} //check if neighbor has been visited

if(parent[ngh] == -1) { 
queue[0] = source; parent[ngh] = current; 
parent[source] = source; //enqueue neighbor

queue[q_back++] = ngh; 
int q_front = 0; q_back = 1; } 

} Check bitvector first before 
} accessing parent array 

n cache misses 
instead of m 

• What if we can fit a bitvector of size n in cache?
∙ Might reduce the number of cache misses
∙ More computation to do bit manipulation

© 2008-2018 by the MIT 6.172 Lecturers 24 



   

 

 
    
   

BFS with bitvector 
int* parent = 
(int*) malloc(sizeof(int)*n);
int* queue = 
(int*) malloc(sizeof(int)*n); 
int nv = 1+n/32;
int* visited = 
(int*) malloc(sizeof(int)*nv); 

for(int i=0; i<n; i++) { 
parent[i] = -1; 

} 

for(int i=0; i<nv; i++) { 
visited[i] = 0; 

} 

queue[0] = source;
parent[source] = source;
visited[source/32] 

= (1 << (source % 32)); 

int q_front = 0; q_back = 1; 

//while queue not empty
while(q_front != q_back) { 

int current = queue[q_front++]; //dequeue 
int degree = 

Offsets[current+1]-Offsets[current]; 
for(int i=0;i<degree; i++) { 

int ngh = Edges[Offsets[current]+i];
//check if neighbor has been visited
if(!((1 << ngh%32) & visited[ngh/32])){

visited[ngh/32] |= (1 << (ngh%32));
parent[ngh] = current;
//enqueue neighbor
queue[q_back++] = ngh; 

} 
} 

} 

• Bitvector version is 
faster for large enough 
values of m 
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! 
PARALLELIZING 
BREADTH-FIRST SEARCH 
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Parallel BFS Algorithm 

0 

1 

1 

2 

2 

2 

2 

1 

Frontier 

• Can process each frontier in parallel
∙ Parallelize over both the vertices and their

outgoing edges
• Races, load balancing
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Parallel BFS Code 
2 4 3 1 3 

0 2 6 9 10

© 2008-2018 by the MIT 6.172 Lecturers 30 

BFS(Offsets, Edges, source) { 
parent, frontier, frontierNext, and degrees are arrays 
cilk_for(int i=0; i<n; i++) parent[i] = -1; 
frontier[0] = source, frontierSize = 1, parent[source] = source; 

while(frontierSize > 0) {
cilk_for(int i=0; i<frontierSize; i++)

degrees[i] = Offsets[frontier[i]+1] – Offsets[frontier[i]]; 
perform prefix sum on degrees array
cilk_for(int i=0; i<frontierSize; i++) { 

v = frontier[i], index = degrees[i], d = Offsets[v+1]-Offsets[v]; 
for(int j=0; j<d; j++) { //can be parallel 

ngh = Edges[Offsets[v]+j]; 
if(parent[ngh] == -1 && compare-and-swap(&parent[ngh], -1, v)) { 

frontierNext[index+j] = ngh; 
} else { frontierNext[index+j] = -1; } 

} 
} 
filter out “-1” from frontierNext, store in frontier, and update frontierSize to be

the size of frontier (all done using prefix sum) 
} 

} 

frontierSize = 5 

Prefix sum 

frontierSizefrontierSizefrontierSizev5 frontierNextfrontierNextfrontierNextfrontierNextv2 frontier, and update frontierfrontierfrontierv3 , and update , and update , and update v4 

}

filter out “-filter out “filter out “filter out “v1 

the size of the size of the size of the size of the size of frontier (all done using prefix sum)frontier (all done using prefix sum)frontier (all done using prefix sum)frontier (all done using prefix sum)the size of the size of 
, and update 

(all done using prefix sum)
, and update 

(all done using prefix sum)(all done using prefix sum)(all done using prefix sum)(all done using prefix sum)
, and update , and update , and update , and update , and update frontierSize to be frontierSizefrontierSizefrontierSize, and update , and update , and update , and update , and update 

24 9 -1 15 89 -1 -1 25 90 99 -1 -1 4 24 9 15 89 25 90 99 4 frontierSize = 8 frontier = 

(See problem
27-4 of CLRS) 



 

      
 

   

 

 

 

BFS Work-Span Analysis 
! Number of iterations <= diameter D of graph
! Each iteration takes !(log m) span for

cilk_for loops, prefix sum, and filter
(assuming inner loop is parallelized)

Span = "(D log m) 

! Sum of frontier sizes = n
! Each edge traversed once -> m total visits
! Work of prefix sum on each iteration is

proportional to frontier size -> !(n) total
! Work of filter on each iteration is proportional

to number

cturersecturers 
Work = "(n+m) 

 of edges traversed -> !(m) total

© 2008-2018 by the MIT 6.172 Le 31 



 

 

 

 
 

 
 

  

 
 

 
 

  

Performance of Parallel BFS 
! Random graph with n=107 and m=108

! 10 edges per vertex
! 40-core machine with 2-way hyperthreading
40 
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20 

10 

0 

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 
Number of threads Number of threads 

! 31.8x speedup on 40 cores with hyperthreading
! Serial BFS is 54% faster than parallel BFS on 1

thread
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Golden Rule of Parallel Programming 

Never write nondeterministic Never
parallel programs. 

33

They can exhibit anomalous behaviors, 
and it’s hard to debug them. 
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Silver Rule of Parallel Programming 

Never Never write nondeterministic 
parallel programs parallel programs

— 
parallel programsparallel programs

— but if you must* 
parallel programsparallel programs

but if you must* — but if you must* but if you must* but if you must* but if you must* but if you must* but if you must* 
always devise a test strategy always devise a test strategy 

to control the nondeterminism! 

34

Typical test strategies 
• Turn off nondeterminism.
• Encapsulate nondeterminism.
• Substitute a deterministic alternative.
• Use analysis tools.

*E.g., for performance reasons.
© 2008-2018 by the MIT 6.172 Lecturers 



   

 
  

   
    

    

 
  

 
      

  
       

   

  
 

  

      
     

Dealing with nondeterminism 
BFS(Offsets, Edges, source) { 

parent, frontier, frontierNext, and degrees are arrays 
cilk_for(int i=0; i<n; i++) parent[i] = -1; 
frontier[0] = source, frontierSize = 1, parent[source] = source; 

while(frontierSize > 0) {
cilk_for(int i=0; i<frontierSize; i++)

degrees[i] = Offsets[frontier[i]+1] – Offsets[frontier[i]]; 
Nondeterministic!perform prefix sum on degrees array

cilk_for(int i=0; i<frontierSize; i++) { 
v = frontier[i], index = degrees[i], d = Offsets[v+1]-Offsets[v]; 
for(int j=0; j<d; j++) {

ngh = Edges[Offsets[v]+j]; 
if(parent[ngh] == -1 && compare-and-swap(&parent[ngh], -1, v)) { 

frontierNext[index+j] = ngh; 
} else { frontierNext[index+j] = -1; } 

} 
} 
filter out “-1” from frontierNext, store in frontier, and update frontierSize to be 

the size of frontier (all done using prefix sum) 
} 

} 
© 2008-2018 by the MIT 6.172 Lecturers 35 



BFS(Offsets, Edges, source) { 
//omitted some initialization code 
cilk_for(int i=0; i<n; i++) parent[i] = !; 
while(frontierSize > 0) { 

compute degrees array and perform prefix sum

 

   

 

  
  

  
  

  
 

   

     

   

 

 
   

 
 

 

Deterministic parallel BFS 

 on it 
cilk_for(int i=0; i<frontierSize; i++) {  //phase 1 

v = frontier[i], index = degrees[i], d = Offsets[v+1]-Offsets[v]; 
for(int j=0; j<d; j++) { //can be parallel 

Two phases over the 
outgoing edges 

BFS(Offsets, Edges, source) {
//omitted some initialization code
cilk_for(int i=0; i<n; i++) parent[i] = !;
while(frontierSize > 0) {

compute degrees array and perform prefix sum on it

writeMin(addr, newval):
oldval = *addr 
while(newval < oldval): 

if(CAS(addr, oldval, newval)): return 
else: oldval = addr* array and perform prefix sum on it

//phase 1
], d = Offsets[v+1]-Offsets[v];

Two phases over the 
outgoing edges

On 32 cores, (an
optimized version of) 

deterministic BFS 
is 5—20% slower than 
nondeterministic BFS 

ngh = Edges[Offsets[v]+j]; Smallest value gets written 
writeMin(&parent[ngh], v); } 

}
cilk_for(int i=0; i<frontierSize; i++) {  //phase 2 

v = frontier[i], index = degrees[i], d = Offsets[v+1]-Offsets[v]; 
for(int j=0; j<d; j++) { //can be parallel 

ngh = Edges[Offsets[v]+j]; 
Check if “won” if(parent[ngh] == v)  { 

parent[ngh] = -v; //to avoid revisiting 
frontierNext[index+j] = ngh; } 

else { frontierNext[index+j] = -1; }} 
} 
filter out “-1” from frontierNext, store in frontier, and update frontierSize 

}} !"#$%&'()*(+,&,,"%-.(/*()011"23.(4.(502&672.(728(4*(!-#2*(!"#$%"&''()*$#$%+,",-#,.)/&%&''$')0'12%,#3+-)4&")5$)6&-#7)//"// 9:;9* 
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! 
DIRECTION-OPTIMIZING 
BREADTH-FIRST SEARCH 



 

 

  

 

 

 

      

       

Growth of frontiers 
Random graph Power law graph 
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Iteration number Iteration number 

! For many graphs, frontier grows rapidly and
then shrinks

! Most of the work done with frontier (and sum of
out-degrees) is large
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Two ways to do BFS 

11

10

9

13 

14 

1 

4 

3 

2 

 

11 

10 

9 

Top-down 

Bottom-up ! 

! 

Bottom-up is better 
when frontier is 
large and many 
vertices have been 
visited 
! Reduces number of

edges traversed 

Top-down is better 
when frontier is 
small 

Which one 
to use? 

39 
© IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

https://people.eecs.berkeley.edu/~sbeamer/pubs/beamer-sc2012.pdf


   

 
      

  
  

 

   
   

  
        

     
   

     
  

    
 

 
  

   
   

Direction-optimizing BFS 
• Choose based on frontier size (Idea by Beamer, 

Asanovic, and Patterson in Supercomputing 2012) 

Top-down Bottom-up 

• Loop through frontier for all vertices v in parallel: 
if parent[v] == -1: vertices and explore for all neighbors ngh of v: 

unvisited neighbors if ngh on frontier: 
parent[v] = ngh; 
place v on frontierNext; 
break; 

• Efficient for small frontiers • Efficient for larger frontiers 
• Updates to parent array is • Update to parent array need 

atomic not be atomic 
• Threshold of frontier size > n/20 works well in practice 
∙ Can also consider sum of out-degrees 

• Need to generate “inverse” graph if it is directed 
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Representing the frontier 
• Sparse integer array 
∙ For example, [1, 4, 7] 

• Dense byte array 
∙ For example, [0, 1, 0, 0, 1, 0, 0, 1] (n=8) 
∙ Can further compress this by using 1 bit per vertex 

and using bit-level operations to access it 

• Sparse representation used for top-down 
• Dense representation used for bottom-up 

• Need to convert between representations 
when switching methods 
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Direction-optimizing BFS performance 

8 
BFS on 40 cores with hyperthreading 

Bottom-up 
7 

6 

5 Top-down 
4 

3 

2 Direction-optimizing 
1 (bottom-up if frontier 

size > n/20; otherwise 0 

R
u
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n
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g
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d
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top-down) Random Power-law 

! Benefits highly dependent on graph 
! No benefits if frontier is always small (e.g., on 

a grid graph or road network) 
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Ligra Graph Framework 

procedure EDGEMAP(G, frontier, Update, Cond): 
if (size(frontier) + sum of out-degrees > threshold) then: 

return EDGEMAP_DENSE(G, frontier, Update, Cond); 
else: 

return EDGEMAP_SPARSE(G, frontier, Update, Cond); 

! "#$%&'%(%$)*&+,)(&-./+&0123 
! 45'$) 6$)7%8#$9&'%(%$)*5:%/&;5$%<+5#(=#>+575:)+5#( 
+#&7)(?&#+,%$&>$#@*%7/ 
! 1#$&%A)7>*%B&@%+8%%((%//&<%(+$)*5+?B&<#((%<+%;&<#7>#(%(+/B 
/>)$/%&C)'%D)(9B&/,#$+%/+&>)+,/B&%<<%(+$5<5+?&%/+57)+5#(B 
'$)>,&<*./+%$5('B&9=<#$%&;%<#7>#/5+5#(B&/%+&<#E%$B&%+<F 

Source: Julian Shun and Guy Blelloch. Ligra: A Lightweight Graph Processing Framework for 
Shared Memory, ACM Symposium on Principles and Practice of Parallel Programming 2013 
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! 
GRAPH COMPRESSION 
AND REORDERING 



Graph Compression on CSR 

0 4 5 11 

2 7 9 16 0 1 6 9 12 !!!" 

0&/'&1"23%""""""""4""""""""""5""""""""""6"""""""""7 0&/'&1"23%""""""""4""""""""""5""""""""""6"""""""""7

2 7

0&/'&1"23%""""""""4""""""""""5""""""""""6"""""""""7

1

 

   
  

#$$%&'% 

()*&% 

!!!" 

Sort edges and encode 
differences 

2 5 2 7 -1 -1 5 3 3 !!!" 
+,-./&%%&) 
()*&% 

6"8 4"9"6" :"8 6"9";" 5"8 6"9"85" 

< For each vertex v: 
< First edge: difference is Edges[Offsets[v]]-v 
< i’th edge (i>1): difference is Edges[Offsets[v]+i]-

Edges[Offsets[v]+i-1] 
< Want to use fewer than 32 or 64 bits to store 

each value 
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Variable-length codes 
! k-bit (variable-length) codes 
! Encode value in chunks of k bits 
! Use k-1 bits for data, and 1 bit as the “continue” bit 

! Example: encode “401” using 8-bit (byte) codes 
! 

0 0 0 0 0 1 10 0 1 0 0 0 1

In binary: 1 1 0 0 1 0 0 0 1

1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1

“continue” bit

7 bits for data 

“continue” bit 

! Decoding is just encoding “backwards” 
! Read chunks until finding a chunk with a “0” continue bit 
! Shift data values left accordingly and sum together 

! Branch mispredictions from checking continue bit 
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Encoding optimization 
! Another idea: get rid of “continue” bits 

x1 x2 x3 x4 x5 x6 x7 x8 …… 
Number of bytes …… required to encode 1 2 2 2 2 2 2 2 

Header 

each integer 
Use run-length encoding 

0 1 0 1 1 0 0 1 

Number of bytes 
per integer 

Size of group 
(max 64) 

…… ……
Integers in group 

encoded in byte chunks 

! Increases space, but makes decoding cheaper (no 
branch misprediction from checking “continue” bit) 

 

 

 

    

  
 

 

        
      

Source: Julian Shun, Laxman Dhulipala and Guy Blelloch. Smaller and Faster: Parallel Processing 
of Compressed Graphs with Ligra+, IEEE Data Compression Conference 2015 
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Decoding on-the-fly 
! Need to decode during the algorithm 
! If we decoded everything at the beginning we would 

not save any space! 

2 5 2 7 9 2 1 3 3 Frontier Frontier

-4 

5 10 

30 5 

6 3 1 3 5 6 2 

In parallel, all vertices 
can decode their edges 

"# 

$% 

&& 

' 

( 

2 

-16 2 19 1 4 2 5 3 

! Each vertex decodes its edges sequentially 
! What about high degree vertices? 
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Parallel decoding 

-1 2 4 3 16 2 1 5 8 19 4 1 23 14 12 1 9 10 3 5 

High-degree 
vertex 

Chunks of size T 
! 

! 

-1 2 4 3 16 2 27 5 8 19 4 1 -1 27 87 14 12 1 9 10 87 ! 

" T=100 to 10,000 Encode first entry relative to source vertex 
works well in 

All chunks can be practice 
decoded in parallel! 

Source: Julian Shun, Laxman Dhulipala and Guy Blelloch. Smaller and Faster: Parallel Processing 
of Compressed Graphs with Ligra+, IEEE Data Compression Conference 2015 
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Good compression for most graphs 
! Space to store graph, which dominates the actual 

space usage for most graphs 
Relative space compared to uncompressed graph Uncompressed 

1 
Compressed (Byte) 

0.8 

0.6 Compressed (Byte-
RLE) 0.4 
Compressed (Nibble 

0.2 (4-bit codes)) 
0 

d J s J t 0 r n m i L t L u 4 e o h
o 

o r - n - k t i g c e r 2 i d t m t n a n - o a o O w u a D s P c - p
k T - Y 3 - k t m l u i o n c c 

! Can further reduce space but 
need to ensure decoding is fast 

Average space used 
relative to uncompressed 

Byte: 53% 
Byte-RLE: 56% 
Nibble: 49% 

Source: Julian Shun, Laxman Dhulipala and Guy Blelloch. Smaller and Faster: Parallel Processing 
of Compressed Graphs with Ligra+, IEEE Data Compression Conference 2015 
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What is the cost of decoding on-the-fly? 
Self-Normalized 40-core Running Time Normalized 40-core Running Time 

50 2 Uncompressed 
40 1.5 
30 

Compressed 1 
20 (Byte) 

0.5 
10 

Compressed 0 
(Byte-RLE) 

Compressed 
(Nibble) 

! In parallel, compressed can outperform uncompressed 
! These graph algorithms are memory-bound and memory 

subsystem is a bottleneck in parallel (contention for resources) 
! Spends less time on memory operations, but has to decode 

! Decoding has good speedup so overall speedup is higher 
! All techniques integrated into Ligra framework 

Source: Julian Shun, Laxman Dhulipala and Guy Blelloch. Smaller and Faster: Parallel Processing 
of Compressed Graphs with Ligra+, IEEE Data Compression Conference 2015 
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Graph Reordering 
! Reassign IDs to vertices to improve locality 
! Goal: Make vertex IDs close to their neighbors’ IDs 

and neighbors’ IDs close to each other 

4 1 

0 2 

3 0 3 

1 2 

4 

5 5 

Sum of differences = 21 Sum of differences = 19 

! Can improve compression rate due to smaller 
“differences” 

! Can improve performance due to higher cache hit 
rate 

! Various methods: BFS, DFS, METIS, by degree, etc. 
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Summary 

• Real-world graphs are large and sparse 
• Many graphs algorithms are irregular and 

involve many memory accesses 
• Improve performance with algorithmic 

optimizations and by creating/exploiting 
locality 

• Optimizations may work for some graphs, but 
not others 
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