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1 Spectral analysis 

References: Bracewell [1], Muller and MacDonald [2], Berge et al. [3]. 

Astronomically forced phenomena such as glacial cycles give rise to signals 
in which periodic phenomena are superimposed on other types of variations. 

One often seeks to measure the frequency of the various periodic components 
along with their relative amplitude. 
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To do so, we compute power spectra, using Fourier transforms.  

These lectures are intended to provide a theoretical understanding of power 
spectra. 

But we first consider some typical data. 

1.1 Climatic signals 

Reference: Emerson and Hedges [4], Muller and Macdonald [2]. 

Ocean sediments and ice cores contain within them a great many signals of 
climate change, e.g. 

•	 Isotopic composition of oxygen, which is sensitive to global ice volume 
and temperature, obtained from 

–	 entrapped air in ice cores; and 
–	 carbonate shells of planktic (sea surface) and benthic (sea bottom) 
organisms. 

• Deuterium/hydrogen ratios (D/H), D = 2H (1H with a neutron), sensi­
tive to temperature, in ice cores. 

•	 Carbon isotopic compositions. 

•	 Dust content, etc. 

Perhaps the most studied signal is 
18O/16O 

sample
δ18O = − 1 × 1000 

(18O/16O)std 

Here’s an example, from entrapped air in the Vostok (Antarctica) ice core 
(data from Petit et al. [5]): 
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http://www.ncdc.noaa.gov/paleo/icecore/antarctica/vostok/vostok_isotope.html


Note the clear occurrence of the precession signal, with a period of about 23 
Kyr. 

Many processes cause δ18O to change. The two most important are the 
following: 

• The vapor pressure (related to evaporation rate) of water containing 16O 
is higher than that of water containing 18O. Thus 16O evaporates more 
readily, and evaporated water is depleted in 18O. 

18O• Conversely, precipitated water is enriched in 18O. In other words, H2 
condenses at a faster rate than H2 

16O. 

The combined effect of these two processes leads to an enrichment of δ18O of 
air as the global volume of ice grows. 

Here’s why: 
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Take ocean water to be at 0%.  

Evaporated water is typically about 9% lighter (at 20 ◦C) than liquid water.  

Conversely condensate is about 9% heavier than vapor.  

So a cloud forming from recently evaporated seawater has δcloud = −9%.  

And the first rain from this cloud is 9% is heavier, so that δrain = 0%.  

However the remaining water in the cloud must be isotopically lighter than  
it was originally, and the rain out of it will therefore also become lighter.  

As the cloud moves to higher elevations or higher latitudes, it loses more  
vapor to condensate, and the resulting rain or snow becomes lighter and 
lighter. 

This process, in which a particular mass—here a cloud—is progressively 
“milked” of the heavy isotope so that it becomes lighter and lighter (or vice-
versa), is an example of Rayleigh distillation. 

In the arctic, both clouds and the resulting snow are very light, less than 
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−30%. The isotopic composition of the entire pool of condensate, from 
beginning to end, is of course equal to the original −9%—but since the initial 
(low-latitude) precipitation is heavier, the final (high-latitude) precipitation 
must be much lighter. 

Polar ice turns out to be about −40%, i.e., about 4% lighter than the O2 of 
seawater. 

We also know that sea level was about 100 m lower during times of peak 
glaciation. 

Since the average depth of the oceans is about 3800 m, 

total ice volume 100 
= = 2.6% 

ice + ocean volume 3800 

Conservation of mass then requires that the isotopic composition δw of the 
remaining seawater satisfy 

1 37 
(−40%) + δw = 0 

38 38 
implying that 

δw r 1.1%. 

The O2 in the atmosphere is created by photosynthesis, from water: 

CO2 +H2O → CH20 + O2. 

The δ18O of entrapped air in ice cores should therefore change more or less 
as the δ18O of seawater, i.e., it should be about 1% heavier in glacial times 
than interglacials, just as seen in the Vostok ice core. 

1.2 Fourier transforms 

The precise oscillatory nature of an observed time series x(t) is usually not 
identifiable from x(t) alone. 

We may ask 
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• How well-defined is the the dominant frequency of oscillation?  

• How many frequencies of oscillation are present? 

• What are the relative contributions of all frequencies? 

The analytic tool for answering these and myriad related questions is the 
Fourier transform. 

1.2.1 Continuous Fourier transform 

We first state the Fourier transform for functions that are continuous with 
time. 

The Fourier transform of a function f(t) is  ∞1 −iωtdtF (ω) = √ f(t)e 
2π −∞ 

Similarly, the inverse Fourier transform is  ∞1 iωtdω. f(t) = √ F (ω)e 
2π −∞ 

That the second relation is the inverse of the first may be proven, but we 
save that calculation for the discrete transform, below. 

1.2.2 Discrete-time signals 

We are interested in the analysis of observational or experimental data, which 
is almost always discrete. Thus we specialize to discrete Fourier transforms. 

In modern data, one almost always observes a discretized signal 

xj, j = {0, 1, 2, . . . , n − 1} 
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We take the sampling interval—the time between samples—to be Δt. Then  

xj = x(jΔt). 

The discretization process is pictured as 

A practical question concerns the choice of Δt. To choose it, we must know 
the highest frequency, fmax, contained in x(t). 

The shortest period of oscillation is 

Tmin = 1/fmax 

Pictorially, 

x

t

Tmin

We require at least two samples per period. Therefore 

Tmin 1 
Δt ≤ = . 

2 2fmax 

To see why, we note that if a continuous signal f(t) contains no frequencies 
greater than fmax, the inverse Fourier transform of F (ω) may be written 

2πfmax1 iωtdωf(t) = √ F (ω)e 
2π −2πfmax 

since F (ω) = 0 when |ω| > 2πfmax. 
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Now define the jth sampling time  
Tmin j

tj = j = , j = . . . − 1, 0, 1 . . . 
2 2fmax 

Substituting tj for t above, we obtain 
2πfmax1 iωtj dω. f(tj) = √ F (ω)e 

2π −2πfmax 

The RHS is the jth coefficient in a Fourier-series expansion of F (ω).  

Consequently the sampled function f(tj) completely determines F (ω).  

And by inverse Fourier transformation, the continuous function f(t) is com­
pletely determined by F (ω). 

This reasoning, first given by Shannon [6], leaves open the question of how 
to reconstruct the continuous function f(t) when only f(tj) is known. 

In principle, exact interpolation is possible via the convolutional sum 
∞f sin π(2fmaxt − j)

f(t) = xj . 
π(2fmaxt − j)

j=−∞ 

where xj = f(tj). 

1.2.3 Discrete Fourier transform 

The discrete Fourier transform (DFT) of a time series xj, j = 0, 1, . . . , n − 1 
is   n−1f 2πjk 

x̂k = xj exp −i k = 0, 1, . . . , n − 1 
n

j=0 

To gain some intuitive understanding, consider the range of the exponential 
multiplier. 

• k = 0 ⇒ exp(−i2πjk/n) = 1. Then f 
x̂0 = xj 

j 
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Thus x̂0 is n times the mean of the xj’s. 
This is the “DC” component of the transform. 
Question: Suppose a seismometer measures ground motion. What would 
x̂0 = 0 mean? 

• k = n/2 ⇒ exp(−i2πjk/n) = exp(−iπj). Then f 
x̂n/2 = xj(−1)j 

j 
= x0 − x1 + x2 − x3 . . . 

Frequency index n/2 is clearly the highest accessible frequency. 

• The frequency indices k = 0, 1, . . . , n/2 correspond to frequencies 

fk = k/tmax, 

i.e., k oscillations per tmax, the period of observation. 
Index k = n/2 then corresponds to   n 1 1 

fmax = = 
2 nΔt 2Δt 

But if n/2 is the highest frequency that the signal can carry, what is the 
significance of x̂k for k > n/2? 

For real xj, frequency indicies k > n/2 are redundant, being related by 

∗ x̂k = x̂n−k 

∗ ∗where z is the complex conjugate of z (i.e., if z = a + ib, z = a − ib). 
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We derive this relation as follows. From the definition of the DFT, we have  

n−1f 2πj(n − k)∗ x̂ = xj exp +in−k n 
j=0 

n−1f −i2πjk 
= xj exp (i2πj exp� (� )) n 

j=0 1 

n−1f −i2πjk 
= xj exp 

n 
j=0 

= x̂k 

where the + in the first equation derives from the complex conjugation, and 
the last line again employs the definition of the DFT. 

Note that we also have the relation 

∗ ∗ x̂ = x̂ = x̂k.−k n−k 

The frequency indicies k > n/2 are therefore sometimes referred to as negative 
frequencies 

1.2.4 Inverse discrete Fourier tranform 

The inverse DFT is given by 

n−1f1 2πjk 
xj = x̂k exp +i j = 0, 1, . . . , n − 1 

n n 
k=0 

We proceed to demonstrate this inverse relation. 
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We begin by substituting the DFT for x̂k, using dummy variable j': ⎡ ⎤ 

xj = 
1 
n 

n−1f 

k=0 

⎣ 
n−1f 

j'=0 

xj' exp −i 2πj
'k 

n 
⎦ exp +i 

2πkj 
n 

= 
1 
n 

n−1f 

j'=0 

xj' 
n−1f 

k=0 

exp −i 2πk(j
' − j) 
n 

= 
1 
n 

n−1f 

'=0 

xj' ×
 
n, 
0, 

j

j' = j 
j' = j 

1 
= (nxj) 

n 

= xj 

The third relation derives from the fact that the previous amounts to a k 
vanishing sum over the unit circle in the complex plane, except when j' = j. 

To see why the sum over the circle vanishes, consider the example of 

j' − j = 1 and n = 4. 

The elements of the sum are then just the four points on the unit circle that 
intersect the real and imaginary axes, i.e., 

3f 2πk(j' − j) 0 −iπ/2 −iπ −i3π/2 exp −i = e + e + e + e 
4 

k=0 
= 1 + i − 1 − i 
= 0. 

Finally, note that the DFT relations imply that xj is periodic in n, so that 
xj+n = xj. 

Consequently a finite time series is treated as if it were recurring: 

11  

( ) ( )
( )

6

( )



maxttmax 2 t
maxt−

x(t)

0

1.3 The autocorrelation function and the power spectrum 

Assume that the time series xj has zero mean and that it is periodic, i.e., 
xj+n = xj. 

Define the autocorrelation function ψ: 
n−1f 

∗ ψm = xj xj+m 
j=0 

where 
ψm = ψ(mΔt) 

The autocorrelation function measures the degree to which a signal resembles 
itself over time. Thus it measures the predictability of the future from the 
past. 

To gain some intuition: 

•	 Consider, for example, m = 0 and real xj. Then 
n−1f 

2ψ0 = xj , 
j=0 

which is n times the mean squared value of xj. 

•	 Alternatively, if mΔt is much less than the dominant period of the data, 
ψm should not be too much less than ψ0. 

•	 Last, if mΔt is much greater than the dominant period of the data, |ψm|
is relatively small. 
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A typical ψm looks like 

Ψm

m

The power spectrum of a time series is the magnitude squared of its Fourier  
transform:  

|x̂k|2 = 

      
n−1

j=0 

f 
xj exp −i  2πjk  

n 

      
2 

.  

The Wiener-Khintchin theorem states that 

power spectrum = Fourier transform of the autocorrelation. 

In symbols, fn−1

|x̂k|2 = ψm exp −i 2πkm  
n 

m=0 

f 

We also have the inverse relation 
n−1

1  
ψm =  

n  
k=0 

2πkm |x̂k|2 exp +i 
n  

To prove the latter relation, we first substitute the inverse DFT for xj and 
xj+m in the definition of ψm: 

f 

f
f 

n−1
∗ ψm = xj xj+m 

j=0 

n−1 n−1
       fn−1

n n n n
j=0 k=0 k ' =0 

2πk ' (j + m)1  2πkj 1∗ x̂k exp −i x̂k' exp i=  
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We then change the order of the summations and simplify as follows:  

n−1 n−1 n−1ff f1 2πmk ' 2πj(k ' − k)∗ ψm = x̂kx̂k ' exp i exp i
2n n n 

k=0 k ' =0 j=0 (� )
= n, k ' = k 
= 0, k ' = k 

n−1f1 2πmk ∗ = x̂kx̂k exp i 
n n 

k=0 

which is the Wiener-Khintchin relation. 

By Fourier transforming ψm we also prove the inverse relation: the power 
spectrum is the Fourier transform of the autocorrelation. 

For a real time series {xj}, we can use the previously derived relation 

∗ x̂ = x̂n−k = x̂−kk 

to show that 

∗ ∗ |x̂k|2 = x̂kx̂k = x̂kx̂n−k = x̂n−kx̂n−k = |x̂n−k|2 . 

This redundancy results from the fact that neither the autocorrelation nor 
the power spectrum contain information on any “phase lags” in either xj or 
its individual frequency components. 

Thus while the DFT of an n-point time series results in n independent quan­
tities (2 ×n/2 complex numbers), the power spectrum yields only n/2 inde­
pendent quantities. 

One may therefore show that there are an infinite number of time series that 
have the same power spectrum, but that each time series uniquely defines its 
Fourier transform, and vice-versa. 

Consequently a time series cannot be reconstructed from its power spectrum 
or autocorrelation function. 
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1.4 Power spectrum of a periodic signal 

Consider a periodic signal 

2π 
x(t) = x(t + T ) = x t + 

ω 

Consider the extreme case where the period T is equal to the duration of the 
signal: 

T = tmax = nDt 
The Fourier components are separated by 

1 
Δf = 

tmax 

i.e. at frequencies 
0, 1/T, 2/T, . . . , (n − 1)/T. 

1.4.1 Sinusoidal signal 

In the simplest case, x(t) is a sine or cosine, i.e., 

2πt 
x(t) = sin . 

tmax 

What is the Fourier tranform? Pictorially, we expect 
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We calculate the power spectrum analytically, beginning with the DFT:  

x̂k = 
f 

xj exp 
−i2πjk 

n 
j 

= 
f 

j 

sin 
2πjΔt 
tmax 

exp 
−i2πjk 

n 

= 
1 
2i 
f 

j

 
exp 

i2πjΔt 
tmax 

− exp 
−i2πjΔt 
tmax

  
exp 

−i2πjk 
n 

1 f  Δt k Δt k 
= 

2i 
j

exp i2πj 
tmax 

− 
n

− exp −i2πj 
tmax 

+ 
n

n ±nΔt 
= ± when k = . 

2i tmax 

Thus 
2n|x̂k|2 = for k = ±1. 
4 

1.4.2 Non-sinusoidal signal 

Consider now a non-sinusoidal yet periodic signal, similar to that of the 
signals seen in glacial cycles. 

The non-sinusoidal character of such oscillations implies that it contains 
higher-order harmonics, i.e., integer multiples of the fundamental frequency 
1/T . Thus, pictorially, we expect 

xk
2

∆k f = k/T1/T

x(t)

tmax
t

2/T
3/T

harmonics
fundamental
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Now suppose tmax = pT , where p is an integer. The non-zero components of 
the power spectrum must still be at frequencies 

1/T, 2/T, . . . . 

But since 
1 1 

Δf = = 
tmax pT 

the frequency resolution is p times greater. Contributions to the power spec­
trum would remain at integer multiples of the frequency 1/T , but spaced p 
samples apart on the frequency axis. 

1.4.3 tmax/T = integer 

If tmax/T is not an integer, the (effectively periodic) signal looks like 

We calculate the power spectrum of such a signal, assuming the sinusoidal 
function 

2πt 
x(t) = exp i 

T 
which has the discrete form 

2πjΔt 
xj = exp i . 

T 

The DFT is 
n−1f 

x̂k = exp i 
2πjΔt 
T 

exp −i 2πjk 
n 

. 
j=0 

Set 
Δt k 

φk = 
T 

− 
n 
. 
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Then 
n−1f 

x̂k = exp (i2πφkj) . 
j=0 

Recall the identity 
n−1f 

xj = 
xn − 1 

. 
x − 1 

j=0 

Then 
x̂k = 

exp(i2πφkn) − 1 
exp(i2πφk) − 1 

. 

The power spectrum is 

1 − cos(2πφkn)∗ |x̂k|2 = x̂kx̂ = k 1 − cos(2πφk) 

sin2(πφkn) 
= . 

sin2(πφk) 

Note that 
nΔt tmax

nφk = − k = − k 
T T 

is the difference between a DFT index k and the “real” non-integral frequency 
index tmax/T . 

Assume that n is large and k is close to that “real” frequency index such that 
nΔt 

nφk = − k < n. 
T 

Consequently φk < 1, so we may also assume 

πφk < 1. 

Then 
sin2(πφkn)|x̂k|2 r 
(πφk)2 

sin2(πφkn)2 = n 
(πφkn)2 

sin2 z ∝ 
2z
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    where  
nΔt tmax 

z = nπφk = π − k = π − k . 
T T 

Thus |x̂k|2 is no longer a simple spike. Instead, as a function of z = nπφk it 
appears as 

1

2sin z / z2

πφkπ 2π 3π−3π −2π −π 0 z=n

i2πt/T The plot gives the kth component of the power spectrum of e as a 
function of π(tmax/T − k). 

To interpret the plot, let k0 be the integer closest to tmax/T . There are then 
two extreme cases: 

1. tmax is an integral multiple of T: 
tmax − k0 = 0. 
T 

The spectrum is perfectly sharp: 

xk
2

kk0
0 z

sin2z/z

2. tmax/T falls midway between two frequencies. Then 
tmax 

T 
− k0 = 

1 
2 
. 

The spectrum is smeared: 
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xk
2

kk0
0 z

sin2z/z

The smear decays like  

1 1  ∼ 
(k − tmax/T )2 k2 

1.4.4 Conclusion 

The power spectrum of a periodic signal of period T is composed of: 

1. a peak at the frequency 1/T 

2. a smear (sidelobes) near 1/T 

3. possibly harmonics (integer multiples) of 1/T 

4. smears near the harmonics. 

1.5 Quasiperiodic signals 

Let y be a function of r independent variables: 

y = y(t1, t2, . . . , tr). 

y is periodic, of period 2π in each argument, if 

y(t1, t2, . . . , tj + 2π, . . . , tr) = y(t1, t2, . . . , tj, . . . , tr), j = 1, . . . , r 

y is called quasiperiodic if each tj varies with time at a different rate (i.e., 
different “clocks”). We have then 

tj = ωjt, j = 1, . . . , r. 
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The quasiperiodic function y has r fundamental frequencies:  

fj = 
ωj 

2π 
and r periods 

1 2π 
Tj = 

fj 
= 
ωj 
. 

Example: The astronomical position of a point on Earth’s surface changes 
due to 

• rotation of Earth about axis (T1 = 24 hours). 

• revolution of Earth around sun (T2 r 365 days). 

At long time scales, we also have changes in precession (26 Kyr), obliquity 
(41 Kyr), and eccentricity (∼100 Kyr). 

Considering just two oscillations (e.g, rotation and revolution), we can con­
ceive of such a function on a 2-D torus T 2, existing in a 3-D space. 

T1

T2

Here we think of a disk spinning with period T1 while it revolves along the 
circular path with period T2. 

Such behavior can be conceived as a trajectory on the surface of a doughnut 
or inner tube, or a torus T2 in R3 . 
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What is the power spectrum of a quasiperiodic signal x(t)? There are two 
possibilities: 

1. The quasiperiodic signal is a linear combination of independent periodic 
functions. For example: 

rf 
x(t) = xi(ωit). 

i=1 

Because the Fourier transform is a linear transformation, the power spec­
trum of x(t) is a set of peaks at frequencies 

f1 = ω1/2π, f2 = ω2/2π, . . . 

and their harmonics 

m1f1, m2f2, . . . (m1,m2, . . . positive integers). 

2. The quasiperiodic signal x(t) depends nonlinearly on periodic functions. 
For example, 

1 1 
x(t) = sin(2πf1t) sin(2πf2t) = cos(|f1 − f2|2πt) − cos(|f1 + f2|2πt). 

2 2 
The fundamental frequencies are 

|f1 − f2| and |f1 + f2|. 

The harmonics are 

m1|f1 − f2| and m2|f1 + f2|, m1,m2 positive integers. 
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The nonlinear case requires more attention. In general, if x(t) depends non­
linearly on r periodic functions, then the harmonics are 

|m1f1 + m2f2 + . . . + mrfr|, mi arbitrary integers. 

In what follows, we specialize to r = 2 frequencies, and forget about finite 
Δf . 

Each nonzero component of the spectrum of x(ω1t, ω2t) is a peak at 

f = |m1f1 + m2f2|, m1,m2 integers . 

There are two cases: 

1. f1/f2 rational ⇒ sparse spectrum. 

2. f1/f2 irrational ⇒ dense spectrum. 

To understand this, rewrite f as 

f1
f = f2 m1 + m2 . 

f2 

In the rational case, 
f1 integer 

= . 
f2 integer 

Then 

f1 integer 1 
m1 + m2 = + integer = integer multiple of . 

f2 f2 f2 

Thus the peaks of the spectrum must be separated (i.e., sparse). 

Alternatively, if f1/f2 is irrational, then m1 and m2 may always be chosen so 
that 

f1 
m1 + m2 is not similarly restricted. 

f2 

These distinctions have further implications.  
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In the rational case,  

f1 n1 
= , n1, n2 integers. 

f2 n2 

Since 
n1 n2 

= 
f1 f2 

the quasiperiodic function is periodic with period 

T = n1T1 = n2T2. 

All spectral peaks must then be harmonics of the fundamental frequency 

1 f1 f2
f0 = = = . 

T n1 n2 

Thus the rational quasiperiodic case is in fact periodic, and some writers 
restrict quasiperiodicity to the irrational case. 

Note further that, in the irrational case, the signal never exactly repeats 
itself. 

One may consider, as an example, the case of a child walking on a sidewalk, 
attempting with uniform steps to never step on a crack (and breaking his 
mother’s back...). 

Then if x(t) were the distance from the closest crack at each step, it would 
only be possible to avoid stepping on a crack if the ratio 

step size 
crack width 

were rational. 

1.6 Aperiodic signals 

Aperiodic signals are neither periodic nor quasiperiodic. 

Aperiodic signals appear random, though they may have a deterministic foun­
dation. 
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An example is white noise, which is a signal that is “new” and unpredictable 
at each instant, e.g., 

Statistically, each sample of a white-noise signal is independent of the others, 
and therefore uncorrelated to them. 

The power spectrum of white noise is, on average, flat: 

xk
2

k

The flat spectrum of white noise is a consequence of its lack of harmonic 
structure (i.e., one cannot recognize any particular tone, or dominant fre­
quency). 

We proceed to derive the spectrum of a white noise signal x(t). 

Rather than considering only one white-noise signal, we consider an ensemble 
of such signals, i.e., 

x(1)(t), x(2)(t), . . . 

where the superscipt denotes the particular realization within the ensemble. 
Each realization is independent of the others. 

Now discretize each signal so that 

xj = x(jΔt), j = 0, . . . , n − 1 

We take the signal to have finite length n but consider the ensemble to contain 
an infinite number of realizations. 
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We use angle brackets to denote ensemble averages.  

The ensemble-averaged mean of the jth sample is then 
pf 

(i)(xj) = lim 
1 

xjp→∞ p 
i=1 

Similarly, the mean-square value of the jth sample is
p  1 f 2 

2 (i)
x = lim xj jp→∞ p 

i=1   
2Now assume stationarity: (xj) and x are independent of j. We take these   j

2mean values to be (x) and x , respectively, and assume (x) = 0. 

Recall the autocorrelation ψm: 
n−1f 

ψm = xjxj+m. 
j=0 

By definition, each sample of white noise is uncorrelated with its past and 
future. Therefore   f 

(ψm) = xjxj+m

j   
= n x 2 δm 

where 
1 m = 0 

δm = 
0 else 

We obtain the power spectrum from the autocorrelation function by the 
Wiener-Khintchine theorem: 

|x̂k|2
 

= 
n−1f 

m=0 

(ψm) exp −i 2πmk 
n 

= 
n−1f 

n
 
x 2
 
δm exp −i 2πmk 

n 
m=0 

= n
 
x 2
 

= constant.  
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Thus for white noise, the spectrum is indeed flat, as previously indicated:  

xk
2

k

A more common case is “colored” noise: a continuous spectrum, but not 
constant: 

xk
2

k

In such (red) colored spectra, there is a relative lack of high frequencies. The 
signal is still apparently random, but only beyond some interval Δt. 

The autocorrelation of colored noise is broader, e.g., 
Ψm

m

1.7 Power spectrum of a random walk 

Colored noise often has a power spectrum that decays like 

∝ k−β|x̂k|2 , β r 2. 

Here we show how the case β = 2 derives from a random walk. 

Suppose that {xj} is a random walk. Then the increments 

ηj = xj − xj−1 
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are all independent, so that the the autocorrelation  f 
(ψm) = (ηjηj+m)

j 

η2 = n δm. 

Therefore the power spectrum of the increments is flat: 

|η̂k|2 = const. 

We can also calculate η̂k from the Fourier transform of xj: f 2πjk 
η̂k = (xj − xj−1) exp −i 

n 
j f 2π(j + 1)k 

= x̂k − xj exp −i 
n 

j 

2πk 
= x̂k 1 − exp −i . 

n 

where we have used the periodicity of xj, i.e., xj+n = xj, in writing the 
summation in the second relation. 

Squaring both sides above, we obtain the power spectrum 

2πk |η̂k|2 = 2|x̂k|2 1 − cos . 
n 

Since 
2x

cos x = 1 − + O(x 4)
2 

we have, for 2πk < n, 
|η̂k|2 ∝ k2|x̂k|2 . 

But we know that |η̂k|2 = const. Therefore 

∝ k−2|x̂k|2 . 

Thus when spectra decay like 1/k2, the underlying time series could be a 
random walk. 

But beware: many other processes also give spectra that decay like 1/k2 . 
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1.8 Identification of spectral peaks  

Reference: Scargle [7]. 

Suppose you compute the DFT of a particular signal and identify a spectral 
peak. Is the peak real? 

To answer this question, we need a null hypothesis and ask a specific question: 

If a time series is composed of uncorrelated (white) noise, what is 
the probability of observing a spectral peak with a power greater than 
the power observed? 

Suppose that xj is Gaussian white noise with zero mean and variance f1 
σ2 = x 2 2 

j = xj . n 
j 

The DFT of xj is 

x̂k = 
f 

xj exp −i 2πjk 
n 

j 

≡ ak + ibk. 

where f 
ak = xj cos (2πjk/n) 

j 

and f 
bk = − xj sin (2πjk/n) 

j 

Because the xj are independent Gaussian random variables with zero mean, 
so too are ak and bk. The mean power spectrum Sk is 

Sk = |x̂k|2 2 = ak + bk 
2 

2 2 
k+ b = ak 

= nσ2 

where the latter relation was established in Section 1.6. 
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For evenly sampled data the variance is equally shared so that  

2 b2 nσ2 2 a = = ≡ sk k 02 
Consequently the probability density functions of ak and bk are Gaussian with 

2zero mean and variance s0: 
1 −a2/2sp(a) = √ e 
2πs0 

2
0 

1 −b2/2sp(b) = √ e 
2
0,  

2πs0 
where we have dropped the index k since all k-components are identically 
distributed. 

Because the random variables a and b are independent, the joint probability 
density function 

pab(a, b) = p(a)p(b) 
1  −(a2+b2)/2s20= e  .  

2πs20 

Now define the spectral power 
2 + b2φ = a  .  

The probability of observing a power ≤ φ at any particular spectral index is 
given by the cumulative density function 

P (φ) = pab(a, b)dadb. 
a2+b2≤φ 

Set 
a = r cos θ and b = r sin θ. 

2Then, integrating over r, from r2 = 0 to r = φ, 
√ 
φ1  −r2/2s20P (φ) = 

2πs2 
0 0 

2πrdr e 

 
 −r2/2s= − e 

2
0 

 

−φ/2s= 1 − e 
2
0.  
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2Recalling that 2s = nσ2, we have 0 

−φ/nσ2 
P (φ; n, σ2) = 1 − e . 

To see what this means, suppose you observe a spectral peak with power φ0 
in a time series of length n with a mean-square fluctuation of σ2 . 

If the time series were Gaussian white noise with the same mean square 
fluctuation, the probability of observing a peak with power greater than φ0 
would be 

Prob(φ > φ0) = 1 − P (φ0; n, σ2) 
−φ0/nσ

2 
=	 e . 

This quantity, often called the p-value, gives the statistical significance of the 
peak (lower p-values mean greater statistical significance). 

As expected, observing a greater power φ0 implies greater statistical signifi­
cance. 

But as the length n of the time series increases, we require a proportionately 
greater power to maintain the same statistical significance! 

Moreover the probability of fluctuations drops off only exponentially with 
their size. 

Thus large fluctuations are common in power spectra, and one must carefully 
interpret any spectral peak to be confident that it corresponds to a true 
periodic signal. 
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