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Review: Vector Calculus 
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          =
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Gradient (on a scalar function) 
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Divergence (operated on vector) 
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Curl (operated on vector)  
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In 1D integration… 

 f (x2) − f (x1) =
∂f
∂xx1

x2∫ dx   

 
 
...similarly, we have two different integral theorems for vector calculus. 
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(1) Gauss’ theorem (Divergence theorem) 
 For any vector field  , v̂ 
 

   
K v 

s∫ ⋅ ˆ n  da = (∇ ⋅ K v )dv
v∫  

 
 

velocity × area 
 
“total outgoing 
volume flow rate” 

surface S
“volume expansion” 

vˆ n 
 

 
 
 
 
 
 
Proof: consider infinitesimal cube. 
 

(x,y,z)  Δx
ΔyΔz  
21 

 
 
 
 
 
 
 
 
 
From surfaces 1 and 2: 
 

   (K v 
s∫ ⋅ ˆ n ) da → (Vx x+Δx −Vx x )ΔyΔz  

12

 
Similarly, from other surfaces, 
 

   (K v 
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Divide each terms with Δx , Δ , y Δz  respectively, 
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Meaning of “  ” ∇ ⋅
K 
V 

• volume expansion 
• net outgoing flux 

• for incompressible flow,  ∇ ⋅
K 
V = 0  (no fluid source/sink) 

 
 
 
 
 
 
 

             ∇ ⋅
K 
V = 0  ∇ ⋅

K 
V > 0      ∇ ⋅

K 
V < 0  

      “divergence” free 
 

(2) Stokes’ theorem (curl theorem) 
 For a given vector field  v , ˆ
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V 

C∫ ⋅ dK s = (∇ ×
K 
V 

S∫ ) ⋅ ˆ n  da  
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Contour C 

ˆ n  

 dK s 
 
 
 
 
 
 
 
Proof: think about the rectangle in the xy plane. 
 

   
K 
V 

C∫ ⋅ dK s  
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Similar for curves in other planes… 
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Meaning of “  ” ∇ ×
K 
V 

• Represents “circulation” of the flow. 
 
 
 
 
 
 
 

        ∇ ×
K 
V = 0  ∇ ×

K 
V ≠ 0 

  Laminar flow    Turbulent flow 
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