
Beta Implementation Worksheet

Unpipelined Beta
ILL

XAdr OP JT

Reset: 0x80000000
4 3 2 1 0PCSEL Illop: 0x80000004

Reset

Ra: <20:16> Rb: <15:11>
0 1

Rc: <25:21>

C: SXT(<15:0>)

WA

JT
PC+4+4*SXT(C)

01
XAdr: 0x80000008

RESET

ALUFN[5:0] Operation Output value Y[31:0]
000011 CMPEQ Y = (A == B)
000101 CMPLT Y = (A < B)
000111 CMPLE Y = (A ≤ B)
010000 ADD Y = A+B
010001 SUB Y = A−B
101000 AND Y[i] = A[i] · B[i]
101110 OR Y[i] = A[i] + B[i]
100110 XOR Y[i] = A[i] ⊕ B[i]

101001 XNOR Y[i] = ~(A[i] ⊕ B[i])
101010 “A” Y = A
110000 SHL Y = A << B
110001 SHR Y = A >> B
110011 SRA Y = A >> B (sign extended)

PC 00

IA
A Instruction

Memory

+4 D

ID
PC+4

RA2SEL
+ WASEL

RA1 RA2
XP

4*SXT(C) Register1
Rc: <25:21> 0

WA File
WD

RD1 RD2 WE WERF
Z

RESET IRQ Z

01 1 0ASEL BSEL

Control Logic
ALUFN
ASEL

MWD BSEL
MOE ALU

A B
MWR WD WEALUFN DataMWR MOE

PCSEL MA Memory
OE

RA2SEL Adr

WASEL
RD

MRD
WDSEL
WERF PC+4

0 1 2 WDSEL Control logic

R
E
S
E
T

I
R
Q

O
P

O
P
C

L
D

L
D
R

S
T

J
M
P

B
E
Q

B
N
E

I
L
L
O
P

ALUFN[5:0] -- -- F(op) F(op) "+" "A" "+" -- -- -- --

ASEL -- -- 0 0 0 1 0 -- -- -- --

BSEL -- -- 0 1 1 -- 1 -- -- -- --

MOE -- -- -- -- 1 1 0 -- -- -- --

MWR 0 0 0 0 0 0 1 0 0 0 0

PCSEL[2:0] -- 4 0 0 0 0 0 2 Z ? 1 : 0 Z ? 0 : 1 3

RA2SEL -- -- 0 -- -- -- 1 -- -- -- --

WASEL -- 1 0 0 0 0 -- 0 0 0 1

WDSEL[1:0] -- 0 1 1 2 2 -- 0 0 0 0

WERF -- 1 1 1 1 1 0 1 1 1 1

6.004 Worksheet - 1 of 8 - Beta Implementation

Problem 1.

For this problem assume that each register has been initialized to the value 0x0000??00 where
“??” is the register number as a two-digit hex number. So R0 is initialized to 0x00000000, R1 to
0x00000100, …, and R30 to 0x00001E00. R31 of course always reads as 0.

For each instruction below, please indicate the values that will be found in the unpipelined Beta
datapath just before the end of the clock cycle in which the instruction is executed. If the value
doesn’t matter since it’s not used during the execution of the instruction or can’t be determined,
write “−”.

. = 0x100
SHLC(R30,8,R16)

. = 0x100
SUB(R5,R3,R7)

6.004 Worksheet - 2 of 8 - Beta Implementation

. = 0x100
LD(R3,-0x200,R7)

// hex for instruction
0x60E3FE00

. = 0x100
ST(R3,-0x200,R7)

6.004 Worksheet - 3 of 8 - Beta Implementation

. = 0x100
JMP(LP)

. = 0x100
BEQ(R31,.+0x80,LP)

6.004 Worksheet - 4 of 8 - Beta Implementation

Problem 2.

Consider adding the following instructions to the Beta instruction set, for implementation on the
Beta hardware shown in lecture (see diagram included in the reference material at the end of this
quiz). You’re allowed to change how the control signals are generated but no modifications to
the datapath are permitted.

For each instruction either fill in the appropriate values for the control signals in the table below
or put a line through the whole row if the instruction cannot be implemented using the
existing Beta datapath. Use “—“ to indicate a “don’t care” value for a control signal. The values
can be a function of Z (which is 1 when Reg[Ra] is zero).

LDX(Ra, Rb, Rc) // Load indexed
EA ← Reg[Ra] + Reg[Rb]
Reg[Rc] ← Mem[EA]
PC ← PC + 4

STX(Ra, Rb, Rc) // Store indexed
EA ← Reg[Ra] + Reg[Rb]
Mem[EA] ← Reg[Rc]
PC ← PC + 4

MVZC(Ra, literal, Rc) // Move constant if zero
If Reg[Ra] == 0 then Reg[Rc] ← SXT(literal)
PC ← PC + 4

SOB(Ra, literal, Rc) // Subtract one and branch
PC ← PC + 4
EA ← PC + 4*SEXT(literal)
tmp ← Reg[Ra]
Reg[Rc] ← Reg[Ra] – 1
if tmp != 0 then PC ← EA

ARA(Ra, literal, Rc) // Add Relative Address
Reg[Rc] ← Reg[Rc] + PC + 4 + 4*SEXT(literal)
PC ← PC + 4

(FILL IN TABLE BELOW)

Instr ALUFN WERF BSEL WDSEL MOE MWR RA2SEL PCSEL ASEL WASEL

LDX

STX

MVZC

SOB

ARA

6.004 Worksheet - 5 of 8 - Beta Implementation

Problem 3.

Ben Bitdiddle is proposing the short assembly language program shown to .=0
the right as a manufacturing test to ensure the correct operation of the

Test: LD(R31,X,R0) Control ROM. He is assuming – and you may too – that the Beta datapath
ADDC(R0,1,R1) components (e.g., Memories, ALU, muxes, register file, adders) are working

correctly and that any errors in execution are due to faulty signals from the BNE(R1,L1,R31)
Control ROM. Ben’s plan is to run the program then look at the value in the ADDC(R1,1,R1)
memory location labeled ANS. If the value is 0x6004, the test passes, L1: ST(R1,ANS,R31)
otherwise the Beta being tested is declared faulty and discarded. HALT()

X: .LONG(0x6003) For each of the following faults, indicate the value that the faulty Beta will
store into ANS. ANS: .LONG(0)

(A) RA2SEL is stuck at the value 0.

Value stored in ANS by faulty Beta: _______________

(B) WDSEL[1:0] is stuck at the binary value 00.

Value stored in ANS by faulty Beta: _______________

(C) PCSEL[2:0] is stuck at the binary value 000.

Value stored in ANS by faulty Beta: _______________

Problem 4. Beta Implementation

Consider the assembly language program shown to the right. . = 0
Assume that all register values are initialized to 0, execution starts LD(R31,X,R1)
at PC=0 and halts when HALT() is executed. CMPLTC(R1,0,R2)

BF(R2,end,R3)
This program is run on 4 different broken Betas, where each Beta SUB(R31,R1,R1) has a specified control signal stuck at the specified value, i.e., the ST(R1,X,R31) control signal value is fixed and is not affected by the value

END: HALT() produced by the Beta’s CTL module. For each broken Beta,
please give the value in registers R1, R2, R3, and the location X: X: LONG(-42)
after the programs halts. Assume that any don’t care control
signal values are 0.

Broken control signal
Final value in

R1 R2 R3 Location X:

RA2SEL stuck at 0

WDSEL stuck at 0b00

WASEL stuck at 1

WERF stuck at 1

6.004 Worksheet - 6 of 8 - Beta Implementation

Problem 5.

In this problem, you will consider a number of plausible hardware faults in an otherwise working
Beta processor; you may want to consult the diagram and documentation on the backs of pages of
this quiz. Each of the faults involves changing a particular output of the control logic to some
new (incorrect) constant value. In each case, you are to evaluate the impact of the fault on each
of the following Beta instructions:

I1: ST(R0, 0x100, R1)
I2: JMP(LP, R31)
I3: BEQ(R31, .+4, R0)
I4: SUB(R1, R0, R0)

For each of the following faults, identify which (if any) of the above instructions will fail to work
properly – that is, if the fault might effect the processor state (register and PC values) after the
execution of the instruction. Be careful: some of these are tricky!

(A) ALUFN stuck at code for “-” (32-bit SUBTRACT)

Which instruction(s) fail? Circle all applicable, or NONE: I1 I2 I3 I4 NONE

(B) RA2SEL stuck at 1

Which instruction(s) fail? Circle all applicable, or NONE: I1 I2 I3 I4 NONE

(C) WERF stuck at 0

Which instruction(s) fail? Circle all applicable, or NONE: I1 I2 I3 I4 NONE

(D) BSEL stuck at 0

Which instruction(s) fail? Circle all applicable, or NONE: I1 I2 I3 I4 NONE

Problem 6.

(A) The Beta executes the assembly program below starting at location 0 and stopping when it
reaches the HALT() instruction. Please give the values in the indicated registers after the
Beta stops. Write the values in hex or write “CAN’T TELL” if the values cannot be
determined.

. = 0 Value left in R0 or “CAN’T TELL”: 0x_______________
LD(r31, X, r0)
CMPLE(r0, r31, r1)
BNE(r1, L1, r2) Value left in R1 or “CAN’T TELL”: 0x_______________ ADDC(r31, 1, r0)

L1: HALT()

X: LONG(0x87654321) Value left in R2 or “CAN’T TELL”: 0x_______________

6.004 Worksheet - 7 of 8 - Beta Implementation

(B) Redo part (A) but this time assume that all the control signals going to the datapath from the
control logic are stuck at logic 0, except for WERF which operates as expected. Note that
when ALUFN[4:0] = 0b00000, the ALU computes A+B.

. = 0 Value left in R0 or “CAN’T TELL”: 0x_______________
LD(r31, X, r0)
CMPLE(r0, r31, r1)
BNE(r1, L1, r2) Value left in R1 or “CAN’T TELL”: 0x_______________ ADDC(r31, 1, r0)

L1: HALT()

X: LONG(0x87654321) Value left in R2 or “CAN’T TELL”: 0x_______________

(C) Bettah Beta Inc. (you can tell they’re based in Boston!) is proposing a new Beta instruction
TCLR that sets Rc to the current value of a memory location whose address is in Ra and
writes a zero to that location, all in a single cycle. They are assuming that main memory
works as it does in JSim: its read ports are combinational and the write port takes a CLK
signal and performs the write at the end of the current cycle – so the same memory location
can be read and written in the same clock cycle.

Here’s their draft entry for the Beta reference manual:

Usage: TCLR(Ra,Rc)
Opcode: 011010 Rc Ra 11111 unused
Operation: PC ¬ PC + 4

EA ¬ Reg[Ra]
Reg[Rc] ¬ Mem[EA]
Mem[EA] ¬ 0

The contents of register Rc are set to the contents of the memory location whose address is
in Ra. Then, at the end of the cycle, that memory location is set to 0.

Please fill in the appropriate values for the control signals that will cause the datapath to
implement the correct operations OR briefly explain why TCLR cannot be implemented
with the existing Beta datapath in a single cycle.

Fill in table:

Instr ALUFN WERF BSEL WDSEL MOE MWR RA2SEL PCSEL ASEL WASEL

TCLR

6.004 Worksheet - 8 of 8 - Beta Implementation

MIT OpenCourseWare
https://ocw.mit.edu/

6.004 Computation Structures
Spring 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

