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1 Short-term evolution of atmospheric CO,

We have spoken of volcanism as the long-term source of COs.

Among the other sources, the respiration flux is about 3 orders of magnitude
greater than volcanism, and fossil-fuel combustion is about one and one-half
orders of magnitude greater.

Whatever the source, we consider the following questions:



e How can we identify the source?

e How long does COs stay in the atmosphere?

We shall answer these questions in a precise way that pertains to short,
roughly decadal, time scales.

We first consider the growth of atmospheric COs since the mid-20th century.

1.1 The Keeling curve

Atmospheric CO concentrations have been measured monthly at Mauna Loa
Observatory, Hawaii, since 1958.

The measurements, begun by C. David Keeling, report CO, concentration as
a dry mole fraction: the number of molecules of carbon dioxide divided by
the number of molecules of dry air multiplied by one million (ppm).

The resulting plot is known as the Keeling curve:
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Data from P. Tans, NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/).

Studies of COs in ice cores show that this increase is the latest chapter in
process that started about 200 years ago:
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Data from the Law Dome ice core, Antarctica [1].
An obvious question arises: Why is COs increasing?

To provide a precise answer, we first digress to a discussion of carbon isotopes.

1.2 Carbon isotopes

1.2.1 Natural abundance

Reference: Emerson and Hedges [2].
Every atom of carbon has Z = 6 protons. Z is the atomic number.
When there is no net charge, each atom of C has 6 electrons.

However the mass number A varies:
A =12, 13, or 14.

The variation in mass number derives from the variations in the neutron
number

N=A-Z
Each isotope of carbon corresponds to a specific neutron number N, and
therefore mass number A. These are named according to their mass number:

carbon-12, carbon-13, carbon-14,
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and are generally written symbolically as
12C, 130’ 14C.

14 is radioactive, and >C and '3C are stable.

About 98.9% of Earth’s carbon is '?C and nearly all the rest is 13C; thus

ISC
— ~ 1072
C

where the denominator represents the sum of all carbon. '*C is much less
abundant:

14C

— <1072

C Y

14 is naturally produced in the upper atmosphere by cosmic rays, which can
shatter a nucleus (N or O), releasing neutrons, some of which are absorbed

by N such that
EN+n" =15 C4+ph+e.

Thus N is converted to *C, releasing a proton and an electron.

1.2.2 Radioactive decay

14C, being unstable, converts back to "N.

To understand the rate at which such radioactive decay occurs, we consider
briefly the following general model.

Consider the reaction "

A——>Products,

signifying the disappearance or extinction of A with rate constant k.

The meaning of the rate constant k is that, in a small interval of time At <
]{3_1
Probability(an arbitrary atom decays) ~ kAt.

This probability applies to each atom independently, meaning that, whatever
the quantity of A, a fraction kKAt of A reacts in an interval At.
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Thus if we have N atoms of A at time ¢, after a small time At, we have
N(t+ At) = N(t) — kAt N(t)

and therefore
N(t+ At) — N(t)

= —kN.
At
Letting At — dt, we have the first-order decay
dN
— = —kN
dt

with solution
N(t) = N(0)e ™.

The above development essentially defines a first-order decay process.

Its application to radioactive decay requires merely the assumption that each
atom decays with the same constant probability.

For “C, the rate constant
1

k= :
8267 yr
The half-life t,/; is the time it takes for one-half of A to decay. Thus
1 In 2

For C,
tl/g = 5730 yr.

1.2.3 Notation

Reference: Emerson and Hedges [2].
Geochemists use a very special notation for isotopic abundance.
The first component of the notation is the abundance ratio
n
()
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where n = 13 or 14.

Geochemists then compare the R obtained on a given sample to R obtained
for a “standard” sample. Noting the latter ratio as Rsq, they define the

1sotopic composition
§"C = <M> x 1000.
Rstd

The factor of 1000 is included because the factor in parentheses is often of
order 1072-1073, so that when multiplied by 1000 it becomes of order 1-10.
One then speaks of § in units of “per mil”, which is equivalent to “parts per
thousand,” and is written with the symbol %o, not to be confused with the
per cent sign % (parts per hundred).

Analyses of *C contain even greater notational complexity.

The problem arises from the frequent desire to compare a particular mea-
surement of §14C (say, of atmospheric CO»), to the value of §'*C that would
be obtained in the absence of anthropogenic perturbation.

Consequently geochemists define the following “cap delta” notation:
4 _ 14 14
AC=6"C— (5 C)o

The second term on the RHS is too complicated to discuss here, but it has the
property that if §1*C is measured from wood formed in 1850, then AC = 0.

The point is that AC = 0 represents a “typical” value that represents a
balance between atmospheric *C production and decay.

1.3 The origin of the recent CO, rise

COq levels undergo natural fluctuations. Thus it is appropriate to ask whether
the recent rise in COq levels are the result of natural changes rather than the
burning of fossil fuels.

We can use the "C content of the atmosphere to help answer this question.
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The figure below shows the “C composition of tree rings associated with the
period 1820-1954 [3].
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Over the last 50 years, AYC decreases by about 20%.

Over such a time period, natural variations in the cosmic ray flux should
produce changes no greater than that of experimental error (a few per mil).

The combustion of fossil fuels, on the other hand, should create such a de-
crease, because the fuels, being derived from geologically ancient organic
matter, are entirely free of 14C.

Thus the *C content of the atmosphere is diluted by the burning of fossil
fuels, so that A™C declines.

This phenomenon, known as the Suess effect, is one way to trace the source
of the recent COs rise to human activities.

1.4 The bomb spike

14(C can also be used to address the short-term residence time of atmospheric

COa.

Nuclear weapons tests in the 1950s and early 1960s produced large amounts
of "C in the atmosphere.

The tests were essentially ended by the Nuclear Test Ban Treaty in October
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Measurements of atmospheric *C show the build-up followed by a decay 4]:

The decrease is far too fast to be associated with radioactive decay.

A log-linear plot shows that the decay is nevertheless exponential, dropping
off like

e T, T~ 17.4 yr.
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The decay is mostly due to “uptake” of C in the oceans, in large part by
diffusion.

1.5 Microscopic model of molecular diffusion

Reference: Berg [5].



To gain some physical insight, we first consider a microscopic model of diffu-
sion.

1.5.1 One-dimensional random walk

Consider a (drunkard’s) random walk along a line:

| A Y I
-3 W -5 DS 25 3

e Start at time ¢ = 0 and position x = 0.
e Every 7 seconds, take a random step s to the left or right.

e Assume equiprobable steps of equal size ¢:

P(s=6) = P(s = —8) = 1/2.

e No memory (statistically independent jumps).

We think of this as a caricature of real diffusion (e.g., Brownian motion).

Now consider an ensemble of N independent random walks (i.e., many such
drunkards, each acting with no awareness of the others).

Let x;(n) be the position of the ith walker after n steps. Then
zi(n) = z;(n — 1) + s.
The mean position of a large ensemble of walkers after n steps is

(x(n)) = lim %Z zi(n —1) + )

N—oo



Here we have used the angle brackets (-) to denote the ensemble average.
The result shows that the mean position is independent of n, thus retaining
permanent memory of the initial condition:

(x(n)) = 0.

Intuitively we understand that there should nevertheless be a wide spread in
the probability P(z) that increases with time:

04

We characterize this spread by the root-mean-square displacement <a:2(n)>1/ 2

To calculate it, first write

zi(n) = [zi(n—1)+ 8]2
= 22(n — 1) + 2sx;(n — 1) + s°.

Because the mean of a sum of random variables is the sum of the means, the
mean-square displacement in the ensemble is

(z*(n)) = (*(n—1)) +2(sz(n—1)) + (s*)
= (2*(n—1)) +2(s) (x(n — 1)) + (s*)
= (2*(n—1)) + 6%

In the second relation, we have replaced the average of a product with the
product of averages because s is uncorrelated to z. (This also may be deduced
from the observation that the walk contains no memory of past steps.)

Note that our result is in the form of a recursion, which is readily put in the
simpler form

(z*(n)) = nd”

10



Since t = n7, we have
(%) = 0°t/T = 2Dt,
where we have defined the diffusion coefficient
52
=5
Thus the mean-squared displacement increases linearly with time, like 2D1.

Consequently the root-mean-square displacement increases like the square-
root of time:

D

(2?)'? = (2Dt)"/*.

Intuitively we understand that the width of a bell-shaped distribution P(z,t)
increases like v2Dt.

Indeed, in the plot above,

<:192>1/2 =1, 2,and 4
corresponding to times ¢ such that

2Dt =1, 4, and 16.

For a small molecule in water, D ~ 107° cm?/s. So imagine you're a bac-
terium (size ~ 107* cm), and you want to know how long some molecular
nutrient will take to diffuse a distance ¢ away from you. Identifying ¢ with

<x2>1/2, the diffusion time 7 is
Td ~~ 62/2]).
Consider two particular cases:
¢ (cm) ‘ 74 ()

107* |5 x 107
1 5 x 104

In other words, the molecule would stay within a length commensurate to a
bug’s size for only about a millisecond. But it would stay within 1 c¢m for
about 14 hours!
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This huge change is a consequence of the quadratic scaling 74 o< £2, a hallmark
of diffusive processes.

In contrast, for a simple advective flow times scale linearly with distance.

1.5.2 Higher dimensions

Before moving on, we first argue that our little toy problem is equally valid
in higher dimensions.

In, say, two dimensions, the random walker is on a plane. In our discrete
approximation, this corresponds to a lattice with a “Manhattan metric,” with
the drunkard originating at his corner bar and moving +¢ in each dimension
at each time step.

Because the drunk’s motion in z is independent of his motion in y,
(o) = (42) = 2D
Since the mean-square distance from the origin is

2 2 2
r=x" +vy°,

we have

<7“2> = 4Dt.

The generalization to higher dimensions is obvious. The point is that we
retain the diffusive scaling ¢? o t.

1.5.3 Macrodynamics: the diffusion equation

We now proceed to derive the diffusion equation from our random walk.

Suppose we have a long tube of cross-section A in which particles undergo
random walks. We are interested in N(z), the number of particles at x (i.e.,
between z — §/2 and x + §/2), along with the particle flux J,.
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How many particles pass through a unit area in unit time, from = to z + 907
And in the other direction?

In other words, what is the net flux J,7

We imagine a boundary between x and x + J. During one time step 7, half
the particles at x cross over to the right, and half the particles at x + d cross
over to left.

N ) : N(xr§
N P |
K i x4+ S

)
i

The net flux (number particles per unit area per unit time) is

Qk:(N@f_N@+®>1

2 2 ATt

where the factor of 1/2 comes from the fact that half the particles at each
location move away from the boundary rather than towards it.

Rearranging and multiplying by §2/42,

e (N(“5> N(x))

Ad Ad

Defining the number density or concentration C' = N/A¢ and recalling D =
62 /27, we have

Clx +0) — C(x)

Jx — _D
0
Letting 6 — 0, we obtain
oC
J, = —D—.
ox

This is Fick’s (first) law: the concentration flux goes down the concentration
gradient, at a rate given by the diffusivity D.

Fick’s law is an example of a “linear-response relation.” Others include Ohm’s
law and Hooke’s law. The linearity is essentially an assumption, which follows
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in our case from assuming that the two sides of the boundary through which
particles flow act independently of one another.

Now consider particles flowing into and out of a box with cross-sectional area
A perpendicular to and width ¢ parallel to the z-axis.

)

o (et

]
X XS

The concentration C(¢) inside the box changes with the net flux into it.

In 7 units of time the concentration changes as

Clt+7)—C(t) = (Jo(z) — Ju(z + 5))%

The factor of AT converts the concentration flux to the number of particles
flowing through the face, and the factor of 1/A§ converts that number to a
concentration. Simplifying, we obtain

1 1
;(C’(t +7)— C’(t)) = —E(Jx(x +0) — Jx(x))
Letting 7 — 0 and J — 0, we obtain
oc _ o,
ot Ox
Substituting Fick’s first law for J, then yields the diffusion equation:
oC 0*C
o Vo

These developments can be derived succinctly by an alternative approach.
Let

P, (i) = probability that a random walker is at site ¢ after n steps.
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Since steps to the left and right occur with equal probability, we have

1 1
P,(i) = §Pn_1(z‘ +1) + 5Pn_l(z‘ —1)

Now set
t=nt and x =10

and consider the probability to be spread over an interval of size ¢ so that
P,(i) =0 - p(x,t).
Then ] ]
p(z,t) = §p(.7: +0,t—7)+ §p(.7: —0,t— 7).
Multiplying both sides by 1/7 and rearranging, we have

1 6 1
We recognize the LHS as a finite difference in time and the RHS as a finite
difference of finite differences in space.

Thus in the limit as 7 — 0 and 6 — 0, we have
dp 0?p 52
£ _ pZ Lt D=
ot Ox?’ 27
expressing the diffusion of probability.

Reverting back to the concentration C, note that in higher dimensions, Fick’s
first law is

J=-DVC
and mass conservation yields
oC >
— ==V - J.
ot
Combining the two, we have
o _ DV?C,
ot

which may be straightforwardly obtained by generalization of our random
walk to higher dimensions.
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Note that our expression of the diffusion equation is precisely the same as
the heat equation we derived purely by continuum arguments in an earlier
lecture.

By rederiving the diffusion equation via a random walk, however, we have
exposed the connection of diffusion to random motion.

One might wonder if the explicit microdynamics matter. For example, do
things change if there is a distribution of step sizes, or waiting times?

A more detailed analysis shows that only the coefficient D changes, not the
diffusion equation itself, provided that the step size and waiting time distri-
butions are not too wide.

Conclusion: The simplest possible random walks are solutions to the diffusion
equation. Consequently:

e We can think about diffusive processes as random walks.

e We can equally think about random walks as diffusive.

1.6 Relaxation to equilibrium

As an elementary application of what we have just learned, suppose that we
have two well mixed (e.g.., stirred) reservoirs of gas separated by permeable
walls a distance ¢ apart from one another.

We assume that the concentration of CO, in reservoir 2 is held fixed at ¢,
and that the concentration ¢y in the first reservoir initially differs from c,.

Cy | e
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In other words, we require that reservoir 1 equilibrate with reservoir 2, and
take reservoir 2 to be so large compared with reservoir 1 that any changes to
its concentration are negligible.

The characteristic time 7 for a molecule of COs to diffuse from one permeable
boundary to the other is
T =46%/D,

where D is the diffusion coefficient.

We assume that the time taken to pass through a permeable wall is much less
than 7. Consequently ¢ is the thickness of a diffusive boundary layer between
the two reservoirs.

Clearly CO, diffuses so that ¢; — ¢o. How, then, does ¢; evolve with time?

The flux J through the boundary layer, from reservoir 1 to 2, is obtained
from Fick’s law:

C — (1
J=-D )
)
J has dimensions
] = L21 M B M
T LI LT

l.e., mass per unit time per unit area.

Letting A represent the area of the boundary between reservoir 1 and 2 and
V1 be the (constant) volume of reservoir 1, we have

dc DA
Vg = /A= e
Defining
C=cC| — Co,
we have
de DA _
— = ——C.
dt Vid

which has the solution
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where the time constant

_Wo

This simple exponential decay is a characteristic of physical problems defined

T

by a single time scale and a linear response relation.

1.7 Air-sea transfer and the decay constant

Reference: Broecker and Peng [6].
We return now to the problem of the decay of the bomb spike.

In essence, we apply the model of the previous section, where reservoir 1 is
the atmosphere and reservoir 2 is the ocean.

The key idea is that the transfer from air to sea occurs through a thin layer
of water, of thickness ¢.

€, ; atwe 5{‘349%

Cea Sceqfece

Above this layer, the atmosphere is considered well mixed, with a constant
concentration of C.

Below the layer, the ocean is also considered well mixed.

Within the layer, there is a diffusion gradient—thus we say that absorption
into the ocean is diffuston-limited.

This model of air-sea transfer is known as the stagnant film model.
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The central problem is to determine the effective thickness ¢ of the diffusive
boundary layer.

1.7.1 Thin-film model
To determine ¢, we make use of the following:

e (C is created in the atmosphere.

e The typical residence time of CO5 in the atmosphere is much shorter
than the radiocarbon decay constant (k=1 = 8267 yr.)

e Nearly all of the decay of *C takes place in the oceans.

Thus the atmosphere is the source, and the oceans a sink.

We therefore expect that, prior to the bomb spike, a steady state in which the
production of *C in the atmosphere is balanced by its decay in the oceans.

Then the differences in the concentration of '*C in the oceans and atmosphere
would be due to a balance between “C absorbed into the oceans at the rate
given by

gas transfer velocity = D/

and the *C “destroyed” in the oceans at the decay time scale k1.

The flux per unit area of *C into the oceans is again given by

D

J=——=(ca—c
5 (c2—cal)
where now
¢, = concentration of *CO, in the water at the air-sea interface
co = '"CO, concentration just below diffusive layer, in the “mixed” layer.

The total input flux is then
UC input = J A,
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where A is the area of the air-sea interface.

The decay of *C in the oceans, on the other hand, is given by
e decay = kc,V,

where ¢, is the average radiocarbon concentration in the whole ocean (essen-
tially the deep ocean), and V, is the volume of the oceans.

Balancing the input with the decay, we have
DA

T<Cl — o) = ke,V,

and therefore the effective thickness of the stagnant film is
5= DA C1 — Co
kL G
V,/A = mean ocean depth ~ 3800 m.

Analyses of radiocarbon in the atmosphere and oceans provide the pre-
industrial, pre-bomb concentration ratio

The ratio

A7% 98x 1074,

Co

The diffusivity of CO4 gas in water is about
D ~5x 1072 m?/yr.
We thus find the effective thin film thickness
0 =30 um
and the gas transfer velocity

D/ = 1800 m/yr ~ 20 cm/hr.

1.7.2 Decay constant of the bomb spike

We now apply the simplified model of decay of Section 1.6. There we pre-
dicted the decay time constant
Vi/A
T = :
D/
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Here we have

v
Zl = equivalent height of atmosphere ~ 8500 m

where “equivalent height” means the height that the atmosphere would have
if the atmospheric pressure everywhere were the same as at sea level.

Then
T ~4.7 yr.

Given the simplicity of the models, this prediction compares reasonably well
to the time constant of 17.4 yr measured from the decay of the bomb spike
in Section 1.4.

Since most of the "C uptake should be in the oceans, this result suggests
that the predicted uptake is about 4 times faster than the observed uptake.

There are many possible sources of error. Some possibilities:

e The “well-mixed” assumption, which derives from an assumption about
turbulence, does not account for the effectively thicker films due to wave
action.

e The ocean is not a perfect sink for “C.

1.7.3 Relation to the residence time of atmospheric CO,

In reality, the uptake of CO, into the oceans, land, and ultimately rocks
occurs at many time scales, some as long as 100 Kyr.

Here we have addressed only the fastest of these time scales, as it manifests
itself (roughly) in the decay of the bomb spike.

In this case, we merely observe the absorption into the oceans of a kind of
passive tracer.

However, when COs is injected into the atmosphere (rather than “labeling”
a particular kind of CO, as 14002), COy levels in the oceans rise in response.
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There is then an intermediate time scale, longer than that studied here, but
shorter than the 100 Kyr time scale of the rock cycle, wherein the atmosphere
equilibrates not back to its original COs concentration, but that which brings
it into equilibrium with the change in the oceans.

Indeed, models suggest that 20-35% of the increase in atmospheric COs re-
mains in the atmosphere at a time scale of 200-2000 yr [7,§].
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