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1 Ecological organization 

In these lectures we investigate some ways in which organisms assemble them­
selves into an ecosystem. 

We address two types of questions: 

•	 Geometry. How can we characterize the topological assembly—i.e., the 
connectivity of the components of a complex system? 

•	 Physics. How do rates of resource consumption influence the assembly? 

1  



We begin with some observations about the flow of energy through ecosys­
tems. 

1.1 Energy flow 

References: Morowitz [1], Cohen et al. [2]  

An ecosystem is a biological community and its physical environment.  

The community is made up of the organisms living in a particular habitat  
(valley, lake, island, etc).  

Within and across communities, one can study the flow of matter and energy.  

In this way the ecosystem is not only a major component of the carbon cycle,  
but also a mechanism for energy dissipation:  

Between the sun and the dissipation of heat, and between the input and 
output of CO2, lies a chemical reaction network called a food web. 
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Food webs describe which kind of organisms eat which other kinds.  

The simplest food web is a food chain.  

At the base of the food chain are producers, or autotrophs.  

At the next trophic level one finds consumers, or heterotrophs, which live off  
of primary producers.  

At the next higher trophic level are the consumers of consumers, etc.  

Given this simple description, we can ask a simple question: How long is a  
typical food chain? 

1.1.1 Food chains 

Reference: Hutchinson [3] 

In the simplest food chain, 

• Individuals of species S0 are eaten by those of S1; 

• those of S1 are eaten by those of S2, etc. 

Schematically there is a flow of energy like 

S0 → S1 → S2 → etc. 

In such an idealization, S0 is typically a plant, S1 an herbivore, S2 a carnivore, 
S3 a bigger carnivore, etc. 

Now suppose that a fraction 0 < φ < 1 of the energy that passes from Si−1 
to Si is available to pass to link Si+1. 

After n trophic steps, 
available energy ∝ φn . 

A decent guess might be that φ = 0.2. 
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Then S4 has available to it only 

φ4 = (0.2)4 = 0.16% 

of primary production. 

To get a better idea of what that might mean, suppose that each predator 
has twice the mass of its prey. 

This is not so much: the linear dimension of the predator is then only 

21/3 = 1.26 

times greater than the prey. 

Then species Sn is 2n times larger than S0, and if we can equate its mass to 
the energy it provides the next trophic level, the ratio of its population Pn 
to the population P0 of S0 is 

Pn massn/sizen φn/2n 
=	 = = 10−n (φ = 0.2). 

P0 mass0/size0 1/20 

Thus if there are n + 1 = 5 trophic levels, species S4 at the top of the food 
chain has a population 1/10,000 of S0. 

This is the basis of the trophic pyramid, suggesting that populations and the 
energy available to them exponentially decrease with each trophic level. 

Such reasoning is often invoked to explain why food chains rarely exceed 
about 5 trophic levels. 

The reasoning may be wrong—among other problems, food chain length does 
not appear to depend on primary production. 

But to illustrate why the reasoning may not be completely incorrect, consider 
an extreme example: 

•	 A protozoan feeds on algae with a density of 106/ml. 

•	 Assuming 30 trophic levels and size ratios as above, the population den­
sity of the top predator would be 10−24/ml. 
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• But the oceans have a size of ∼ 109 km3 = 1024 ml. 

• So the top predator would have a population of size 1! 

1.1.2 Food webs 

As one might expect, real food webs exhibit a complexity—and presumably 
an evolutionary history—that far exceeds that of a simple food chain. 

Here’s an example, from the East River Valley, 120 miles southwest of Denver: 

∗ 
www.foodwebs.org 

Each node represents a trophic species, i.e. a functional group that contains 
organisms that appear to eat and be eaten by the exact same species within 
a food web. 

The web structure in the image is organized vertically, with node color rep­
resenting trophic level. Red nodes represent basal species, such as plants 
and detritus, orange nodes represent intermediate species, and yellow nodes 
represent top species or primary predators. 

Note that this image has 4 trophic levels, with some species well connected 

∗Image produced with FoodWeb3D, written by R.J. Williams and provided by the Pacific Ecoinformatics 
and Computational Ecology Lab [4]. 
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and others not so much.  

In what follows, we focus on models that predict distributions of connectivity 
to see if we can learn more. 

1.2 Random networks 

Reference: Newman [5]. 

A perfectly plausible null hypothesis is to imagine that species represent 
nodes and predator-prey relationships represent links (edges) that are chosen 
randomly. 

For simplicity, we ignore the directed nature of the predator-prey link, and 
seek information only about the existence of the link. 

We then define a random network as follows: 

• We specify n nodes (i.e., species). 

• We specify the probability p that any two nodes are connected. 

Note that for any given node, there are 

n − 1 possible connections. 

Since there are n possible starting points for those n − 1 connections, there 
are 

n(n − 1) 
possible links,

2 
where the factor of 1/2 arises because we care only about the existence of the 
link, not its direction (i.e, we don’t count links twice). 

The expected number of links R(n) in the random graph is 

R(n) = p · (number of possible links) 
n(n − 1) 

= p . 
2 
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Define  
ki = number of links to node i. 

ki is called the degree of node i. 

The mean number of links attached to a node is 
R(n)(k) = 2 
n 

The factor of 2 arises because each link is attached to 2 nodes. We thus have 
2pn(n − 1)(k) = = p(n − 1) r pn.

2n 
(k) is called the mean degree of the random network. 

We seek the degree probability distribution: the probability of observing a 
node with degree k. 

To obtain a node with degree k, we must have k “successful” connections, 
each with probability p, and (n − 1 − k) unsuccessful connections. 

The number of possible combinations of such connections is given by the 
binomial coefficient   

n − 1 (n − 1)! 
= . 

k (n − 1 − k)! k! 
The probability Pk of observing k connections at a given node is then given 
by the binomial distribution   

Pk =
n − 1 

p k(1 − p)n−1−k . 
k

The binomial distribution is a bell-shaped curve. If n → ∞ and p → 0 while 
(k) = np remains constant, then the binomial distribution converges to the 
Poisson distribution 

(k)k e−(k) 
Pk = ,

k! 
the mean and variance of which are both (k). 

The random-network null-hypothesis thus makes a specific prediction: degree 
distributions are bell-shaped, with a mean and variance of (k). 

Real food web data is, however, inconsistent with this prediction [6]. 
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1.3 Scale-free networks  

Reference: Albert and Barabási [7] 

We now consider a model of a growing network. It too should be considered 
a null hypothesis rather than a mechanistic model of food webs. 

There are two ingredients: 

•	 Growth. We start with m0 nodes with pre-existing connections. At each 
time step we add a new node with m ≤ m0 links to pre-existing nodes. 

•	 Preferential attachment. New links tend to attach to already well-
attached nodes. Specifically: the probability Π that a new node is 
connected to node i is proportional to ki: 

ki
Π(ki) =  . 

j kj 

We can easily see that after t time steps, there are 

t + m0 nodes and mt new links. 

To derive the degree distribution, we assume that ki and t are continuous. 

Then the rate at which ki changes is proportional to Π(ki): 

dki 
= mΠ(ki). 

dt 
The factor of m arises by identifying the units of time with the interval 
between time steps and recalling that m links are added at each time step. 

We next substitute for Π(ki): 

dki ki
= m . 

dt kjj 

Since there are mt new links after t units of time, the sum 
kj(t) r 2mt, 

j 
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where the factor of 2 comes from counting each link twice (both “incoming” 
and “outgoing”), and the approximation ignores the small correction (for 
large t) that would arise from not counting the initial links. 

Substituting the sum into the growth equation above, we obtain 

dki ki 
= . 

dt 2t 
Separating variables, we have 

dki dt 
= . 

ki 2t 

Integrating both sides, we have 

ln ki(t) = 
1
ln t + const. ⇒ ki = Ct1/2 . 

2 
Now define 

ti = time of inception of the ith node. 

The initial condition is then ki(ti) = m, and therefore 
1/2 

t 
ki(t) = m . (1)

ti 

The number of links attached to the ith node therefore grows like t1/2, but √ 
the prefactor m/ ti depends on its time of inception. 

We seek the continuous probability density function p(k) that a node has 
degree k. 

To do so, we first define the cumulative probability distribution function 

P [ki(t) < k] = probability that the ith node has fewer than k links. 

We rewrite this expression using (1): � � 
t 1/2 

P [ki(t) < k] = P m 
ti 

< k (2) 

m2t 
= P ti > 

k2 . (3) 
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Now recall that there are m0 + t nodes, and one node is added at each time 
step. 

Thus the time ti at which the ith node is added is uniformly distributed 
between 0 and m0 + t (assuming the same rate for the first m0 nodes). 

The probability density function p(ti) is therefore constant over that interval. 
Since it must integrate to unity, we have 

1 
p(ti) = . 

m0 + t 

Consequently the RHS of (3) is 

m2t m0+t 
P ti > 

k2 = 

= 

m2t/k2 
p(ti)dti 

1 − 
� m2t/k2 

dti 

0 m0 + t 
m2t 

= 1 − 
k2(m0 + t) 

. 

Inserting this into (3), we obtain 
2m t 

P [ki(t) < k] = 1 − . 
k2(m0 + t) 

We can now obtain p(k) by noting that 

d 
p(k) = P [ki(t) < k]

dk 
2d m t 

= − 
dk k2(m0 + t) 

22m t 
k−3 = , 

m0 + t 

which in the limit of large t becomes 

2k−3 p(k) ∼ 2m . 

This degree distribution is distinctive for two reasons: 
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•	 Unlike the bell-curve of random networks centered at (k), here the degree 
distribution is one-sided, with its maximum at 0. 

•	 The power-law form of the distribution means that it is scale-free. 

We say that the distribution is scale-free because its form is independent of 
scale (and therefore time). 

To be precise, note that if we have a power-law distribution 

p(x) = x −α ,  

then it is invariant, except for a prefactor, under the change of scale x → bx:  

p(bx) = (bx)−α = b−α p(x).  

The power law is the only distribution of this type [8]. 

Are real food webs scale-free? The answer, it seems, is sometimes: 

Dunne et al. [6] 
In this figure, power-law degree distributions are concave upward, exponen­
tial distributions are straight lines, and uniform distributions are concave 
downward. 

Though hardly the rule in ecology, a great deal of other networks are appar­
ently scale free. Some examples [7]: 
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• The World Wide Web and the internet. 

• Scientific citations and co-authorship networks. 

• Metabolic networks. 

In the case of metabolic networks, one considers the nodes to be substrates 
(e.g., ATP, H2O) and the links represent chemical reactions. 

The scale-free nature of metabolic networks naturally raises the question of 
whether scale-invariance carries over to the scale of entire ecosystems and 
therefore biogeochemical cycles. 

We don’t know, but we now turn to discuss some interesting ways metabolism 
expresses itself at the scale of ecosystems. 

1.4 Metabolic scaling 

Reference: Brown [9]. 

Metabolism is a complex network of biochemical reactions, by which energy  
is provided for an organism and new material is assimilated.  

Metabolic rate is the rate of energy uptake, transformation, and allocation.  

For an autotroph, metabolic rate = photosynthetic rate.  

For a heterotroph, metabolic rate = respiration rate, i.e., the rate at which  

CH2O+O2 → energy + CO2 +H2O, 

since energy is derived from the oxidation of organic carbon. 

Metabolic rates vary from organism to organism, but their dependence on 
body size and temperature, to which we now turn, is a well-established em­
pirical fact. 
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1.4.1 Body size  

Reference: Dodds et al. [10]. 

Define 

I = metabolic rate of an individual organism 
M = mass of the organism 

Empirical studies show that, from unicellular organisms to elephants, 

I = I0Mα (4) 

where I0 is a constant that is independent of mass. 

The exponent α is widely believed to be α = 3/4. However all theories 
supporting α = 3/4 are controversial.  

To understand α a bit more, we consider a dimensional argument:  

• Heat is lost through the surface of a body. 

• Metabolic rate is limited by surface area. 

Noting that 
2/3 ∝ M2/3(surface area) ∝ (volume)

we find that our dimensional argument predicts α = 2/3. 

Because it is often difficult to distinguish an exponent of 2/3 from one of 3/4, 
in the following we merely assume that the scaling law (4) holds but we do 
not specify the value of α. 

Much more secure than the actual value of α, however, is the virtual fact 
that 

α < 1. 

Now consider the mass-specific metabolic rate 

= Mα−1B = I/M . 
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We find the remarkable result that, per unit mass, the metabolic rate of small 
organisms is faster than that of large organisms. 

These scaling laws are called allometric because, as in the case of river basins, 
a fundamental property (here, metabolic rate) does not scale proportionately 
with size. 

Consequently, as we shall soon show, the rate at which carbon passes through 
small organisms, is, per unit mass of the organisms, much greater than that 
of large organisms. 

In this sense one can say that small organisms dominate the flux of carbon 
through the biosphere. 

1.4.2 Temperature 

Classical equilibrium chemical kinetics predicts reaction rate constants k in 
terms of activation energies Ea. 

The activation energy is a potential barrier that is surmounted by a sufficient 
thermal fluctuation. 

Arrhenius kinetics predicts that the rate constant 

/kB Tk = ωe−Ea , 

where 

T = temperature 
kB = Boltzmann’s constant; and 
ω = the “attempt frequency” or “frequency factor.” 
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In the classical interpretation of Arrhenius kinetics, the fraction of reactant 
molecules with a kinetic energy greater than Ea is proportional to the Boltz­
mann factor exp(−Ea/kBT ). 

In this essentially phenomenological characterization, the temperature defines 
the characteristic size of a thermal fluctuation, Ea is the energy barrier that 
must be overcome by the fluctuation, and ω is the frequency at which the 
fluctuations lead to reaction. 

For a heterotroph, Ea varies between about 0.2 and 1.2 eV, with a typical 
value of 

Ea r 0.65 eV 

The commonality of the measured activation energies for organisms ranging 
from microbes to large mammals reflects the kinetics of ATP synthesis. 

Since 
1 eV 

= 11604.5 kelvins,
kB 

we have typically that 
Ea r 7500 kelvins 
kB 

For a temperature change of ΔT ,    
k(T + ΔT ) 

k(T ) 
= exp − 

Ea 

kB 

1 
T + ΔT 

− 
1 
T   

Ea ΔT 
= exp

kBT T + ΔT
. 

For ΔT = 10◦ C and a base temperature T = 15◦ C = 288◦ K, we have 

k(T +ΔT ) r 2.4,
k(T ) 

indicating that the metabolic rate of a typical heterotroph increases by about 
a factor of two for a 10◦ C increase in temperature. 
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1.4.3 Combining size and temperature 

Combining the Arrhenius law for biological rates with the size dependence of 
metabolism, the individual metabolic rate is 

−Ea/kB TI = i0Mα e . 

where i0 is constant independent of both size and temperature. 

We now compare this with measurements. 

In one case, we correct I by size to expose temperature dependence: 

Ea/kB TI · M−α = i0e . 

In the other case we correct I by temperature to expose size dependence: 

/kB TI · e Ea = i0Mα 

These scalings work remarkably well: 

Brown et al. [9], Copyright by the Ecological Society of America. 

In this case we find, on average, that 

Ea = 0.69 eV and α = 0.71. 

Note that the allometric exponent α is midway between 2/3 and 3/4, re­
flecting some indeterminacy in its origin. However there is no doubt that 
α < 1. 
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1.5 Individual expressions of metabolic scaling 

Reference: Brown [9]. 

Set 
P = biomass production rate. 

We expect P ∝ metabolic rate, and therefore 

Ea/kB TP · e ∝ Mα 

Brown et al. [9], Copyright by the Ecological Society of America. 

Here α r 0.76. 

Recalling that ln 10 r 2.3, we note that mass ranges over about 21 orders of 
magnitude, and therefore the linear dimension of size ranges over 21/3 = 7 
orders of magnitude. 

Expressing the mass-specific metabolic rate B in terms of both size and tem­
perature, we have 

B ∝ Mα−1 −Ea/kB T e . 

B sets a great variety of the time scales relevant to the life history of an 
individual organism. 

Consider, for example, the time scale for development (e.g., the time it takes 
for an egg to hatch): 
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Brown et al. [9], Copyright by the Ecological Society of America. 

The mass-specific mortality rate Z (measured in units of year−1) scales sim­
ilarly (here, for fish) like Mα−1: 

Brown et al. [9], Copyright by the Ecological Society of America. 

Heart rates also turn out to scale like the mass-specific metabolic rate. Con­
sequently the number of heartbeats in an individual’s life time scales like 

metabolic rate 
number of heart beats ∝ × lifetime 

M 
1 

Mα−1∝ × 
mass-specific mortality rate 

Mα−1∝ × (1/Mα−1) 
= constant 

showing that the number of heart beats in the typical lifetime of a mouse and 
an elephant are equal! 
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1.6 Metabolic scaling of populations 

Reference: Brown [9].  

Consider the population size N of a particular species.  

When resources are abundant, we expect  

dN 
= µN, 

dt 
where µ is the (maximal) growth rate. Solving for N , growth is exponential: 

N(t) ∝ eµt. 

This maximal growth rate also scales like the metabolic rate: 

Brown et al. [9], Copyright by the Ecological Society of America. 

Population growth, however, is always limited. A frequently employed model 
suggests that 

dN N 
dt 

= µN 1 − 
K 

, 

where K is called the carrying capacity. 

In steady state there is neither growth nor decay, so that the steady popula­
tion size is given by 

N = K. 

Now set 

r0 = constant rate of supply, per unit area, of a limiting resource. 

These resources should be consumed at a rate given by the population size 
and its individual metabolic rate; i.e., 

(consumption rate) ∝ (N × metabolic rate). 
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In steady state the consumption rate should equal the rate of resource supply, 
so that (ignoring temperature effects) 

r0 ∝ nMα 

where n, the population density, is the number of individuals per unit area. 

Consequently n scales likes 
n ∝ r0M−α 

Observations of terrestrial mammals show just this behavior, for α r 0.77: 

Brown et al. [9], Copyright by the Ecological Society of America. 

The scatter along the vertical axis may be due to different resource require­
ments at different trophic levels. (Organisms at higher trophic levels tend to 
require lower rates of resource supply.) 

Now consider the rate of energy use per unit area for each size class: 
energy use ∝ n(M) · Mα 

area 
∝ r0M

−α · Mα 

= r0. 

Thus for a constant rate of resource supply, the energy flux per unit area due 
to organisms of different size is independent of their size! 

We thus find a size-independent equipartion of resources, called the energetic 
equivalence rule. 
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Note that this remarkable balance of resources does not depend on a partic­
ular value of α. 

However it does require that r0—the rate of resource supply (usable energy) 
per unit area—be the same for each size class. 

Why is this so? We don’t know. 

1.7 Metabolic scaling of carbon stocks and turnover times 

Reference: Brown [9]. 

We now consider the size of carbon stocks and the rate at which they are 
consumed. Define 

w = standing stock or stored biomass per unit area 

For each size class, w is the product of the population density n and the mass 
M of individuals: 

w ∝ n(M) · M 
∝ r0M

−α · M 
r0M

1−α = 

We have already shown that the biomass production rate P for an organism 
of size M scales like 

P ∝ Mα . 

Then 

nP	 = production rate per unit area 
∝ (r0M

−α)Mα 

∝ r0 

and as a consequence 

production rate nP 
= Mα−1∝	 . 

biomass w 
Thus the mass-specific production rate increases with decreasing size.  
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Now recall that we have previously established that mass-specific mortality 
rates scale similarly. 

This should be no surprise, as production and consumption are balanced in 
steady state. 

Now define 
production rate mortality rate 

turnover rate = = . 
biomass biomass 

We find that 
turnover rate ∝ Mα−1 

Data for plants in aquatic and terrestrial ecosystems display this relation over 
about 7 orders of magnitude in mass, with α r 0.22: 

Brown et al. [9], Copyright by the Ecological Society of America. 

Turnover times are simply the inverse of the turnover rate; so that 

turnover time ∝ M1−α . 

1.8 Scaling from individuals to the globe 

Reference: López-Urrutia et al. [11]. 

Finally, we take a bold step and extrapolate these results to the global marine  
ecosystem.  

We return to thermal effects.  
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Studies indicate that the activation energy Ea for plants is smaller than that 
of heterotrophs. 

Then, neglecting size effects, we have 
production rate exp [−Ea(plants)/kBT ]∝ 
respiration rate exp [−Ea(heterotrophs)/kBT ] 

We have already noted that 

Ea(heterotrophs) r 0.65 eV. 

For plants, 
Ea(plants) r 0.33 eV. 

Plugging these numbers in above, we obtain 
production rate (0.32 eV)/kB T∝ e
respiration rate 

Remarkably, this is strikingly close to what is found for marine ecosystems: 

Modified from López-Urrutia et al. [11] 
Taking this result at face value and assuming no other changes, we would 
conclude that as temperatures increase, increases in respiration rates would 
outpace those of production, leading to a net increase of CO2 levels and 
further warming. 
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