14.381: Statistics

Problem Set 1

Problems 1-2 and 4-5 are for practice. They will be discussed at recitation.

One of the problems from the problem sets will appear on the mid-term exam.

- 1. Let X and Y be random variables with finite variances.
 - (i) Show that

$$\min_{g(\cdot)} E(Y - g(X))^{2} = E(Y - E(Y \mid X))^{2},$$

where $g(\cdot)$ ranges over all functions.

- (ii) Assume m(X) = E(Y|X) and write Y = m(X) + e. Show that Var(Y) = Var(m(X)) + Var(e).
- (iii) If E(Y|X=x)=a+bx find E(YX) as a function of moments of X.
- 2. Show that if a sequence of random variables ξ_i converges in distribution to a constant c, then $\xi_i \stackrel{p}{\to} c$.
- 3. (The required problem) Let $\{X_i\}$ be independent Bernoulli (p). Then $EX_i = p$, $Var(X_i) = p(1-p)$. Let $Y_n = \frac{1}{n} \sum_{i=1}^n X_i$.
 - (a) Describe the asymptotic behavior of Y_n .
 - (b) Show that for $p \neq \frac{1}{2}$ the estimated variance $Y_n(1-Y_n)$ has the following limit behavior

$$\sqrt{n}(Y_n(1-Y_n)-p(1-p)) \Rightarrow N(0,(1-2p)^2p(1-p)).$$

(c) Prove that if (i) $\frac{\sqrt{n}}{\sigma}(\xi_n - \mu) \Rightarrow N(0, 1)$ (ii) g is twice continuously differentiable: $g'(\mu) = 0$, $g''(\mu) \neq 0$, then

$$n(g(\xi_n) - g(\mu)) \Rightarrow \sigma^2 \frac{g''(\mu)}{2} \chi_1^2.$$

Note. You may assume that g has more derivatives, if it simplifies your life. Use O_p and o_p notation wherever possible.

Note: χ_1^2 is a chi-square distribution with 1 degree of freedom. Let ξ_1, \ldots, ξ_p be i.i.d. N(0,1), then $\chi_p^2 = \sum_{i=1}^p \xi_i^2$.

(d) Show that for $p = \frac{1}{2}$

$$n\left[Y_n(1-Y_n) - \frac{1}{4}\right] \Rightarrow -\frac{1}{4}\chi_1^2$$

Curious fact: Note that $Y_n(1-Y_n) \leq \frac{1}{4}$, that is, we always underestimate the variance for $p = \frac{1}{2}$.

- 4. (Multivariate limit theorems) Let $\mathbf{X} = (X_1, ..., X_m)'$ and $\mathbf{X}_n = (X_{n1}, ..., X_{nm})'$ be m-dimensional random vectors. Define a norm $\|\mathbf{X}\| = \sqrt{X_1^2 + ... + X_m^2}$.
 - (a) Show that $E||\mathbf{X}|| < \infty$ if and only if $E|X_i| < \infty$ for all i = 1, ..., m.
 - (b) Define $\mathbf{X}_n \to^p \mathbf{X}$ if for any $\varepsilon > 0$, $\lim_{n \to \infty} P\{\|\mathbf{X}_n \mathbf{X}\| > \varepsilon\} = 0$. Show $\mathbf{X}_n \to^p \mathbf{X}$ if and only if $X_{ni} \to^p X_i$ for all i = 1, ..., m.
 - (c) Define $\mathbf{X}_n \Rightarrow \mathbf{X}$ if and only if for any non-random m-dimensional vector λ such that $\|\lambda\| = 1$ we have $\lambda' \mathbf{X}_n \Rightarrow \lambda' \mathbf{X}$. Formulate and prove some multi-dimensional Central Limit Theorem for independent but not identically distributed random vectors. Hint: use some formulation of one-dimensional Linderberg-Fuller's theorem.
- 5. Prove the following statements:
 - (a) If $X_n = O_p(n^{-\delta})$ for some $\delta > 0$ then $X_n = o_p(1)$;
 - (b) If $X_n = o_p(b_n)$ then $X_n = O_p(b_n)$;
 - (c) If $X_n = O_p(n^{\alpha})$ and $Y_n = O_p(n^{\beta})$, then $X_n Y_n = O_p(n^{\alpha+\beta})$ and $X_n + Y_n = O_p(\max\{n^{\alpha}, n^{\beta}\})$;
 - (d) If $X_n = O_p(n^{\alpha})$ and $Y_n = o_p(n^{\beta})$, then $X_n Y_n = o_p(n^{\alpha+\beta})$.

MIT OpenCourseWare https://ocw.mit.edu

14.381 Statistical Method in Economics Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms