Reading for Today: Sections 9.8 - 9.13 (8.8-8.13 same in 4th ed.) on solubility; Sections 11.1 – 11.2, 11.4-11.6 (10.1-10.2, 10.4-10.6 in 4th ed.) on acids and bases.

Reading for Lecture #21: Sections 11.7-11.9, 11.11-11.13 (10.7 -10.9, 10.11 – 10.13 in 4th ed).

Topics: I. Solutions and Solubility

II. Classification of Acids and Bases

I. SOLUTIONS AND SOLUBILITY

So far, we've been discussing pure compounds. However, most substances are ______.

Solutions are homogeneous mixtures.

Solvent: the substance that does the dissolving (i.e. water) Solute: any dissolved substance in a solution

MOLAR SOLUBILITY

<u>Ionic solids</u>. Consider NaCl dissolving in water.

Polar water molecules ______ions at the surface of the salt's crystal lattice, prying some of the Na⁺ and Cl⁻ ions away.

Stirring can ______ the process by bringing more free water molecules to the surface of the solid, and taking more hydrated ions away.

Solubility equilibrium: NaCl (s) \implies Na⁺(aq) + Cl⁻(aq)

 $K_{sp} = [Na^+][Cl^-]$ where sp stands for "solubility product"

is a measure of the dissolution of an ionic solid in water.

Note NaCl does not appear in the expression since it is a solid.

Organic solids. Consider glucose dissolving in water.

Water molecules form **hydrogen bonds** to the glucose molecules near the surface of a glucose crystal. Some glucose molecules are pulled away by the surrounding water (are solubilized), other molecules are not.

Glucose is a hydrogen bond	
A solution is and some undissolved so	
The dissolved and undissolveith each other.	ved solute are in

The amount that dissolves depends on the **molar solubility (s)** of the substance.

Molar solubility (s) of a substance is its molar concentration in a **saturated** solution, and represents the limit of its ability to dissolve in a given solvent. (units: _____)

Note: molar solubility (s) and K_{sp} are not the same, but they can be calculated from each other. $[Na^+] = [Cl^-] = s$ (is the molar solubility of either ion at equilibrium), thus

 $K_{sp} = [Na^+][Cl^-] = s^2$ for this particular ionic compound.

Like-Dissolves-Like Rule

A polar liquid like water is generally the best solvent for ionic and _____compounds.

Conversely, nonpolar liquids, including hexane and tetrachloroethane (used in dry cleaning), are better for nonpolar (hydrophobic) compounds.

Applications of this rule:

pharmaceutical drug design -- solubility of nonpolar enzyme inhibitors in aqueous solutions.

cleaning products -- want to dissolve polar and nonpolar stains

IMPACT OF PRESSURE AND TEMPERATURE ON SOLUBILITY

Pressure and Gas Solubility

Henry's Law: the solubility of a gas (s) is directly proportional to its partial pressure (P).

 $s = k_H P$ where k_H is Henry's constant, and depends on the gas, the solvent, and the temperature.

© W. H. Freeman & Co Ltd. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

The solubility of a gas is _______to its partial pressure, because an increase in pressure corresponds to an ______ in the rate at which gas molecules strike the surface of the solvent.

In Their Own Words

Former MIT postdoctoral scholar Dr. Hector Hernandez discusses how gas solubility and Le Chatelier's principle relate to his research on CO₂ capture and storage in the lab of MIT Professor Janelle Thompson.

Hector's s video can be found at: http://chemvideos.mit.edu/all-videos/.

Courtesy of Hector Hernandez. Used with permission.

Temperature and Solubility
Most substances dissolve more at higher temperatures, but that doesn't necessarily mean that they are more soluble (that is reach a higher final concentration of solute)
Most gases are soluble in warm water than in cold water.
Solids show a more varied behavior.
ENTHALPY, ENTROPY AND GIBBS FREE ENERGY OF SOLUTIONS
The change in molar enthalpy when a substance dissolves is called the enthalpy of solution ΔH_{sol} . The change can be measured calorimetrically from the heat released or absorbed when the substance dissolves at constant pressure.
A enthalpy of solution tells us that energy is released as heat when a substance dissolves.
Aenthalpy of solution tells us that energy is absorbed as heat when a substance dissolves.
To predict whether dissolving of a substance is spontaneous at constant pressure and temperature, we need to consider
Since the disorder of a system typically increases when a solid dissolves, we expect the entropy of the system to*.
If ΔH_{sol} is negative, and the entropy of the system increases when the solute dissolves, then we expect the dissolving process to be
* In some cases, the entropy of the system is lowered when a solution forms because the solvent molecules form a cage-like structure around the solute molecule.
Here even if ΔH_{sol} is negative, ΔG might be positive.
This cage-effect is why some hydrocarbons are insoluble in water even though they have weakly negative enthalpies of solution.
© W. H. Freeman & Co Ltd. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/ .
For gases, which enter a condensed state with much less freedom of movement when they dissolve in a liquid, the entropy of solution is and solubility as the temperature rises.

What is the effect on the spontaneity of dissolving if ΔH_{sol} is positive?

II) CLASSIFICATION OF ACIDS AND BASES

1. Arrhenius - a narrow definition of acids and bases

An **acid** is a substance that when dissolved in water **increases** the concentration of hydrogen ions.

A **base** is a substance that **increases** the hydroxide concentration.

2. Brønsted-Lowry - a broader definition

A Brønsted-Lowry acid - a substance that can _____ a hydrogen ion (H⁺)

A Brønsted-Lowry **base** - a substance that can ______a hydrogen ion (H⁺)

Example 1

$$\overline{\text{CH}_3\text{COOH}}$$
 (aq) + $\overline{\text{H}_2\text{O}}$ (l) \Longrightarrow $\overline{\text{H}_3\text{O}^+}$ (aq) + $\overline{\text{CH}_3\text{COO}^-}$ (aq) Acid1 Base2 Acid2 Base1

(note: hydronium ion H_3O^+ (aq) is used instead of H^+ (aq) to represent the true nature of hydrogen ions in water)

Acid-bases occur as conjugate acid-base pairs.

CH₃COOH and CH₃COO are a pair. H₂O and H₃O are a pair.

- The conjugate base of an acid is the base that is formed when the acid has donated a hydrogen ion (proton).
- The conjugate acid of a base is the acid that forms when base accepts a hydrogen ion (proton).

Example 2 Which are Brønsted-Lowry acids and which are Brønsted-Lowry bases?

(a)
$$HCO_3^-(aq) + H_2O(1) \implies H_3O^+(aq) + CO_3^-(aq)$$

(b)
$$HCO_3^-(aq) + H_2O(1) \implies H_2CO_3(aq) + OH^-(aq)$$

amphoteric - molecules that can function either as acids or bases depending on the reaction conditions (example H_2O).

3. Lewis Acid and Base - more general definition - applies to reactions that don't involve a hydrogen ion

Lewis **base** - species that ______ lone-pair electrons

Lewis acid - species that _____such electrons

Example 1

Ammonia is the Lewis base. It donates lone-pair electrons to BF_3 , the Lewis acid and the electron acceptor.

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.